
* Corresponding author.
E-mail address: limonurrahman16@gmail.com (Md. L. R. Lingkon)

ISSN 2371-8374 (Online) - ISSN 2371-8366 (Print)
© 2024 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.jpm.2024.7.007

Journal of Project Management 9 (2024) 387–402

Contents lists available at GrowingScience

Journal of Project Management

homepage: www.GrowingScience.com

Multi-objective flexible job-shop scheduling in hospital using discrete particle swarm optimization algo-
rithm with adaptive inertia weight (DPSO-AIW)

Md. Limonur Rahman Lingkona* and Adri Dasha

aDepartment of Industrial & Production Engineering, Rajshahi University of Engineering & Technology, Rajshahi-6204, Bangladesh
C H R O N I C L E A B S T R A C T

Article history:
Received: April 1, 2024
Received in revised format: June
28, 2024
Accepted: July 28, 2024
Available online:
July 28, 2024

 A multi-objective Flexible Job-shop Scheduling technique for hospitals is proposed using
DPSO-AIW i.e. discrete particle swarm optimization with adaptive inertia weight method. The
approach encodes the layer of the chromosomes using an operation sequence (OS) and machine
assignment (MA) which is a two-layer coding structure. Global selection based on the operation
(GSO) of MA and random selection of OS are coupled in the initial population. Rapid non-
dominated sorting yields fronts of non-domination, which are necessary for getting the Pareto
optimum solution. The diversity of the population is increased during the evolution process by
adaptive adjustment of the variation of the weight of inertia, expressed by ω. Then, the Pareto
optimal solution found during the process is kept in the Pareto optimal solution set (POS). The
discrete particle swarm optimization algorithm is utilized to solve the values of the next gener-
ation chromosomes in the discrete domain directly. Lastly, comparisons with certain current
techniques and numerical simulation based on two sets of international standard examples are
performed, which are already established. The findings from the comparison show that the sug-
gested DPSO-AIW is practical, effective, and more feasible for solving the problem related to
the Multi-objective Flexible Job-shop Scheduling Problem.

© 2024 Growing Science Ltd. All rights reserved.

Keywords:
Discrete Particle Swarm Optimi-
zation (DPSO)
Adaptive Inertia Weight (AIW)
Flexible Job Shop Problem
(FJSP)
Global Selection based on Opera-
tion (GSO)
Machine Assignment (MA)
Pareto Optimality

1. Introduction

An expansion of the Job-shop Scheduling Problem normally expressed by JSP is the Flexible Job-shop Scheduling Problem
which is called FJSP. When numerous operations of distinct tasks may be handled on separate machines by FJSP, processing
flexibility is improved more by the actual company. This modifies the equipment's uniqueness and makes it possible to
choose the processing machine depending on the load circumstances of resources, such as machines. Because of this, theo-
retical research on FJSP is essential to tackling the enterprise's combination optimization type actual workshop problem.
The production schedule optimization problem must be taken into consideration for factors such as customer satisfaction,
processing time, and production cost in the real production process. It is challenging to capture the actual state of the sched-
uling workshop in a single scheduling objective. Zhang looked into the two-archive multi-objective artificial bee colony
approach known as TMABC-FS. Two new operators are applied to enhance the search performance of different bee species,
and two archives are proposed to provide a set of non-dominated feature subsets with good distribution and convergence
(Zhang et al., 2019). This work develops a particle swarm optimization that is discrete with adaptive inertia weight (DPSO-
AIW) to solve FJSP based on the body of current research. The FJSP model is established using makespan, bottleneck
machine workload, and overall machine workload. The chromosomes of the next generation are solved in the discrete
domain, which is directly involved through the evolution process, which employs discrete particle swarm optimization. The
algorithm encodes chromosomes using a two-layer structure. The genetic algorithm utilized for crossover operation is used
for the location update, and adaptive adjustments are made to the inertia weight ω value to improve population variety. This
study establishes the model related to FJSP with the maximum time required for completion of the machines, the workload
of the bottleneck machine, and the workload of the overall machine. The hybrid approach combines global selection by
operation (GSO) with OS random selection, which is used to construct the initial population. The process by which an

mailto:limonurrahman16@gmail.com

 388

operation will be chosen by the machines in its optional machine set is referred to as the GSO. All of the scheduling produced
in this manner are workable. The machine containing the lowest global workload will be chosen for processing in the
optional machine set when the GSO is chosen. In addition to guaranteeing the viability of the created scheduling, it mini-
mizes the machine's burden, expedites the optimization process, and assures the original solution's quality. The machine's
effort is minimized, the optimization process is expedited, and the original solution's quality is ensured. The OS random
selection keeps the best solution from being lost while also increasing population variety. The quality found for the solution
and the time it takes to find the best answer is significantly increased by using this strategy to create the initial population.
Discrete particle swarm optimization is used in the evolutionary process for solving the next generation of chromosomes in
the discrete domain. The genetic algorithm's mutation and crossover procedures are used in the location update. The OS
uses linear order crossover (LOX) and precedence operation crossover (POX) throughout the process required for the cross-
over, whereas the MA uses a single-point crossover technique, which is in an improved state. This crossover approach
guarantees that the produced solution is always feasible and that the search capacity is enhanced quickly. The population's
variety is increased via the mutation process of the genetic algorithm. To avoid the algorithm entering an immature conver-
gence state, its local search capability is improved. To increase population variety, choose an adaptive inertia weight mod-
ification. The particle's global optimum value of the population and the exponential function of the current value are used
to update the inertia weight. Using the exponential function of the current value and the global optimum of the particles in
the population, the inertia weight ω is adaptively changed. Each candidate solution's fronts are found using the fast non-
dominated sorting approach, and the chosen solution is then put in the Pareto optimum solution set in the order of its fronts.
The dataset used for the analysis was taken from a hospital in Bangladesh. The structure of the paper is given as follows:
the introduction of formulation of the FJSP; basic particle swarm optimization is covered; the DPSO-AIW algorithm is
implemented in detail, the inclusion of the encoding and decoding part; the population is initialized; the PSO location
updating method; the adaptive inertia weight; and finally, the optimal solution set (POS) is constructed, along with the
DPSO-AIW algorithm flow. Findings of the computer experiments were utilized for the DPSO-AIW method and the com-
parisons with alternative two different algorithms for the data were then displayed in a study of the worst computational
complexity of the applied algorithm in this study. A sensitivity analysis of the parameters was carried out lastly to represent
the findings in a better way.

2. Literature Review

Many academics these days have also turned their focus to multi-objective FJSP solutions. Huang & Yang presented a
hybrid genetic algorithm-based multi-objective FJSP problem (X. Huang & Yang, 2019). Dai suggested a better NSGA for
the FJSP. The study presented the elite retention method and the adaptive mutation operator. The simulation experiment
demonstrates that by splitting the entire population into three halves, the non-dominated sorting approach can find the Pareto
optimum solution quickly and accurately (Dai, 2021). Piroozfard et al. (2018) suggested a more effective multi-objective
evolutionary method to solve the recently expanded dual-objective issue. Institute of Electrical and Electronics Engineers
suggested a hybrid local search (PLS) method based on Pareto that may be used for making the solution of the multi-
objective FJSP. Continuous optimization was the initial challenge that the PSO method was designed to answer. Nonethe-
less, many real-world engineering application challenges are discrete. Thus, by modifying the PSO algorithm's fundamental
concept, a discrete scholar was created. Hui (2012) presented a hybrid PSO technique for the three-target FJSP problem
that uses Pareto archives set. Huang created a system for automatic scheduling decoding and extended process coding. The
study presents the creation of particle swarm optimization which is a multi-objective method for flexible production sched-
uling, considering the maximum and minimum number of particles, the rate of convergence, and any associated boundary
conditions (Huang et al., 2016a). Zhang suggested using a particle swarm optimization technique of hybrid strategy to
investigate the Pareto-dominance-based multi-objective FJSP. based on the Variable Neighbourhood Search (VNS) algo-
rithm's and PSO's complementary strengths (Zhang et al., 2017). A study presented multiple hybrid algorithms. Such as
PSO and VNS Cooperative algorithm (PVC), VNS in Turn (PVT) method, and PSO (Zhang & Gu, 2023) . To optimize the
flow shop scheduling issue of the hybrid strategy, Lai created a no-wait method of grading for the constraint of no wait
between two of the sequential operations related to the task (Lai et al., 2021). Huang solved the FJSP problem successfully
by combining the variable neighborhood search approach with the multi-objective particle swarm optimization (S. Huang
et al., 2016). It was Kacem who initially suggested the localization (AL) method (Kacem et al., 2002). Pezzella set up the
order of operations using three scheduling rules. Global selection (GS), local selection (LS), and random selection (RS) are
the three steps of Gao's proposed GLR machine selection technique (Pezzella et al., 2008). This work suggests a way for
the combination of the random selection of OS with the GSO of MA, based on the literature research mentioned above.
Researchers created the multi-offspring genetic algorithm of single-point crossover. They used model formulation for the
demonstration of the degree of optimization, but they didn't concentrate on minimizing the manufacture span for a given
project (Jin & Wang, 2022). Another perspective on that kind of study effort was the optimization and application of this
crossover, whereby they demonstrated that the genetic algorithm of the multi-offspring strategy enhances the single-point
crossover, which performs better in addressing nonlinear mixed integer programming problems (Li et al., 2016). Several
scheduling issue types were examined at various stages of the study process, taking various factors into account. For exam-
ple, Delivery time, rate of delivery delay, service quality, and delay time (Xu et al., 2021). Several studies have been con-
ducted on the Flexible Job Shop Scheduling Problem (FJSP) with the consideration of Handling and Setup Time together
which was based on the Improved Discrete Particle Swarm approach (Kong & Wang, 2024). The performance efficacy of

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

389

this approach is confirmed by testing and analysis of fifteen FJSP test examples. Lastly, by creating a FJSP test case includ-
ing processing, setup, and handling times, the viability and efficacy of the developed method for solving multi-objective
FJSPs are confirmed. But the optimization of the makespan was also missing in their conclusion. The spread of the PSO-
solving technique was the study's main objective in preparation for its eventual application on systems or embedded systems
which can make decisions in real-time based on resource conditions and unanticipated or unplanned occurrences (Nouiri et
al., 2018). Two multi-agent-based methods are suggested for this purpose, and they are contrasted with various benchmark
examples. One suggests several mathematically precise parameters tuning approaches, and these systems can be very useful
in determining more suitable settings (Ding & Gu, 2020b). The findings of the last experiment demonstrate that the enhanced
PSO has a great capacity to solve FJSP. The suggested HLO-PSO can be implemented readily and may be integrated into
other different production system software or learning system software thanks to the thorough presentation and analysis
(Ding & Gu, 2020a). A study's suggested algorithm was put to the test on benchmark situations, and the outcomes were
contrasted with those of algorithms that already existed. Compared to the current algorithms, the suggested approach
demonstrated better convergence performance and solution correctness (Liu et al., 2021). One aims to introduce a hybrid
method which is comparatively new and a mathematical model for the FJSP issue with the activities related to assembly.
Each product in a certain challenging environment, is made by the properly assembled system using several distinct ele-
ments (Fattahi et al., 2020) . The pieces go through a flexible job shop system processing stage initially, followed by as-
sembly and product production in the second step. An enhanced particle swarm optimization technique of hybrid strategy
(IH-PSO) is put out in a study to increase the effectiveness of addressing the FJSP having multiple objectives. (Y. Zhang et
al., 2020). Additionally, the goals of the model of mixed-integer programming (MIP) were implemented to minimize both
makespan and total carbon emissions for the research (Tan et al., 2021). A paper addressed a variation of the JSP, where a
restricted number of trucks will be required to transfer tasks to the operations that are important for machine processing
(Fontes et al., 2023). To improve the PSO's capacity for subsequent problem-solving, a portion of the study suggested an
elite retention technique and integrated it (Wu et al., 2022). For the variation of the conditions for manufacturing and the
tolerance of moderate delay, the time required for the processing of operations and the due time for the orders into the
practical production scheduling is never fully estimated as predictable quantities, as explained in a work (Zhu & Zhou,
2021). The focus of the research project was multi-objective optimization for the FJSP issue of energy-consciousness in-
cluding activities related to assembly (Ren et al., 2021). Additionally, the Hybrid Salp Swarm Algorithm was used to solve
the Job Shop Green Scheduling Problem which was Double-Flexible, and completely different from others (Liu et al., 2022).
The main finding of the study was that the enhanced gaming PSO effectively minimized the maximum completion duration
of FJSP after evaluating benchmarks in a standard manner and was compared with the findings of the other results achieved
by using other PSOs. But these were relatively improved than previous (Xu & Wang, 2021). A typical flexible job shop
problem was solved by using the combination of a discrete particle swarm optimization algorithm with an adaptive inertia
weight method (DPSO-AIW) which also used a Pareto optimal solution (Gu et al., 2020). Finally, a very small body of
research was employed to apply the FJSP problem analysis to minimize the makespan. However, the combination of Dis-
crete Particle Swarm Optimisation and Adaptive Inertia Weight (DPSO-AIW) was not used in the investigation. For the
reduction of the total completion time for a patient in a hospital i.e. Flexible Job Shop Problem (FJSP), this research com-
bines these two techniques. This is the novelty of this paper.

3. Formulation of FJSP

There are o jobs 𝐾𝐾 = (𝐾𝐾1,𝐾𝐾2,𝐾𝐾3, … ,𝐾𝐾𝑜𝑜) which is required to be presented on n number of machines where, 𝑁𝑁 =
(𝑁𝑁1,𝑁𝑁2,𝑁𝑁3, … ,𝑁𝑁𝑛𝑛) Here, the term ‘job’ expresses the patients and machine expresses the rooms used for testing in hospitals.
A job may contain more than one operation, and 𝑃𝑃𝑗𝑗𝑗𝑗 will represent the kth number of operations for the job j. According to
the rules of FJSP, each of the operations will be performed on different testing rooms/machines at a time. Times required
for the processing of 𝑃𝑃𝑗𝑗𝑗𝑗 , performed on the machine l is 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗, which will be larger than 0. The time required for the com-
pletion of the operation 𝑃𝑃𝑗𝑗𝑗𝑗 is 𝐷𝐷𝑗𝑗𝑗𝑗 . Sequence of the processing is provided here. To minimize design complexity, FJSP can
be divided into two distinct parts. One is Total-FJSP which will be represented as (T-FJSP) and another is Partial-FJSP
which will be treated as (P-FJSP). These two types are represented in the following table. There are some differences
between the two types. For T-FJSP, any machine can be utilized for every operation of all the jobs. Alternatively, for the P-
FJSP, operations may be performed on specific machines. This will represent the real subject of the machine set.

Table 1
T-FJSP of (2 × 4)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 3 2
𝑃𝑃12 5 4 1 3
𝑃𝑃13 9 3 4 1

𝐾𝐾2
𝑃𝑃21 7 3 1 5
𝑃𝑃22 3 1 4 6

 390

Table 2
P-FJSP of (2 × 4)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 3 2
𝑃𝑃12 5 4 1 3
𝑃𝑃13 9 3 4 1

𝐾𝐾2
𝑃𝑃21 7 3 1 5
𝑃𝑃22 3 1 4 6

Multi-objective FJSP was considered here in this research of the minimization of the maximum completion time required
for the machine to complete the job which is represented as 𝐺𝐺1, to minimize the workload of the machine which is in
bottleneck i.e. 𝐺𝐺2, that will consider the balance of the workload towards all the machines for the prevention of the highly
loaded work which was assigned in machine (single) and to minimize the summation of workload of that specific machine
and it is represented by 𝐺𝐺3, this is basically of interest in the assignment of the relatively short processing time required for
the improvement of the efficiency. All these three objectives will drive the minimization of the total makespan for the
completion of all the operations by a patient in the hospital so far. Mathematical Representation of the objective functions
can be represented as follows:

𝐺𝐺1 = min�𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑗𝑗𝑗𝑗�� (1 ≤ 𝑗𝑗 ≤ 𝑜𝑜, 1 ≤ 𝑘𝑘 ≤ 𝑜𝑜𝑗𝑗) (1)

𝐺𝐺2 = min�𝑚𝑚𝑚𝑚𝑚𝑚�∑ ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗
𝑜𝑜𝑗𝑗
𝑘𝑘=1

𝑜𝑜
𝑗𝑗=1 �� (1 ≤ 𝑙𝑙 ≤ 𝑛𝑛) (2)

𝐺𝐺3 = min�𝑚𝑚𝑚𝑚𝑚𝑚�∑ ∑ ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 .𝑛𝑛
𝑙𝑙=1

𝑜𝑜𝑗𝑗
𝑘𝑘=1

𝑜𝑜
𝑗𝑗=1 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗�� (3)

𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 = �1, 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑃𝑃𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙
0. 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4)

𝐷𝐷𝑗𝑗𝑗𝑗 ≥ 0 (5)

𝐷𝐷𝑗𝑗𝑗𝑗 − 𝐷𝐷𝑗𝑗𝑗𝑗−1 ≥ 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 .𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗(𝑘𝑘 = 1,2, … , 𝑜𝑜𝑗𝑗; 𝑗𝑗 =
1,2, … . , 𝑜𝑜; 𝑙𝑙 = 1,2, … ,𝑛𝑛)

(6)

∑𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 = 1 (7)

where, Eq. (7) indicates that 1 machine will be chosen from a pool of the machines that are available for the completion of
each operation, and Equation no. 6 guarantees, the operations are related to that task which is the same and they will meet
restrictions of the precedence.

Assumptions & constraints made for the operations performed by FJSP.

1. At time zero, every machine is available, and every work may be completed at that moment.
2. One operation can be handled by only one machine at a time at a given point in time. The machine can be utilized

for other tasks when the procedure is finished.
3. Once processing starts, it cannot be stopped. Moreover, there are consecutive restrictions between the operations

connected to complete the same job rather than sequential constraints between the operations of distinct tasks.
4. Both the machine's setup time and the operation's transit time are disregarded.

4. Particle Swarm Optimization

Kennedy (1995) introduced the notion of swarm intelligence, which is implemented based on the particle swarm optimiza-
tion (PSO) algorithm. Kennedy was motivated by the habits of foraging of birds and other swarm organisms in the part
nature (Gu et al., 2020). Numerous academics are drawn to the PSO algorithm due to its straightforward parameters, straight-
forward implementation, and potent global optimization capability. The fields related to function optimization, processing
of images, fuzzy system control, and optimization for scheduling have all made extensive use of it. The continuous optimi-
zation problem was the first one that the PSO method was intended to answer. Nonetheless, many real-world engineering
application issues are discrete. Thus, it has been a popular topic among academics to use the fundamental notion of the PSO
algorithm and the transformation of it into a new version that is discrete to address the discrete issues of large-scale like

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

391

combinatorial optimization. The analysis of the social behavior of foraging birds is the foundation of the particle swarm
optimization method. In these situations, the algorithm first represents a collection of potential issue solutions using a set
of particles. Next, every particle in the population recalls and proceeds to seek the solution space by following the currently
optimum particle. Assume that in the E-dimensional search space, a collection of N particles z moves at a certain speed.
The particle j's state property is configured as follows:

The particle's current position: 𝑦𝑦𝑗𝑗 = �𝑦𝑦𝑗𝑗1,𝑦𝑦𝑗𝑗2, … . , 𝑦𝑦𝑗𝑗𝑗𝑗�;
The particle current velocity: 𝑤𝑤𝑗𝑗 = �𝑤𝑤𝑗𝑗1,𝑤𝑤𝑗𝑗2, … . ,𝑤𝑤𝑗𝑗𝑗𝑗�;
The particle j’s experienced the best position: 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 = (𝑞𝑞𝑞𝑞𝑗𝑗1𝑢𝑢 , 𝑞𝑞𝑞𝑞𝑗𝑗2𝑢𝑢 , … . , 𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗𝑢𝑢);

ℎ𝐶𝐶𝑢𝑢 is the site where the largest value is created, and it is the global ideal position perceived by the population. The required
formula for jth particle for updating the position of a particle and the velocity of it at (u+1)th generation is given in Eqs. (8-
9), respectively.

𝑤𝑤𝑗𝑗𝑢𝑢+1 = 𝜔𝜔 × 𝑤𝑤𝑗𝑗𝑢𝑢 + 𝑑𝑑1 × 𝑠𝑠1�𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢� + 𝑑𝑑2 × 𝑠𝑠2(ℎ𝐶𝐶𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢) (8)
𝑦𝑦𝑗𝑗𝑢𝑢+1 = 𝑦𝑦𝑗𝑗𝑢𝑢 + 𝑤𝑤𝑗𝑗𝑢𝑢+1 (9)

Here,

𝜔𝜔 = Inertia Weight for the population

𝑤𝑤𝑗𝑗𝑢𝑢 = Velocity at the current state

𝑑𝑑1 = Constant of acceleration for 1𝑠𝑠𝑠𝑠 particle

𝑑𝑑2 = Constant of acceleration for 2𝑛𝑛𝑛𝑛 particle

𝑟𝑟1, 𝑟𝑟2 = Random Number between (0,1)

They are included in the formula to mimic a small amount of unexpected group behavior in nature and to calculate the
length of time the particle stays on the initial path from 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢 and ℎ𝐶𝐶𝑢𝑢. Additionally, it strikes between exploration and
exploitation through its balance; 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢 refers to the ith particle's unique optimum location; ℎ𝐶𝐶𝑢𝑢 refers to the optimal position
of the current state.

Table 3
The process of PSO (a)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 4 2
𝑃𝑃12 5 4 2 3
𝑃𝑃13 9 3 5 1

𝐾𝐾2
𝑃𝑃21 7 3 1 5
𝑃𝑃22 3 1 5 6

Table 3
The process of PSO (b)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 4 2
𝑃𝑃12 8 4 2 3
𝑃𝑃13 10 3 5 1

𝐾𝐾2
𝑃𝑃21 8 3 1 5
𝑃𝑃22 5 1 5 6

 392

Table 3
The process of PSO (c)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 6 2
𝑃𝑃12 8 4 2 3
𝑃𝑃13 10 3 7 1

𝐾𝐾2
𝑃𝑃21 8 3 3 6
𝑃𝑃22 5 1 7 6

Table 3
The process of PSO (d)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 6 2
𝑃𝑃12 8 5 2 3
𝑃𝑃13 10 4 7 1

𝐾𝐾2
𝑃𝑃21 8 4 3 6
𝑃𝑃22 5 1 7 6

Table 3
The process of PSO (e)

Job/Patient Operations
Machines/Rooms

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4

𝐾𝐾1
𝑃𝑃11 2 6 6 3
𝑃𝑃12 8 5 2 3
𝑃𝑃13 10 4 7 1

𝐾𝐾2
𝑃𝑃21 8 4 3 7
𝑃𝑃22 5 1 7 8

Eq. (8) has three parts. First part is 𝜔𝜔 × 𝑤𝑤𝑗𝑗𝑢𝑢which expresses the velocity of the previous state which indicates the particle
of the current state. Next part 𝑑𝑑1 × 𝑠𝑠1�𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢� expresses the particle's self-cognitive part which is the influence of the
particle. This will express the ability of global search and check whether it is strong; Lastly, 𝑑𝑑2 × 𝑠𝑠2(ℎ𝐶𝐶𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢) expresses
particles' social learning part which aids in information sharing among particles in different states.

5. Algorithm of DPSO-AIW

5.1 Encoding-Decoding

Every FJSP chromosome is represented by two coding layers. The sorting of the machine's assigned order is known as
operations sequencing (OS). The job index is represented by the number in this sequence; the order using which jobs occur
in the operations sequence indicates the order in which different operations of the job are processed. The second one is the
machine assignment (MA), which entails designating each of the operations to a set of competent machines and computing
the machine's start and finish times (Fontes et al., 2023). The process by which the analysis of the operation chooses the
machines in its set of optional machines is referred to as the MA selection. The schedules produced in this manner are
workable. To make sure that the actively performed schedule is created once the chromosome starts decoding, the decoding
employs a plug-in greedy decoding algorithm (Zhang et al., 2020). The order of the operations on these sequences is decoded
based on the chromosome's OS coding. The first action on these sequences is set up for processing for the first as a sequential
order, and then the second one will be taken and placed on the associated machine's time for processing at the efficient
processing time. This allows for the optimal placement of each operation in the sequence, starting as early as feasible.

5.2 Population Initialization

Several research suggested firstly a global selection (GS), secondly local selection (LS), and lastly random selection (RS)
technique for the GLR machine selection. This research presents a strategy for the combination of the OS random selection

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

393

with the GSO of MA, based on the literature review mentioned above. The procedure of implementation is provided in the
following two points:

a. OS employs the first step i.e. random selection; then OS portion utilizes the operation related to the JSP mode
selection in the coding, and for each of the operations, it will pick and create the OS randomly;

b. Then, MA causes the selection of GSO: since the OS is coded in a random order, every operation performed in the
MA was picked by a machine required for the processing. Our objective is to choose the machine from the set of
optional machines that has the global least burden at the processing.

The whole method can be expressed as follows,

For each operation, choose the machine from its set of optional processing machines with the least amount of work, and
then the workload value was added to the loads of the machine of other operations into the same column. In Table 1, for
instance, the randomly produced OS can be represented as 2 1 1 2 1 for the (2 × 4) T-FJSP. In A similar process, select
another machine, let 𝑁𝑁3 consisting of minimal workload in a machine set which is optional, having a value of 1. Then
increase the remaining value slot of the column 𝑁𝑁2 by 1 based on the value of the original one. Perform the remaining
operation sequentially to get MA. The processing of them is shown in Table 3 (b)- Table 3(e). Then, selected operations are
indicated in italic form and bold, where values that represent the machine workload (workload) are in bold. (2 × 4). The
Gantt chart of T-FJSP is represented in Fig. 1.

𝑁𝑁1 Load=2 K1,1

 𝑁𝑁2 Load=1 K2,2

 𝑁𝑁3 Load=2 K2,1 K1,2

𝑁𝑁4 Load=1 K1,3
 0
 Total load=6

Fig. 1. Gantt Chart Representations for the T-FJSP of (2 × 4)

5.3 PSO Location Update Rule

An influence of the current velocity of the particle, the cognitive component, and the social component comprise the three
key components of equations used to update the amount of velocity and the coordinate of position evolution in the basic
PSO algorithm. Together, these 3 components determine the location of the upcoming generation of the particles. However,
the basic PSO technique requires discrete issues and is not appropriate for continuous problems. To address this, one must
update the formulas, simulate the original PSO algorithm's optimization process, and denote the placement of discrete par-
ticles in clusters based on the formulation of Eq. (10) shown below,

𝑦𝑦𝑗𝑗𝑢𝑢+1 = 𝑑𝑑2⊗ 𝑞𝑞{𝑑𝑑1⊗ 𝑟𝑟�𝜔𝜔⊗ 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢�, 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢�, ℎ𝐶𝐶𝑢𝑢 (10)

 Here,

𝜔𝜔 = Inertia Weight for the population

𝑑𝑑1 = Cognitive coefficient

𝑑𝑑2 = Social coefficient

⊗ represents operations for optimization

𝑁𝑁𝑗𝑗𝑢𝑢 = 𝜔𝜔⊗ 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� = �
𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� 𝑞𝑞𝑛𝑛 < 𝜔𝜔
𝑦𝑦𝑗𝑗𝑙𝑙 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(11)

The first part of Eq. (11) expresses the affected part for the utilization of the current state. 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� expresses the current
particle velocity. A random number 𝑞𝑞𝑛𝑛 expresses the mutation probability which ranges is 0 to 0.1. This will be applicable
only when this random number is less than 𝜔𝜔 and will execute the operation 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢�. If this operation can’t be executed using

 394

the base condition, then the original particle will remain unchanged. Here, 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� expresses the chromosome's operation for
mutations. The operating system chooses a chromosome based on the likelihood of mutations and chooses an operation at
random. Given the sequence order constraint on the job, the first step is to identify the positions of the precursor and sub-
sequent operations. Next, randomly select a position between these two positions to insert the operation. This will used to
ensure the schedule found from the result, is a workable solution. Based on the likelihood of the mutation, MA chooses the
parent chromosome for the process of mutation and then chooses a processing procedure. Every operation has a set of
machines for optional processing since every operation can be processed on several machines. Choose the machine in ran-
dom order from the set of processing machines required to finish the mutation.

𝑅𝑅𝑗𝑗𝑢𝑢 = 𝑑𝑑1⊗ 𝑟𝑟�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢� = �
𝑟𝑟�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢� 𝑞𝑞𝑑𝑑1 < 𝑑𝑑1

𝑁𝑁𝑗𝑗𝑢𝑢, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(12)

The learning part of the chromosome is expressed in equation 12 and 𝑟𝑟�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢� expresses the chromosome adjustment
based on the position 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢 which is optimal. The probability of the crossover 𝑞𝑞𝑑𝑑1 is also a random number that range is (0.5
to 1.0) and it will be also less than 𝑑𝑑1at the time of performing mutation of the crossover. Otherwise, the original particle
will be unchanged as in the previous equation. 𝑟𝑟�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝐶𝐶𝑗𝑗𝑢𝑢� is established using the operation of the crossover performed in
the Genetic Algorithm (GA). For these 2 sets of codes of the FJSP, OS will adopt the precedence of the crossover of the
operations (POX) (Nouiri et al., 2018) and MA will adopt the single crossover (ISX) (Ding & Gu, 2020).

𝑄𝑄𝑗𝑗𝑢𝑢 = 𝑑𝑑2⊗ 𝑞𝑞�𝑅𝑅𝑗𝑗𝑢𝑢 , ℎ𝐶𝐶𝑢𝑢� = �
𝑞𝑞�𝑅𝑅𝑗𝑗𝑢𝑢 , ℎ𝐶𝐶𝑢𝑢� 𝑄𝑄𝑑𝑑2 < 𝑑𝑑2

𝑅𝑅𝑗𝑗𝑢𝑢 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(13)

Eq. (13) embodies the adjustment of the particle based on the position of a globally optimal particle and expresses the
coordination between particles 𝑞𝑞�𝑅𝑅𝑗𝑗𝑢𝑢 , ℎ𝐶𝐶𝑢𝑢� represents the operation of crossover between 𝑅𝑅𝑗𝑗𝑢𝑢and ℎ𝐶𝐶𝑢𝑢. Establish a crossover
operation of the probability 𝑄𝑄𝑑𝑑2 must be less than that of 𝑑𝑑2. The range of it is (0.5 to 1.0), otherwise, the original particles
will remain unchanged. Operation processes of the crossover: OS will use the LOX type of crossover, and MA will use the
improved Single-point crossover (ISX). Parent chromosomes after encoding will be presented as 𝑄𝑄1,𝑄𝑄2,𝑄𝑄3, … . ,𝑄𝑄𝑜𝑜 and then
the offspring-obtained chromosome will be presented as 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, … . ,𝐷𝐷𝑜𝑜 (Where, o is used to express the size of the
population). The steps related to POX are provided as follows,

Step 1: 𝑄𝑄1 & 𝑄𝑄2 taken in a sequence from the parent chromosome. Copy the operations including the job 𝐾𝐾1 in 𝑄𝑄1 to 𝐷𝐷1
which expresses the real order.
Step 2: Make the operations copy including the job represented as 𝐾𝐾2 in the 𝑄𝑄1 to 𝐷𝐷2 which also represents the original
order, make copies of all operations related to the job 𝐾𝐾1 in 𝑄𝑄2 to 𝐷𝐷2 in the particular real order or the original one.
Step 3: Repeat steps 1 to 2 in chromosomes which are present until the offspring chromosome o and 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, … . ,𝐷𝐷𝑜𝑜 are
achieved.

Alternatively, the steps of LOX are provided as follows,

Step 1: Generation of 2 positions for the inspection in a random order in 2 parents 𝑄𝑄1 & 𝑄𝑄2; make sure the fragments are
exchanged in two intersectional positions.
Step 2: Delete the gen of the original parents that was interchanged before.
Step 3: The remaining genes will be copied from the original parents from the first position. The whole process is repre-
sented in the flow chart of Fig. 2.

The method of ISX can be represented as Dividing all chromosomes connected to the crossover in (o/2) number of groups.
Then, for each group's two parent chromosomes, perform single-point crossover by randomly selecting just a single cross-
over point, then after exchanging the machines that were assigned by the selected operations included with 2 parents before
reaching the crossover point.

5.4 Adaptive Inertia Weight Calculations

The PSO algorithm's search procedure is intricate and nonlinear. An essential algorithmic parameter that balances the algo-
rithm's capacity for both local and global search is the inertia weight. Large inertia weights are advantageous for global
search, but lesser weight values can quicken algorithmic convergence and keep the algorithm from reaching a local opti-
mum. To increase population variety, this article adopts the adaptively adjusted inertia weight approach. The current value’s
exponential function and the global optimum value of the particles in the population are used to update the inertia weight.
The inertia weight is correlated with the particle's current value at each of the iterations; that is called inertia weight rises

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

395

and vice versa when there is a significant interchange between the particle's present value and the ideal value of the globally
organized.

𝜔𝜔(𝑡𝑡 + 1) = 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × (𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑒𝑒𝑛𝑛𝑗𝑗(𝑡𝑡)+1
𝑒𝑒𝑛𝑛𝑗𝑗(𝑡𝑡)−1

(14)

𝑛𝑛𝑗𝑗(𝑡𝑡) =
𝑔𝑔𝐶𝐶𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢

𝑔𝑔𝐶𝐶𝑢𝑢 + 𝑦𝑦𝑗𝑗𝑢𝑢

(15)

Fig. 2. Flow chart representations for the DPSO-AIW Algorithm

In Eq. (14) and Eq. (15),

 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 = The weight of inertia when the iteration is in the peak.
𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = The weight of the inertia at the current state.
𝑢𝑢 = Represents the iterations number of the current state.

5.5 Flow of DPSO-AIW

DPSO-AIW algorithm to resolve multi-objective FJSP issue is presented as follows,

Step 1: Set the parameters which will be used initially. The number of iterations U, the size of the population is O, and the
weight of inertia 𝜔𝜔, the coefficient of cognitive is 𝑑𝑑1 and social coefficient 𝑑𝑑2, with the cycle variable u. Let, the variable
of cycle u = 1;
Step 2: Set the initial values for the population P. The GSO technique is used to create the MA, whereas the OS is generated
at random. Assess every particle, quickly sort the population using non-dominated sorting, identify (N/10) non-dominated
solutions from the present population, and then store the items into the Pareto optimal solution set (POS), which is (N/10);
Step 3: After determining each particle's value, quickly sort the population to find N/10 non-dominated solutions of the
population of the current state. These should then be compared to N/10, which means that N/10 should be chosen from the
N/5 solutions for updating the POS.

According to method the of quick sorting, the front 𝐺𝐺𝑗𝑗 level of non-domination level. Let, the solution number in each front
be 𝑜𝑜𝑗𝑗, and if (𝑁𝑁

10
-∑𝑜𝑜𝑗𝑗−1 ≤ 𝑜𝑜𝑗𝑗), (𝑁𝑁

10
-∑𝑜𝑜𝑗𝑗−1) randomly selected as an individual in the front 𝐺𝐺𝑗𝑗 to the POS store.

 396

N1 Load=4 K7,1 K1,1 K2,1

N2 Load=5 K8,2 K8,3

N3 Load=6 K9,1 K7,2 K1,2 K4,2

N4 Load=6 K10,2 K7,3 K5,3 K2,2 K1,3 K4,3

N5 Load=2 K8,1

N6 Load=4 K10,1 K6,1 K9,3

N7 Load=4 K4,1 K9,2 K3,3 K6,3

N8 Load=1 K3,2

N9 Load=5 K5,1 K5,2 K6,2

N10 Load=5 K3,1 K10,3 K2,3

0 7
 Total load=42

Fig. 3. Gantt charts produced by DPSO-AIW for 10 × 10 instances.

N1 Load=4 K1,1 K2,1 K7,1

N2 Load=5 K8,2 K8,3

N3 Load=4 K1,2 K4,2

N4 Load=6 K10,2 K1,3 K2,2 K5,3 K4,3 K7,3

N5 Load=2 K8,1

N6 Load=5 K10,1 K9,1 K6,1 K9,3

N7 Load=4 K4,1 K9,2 K3,3 K6,3

N8 Load=3 K3,2 K7,2

N9 Load=5 K5,1 K5,2 K6,2

N10 Load=5 K3,1 K10,3 K2,3

0 7
 Total load=43

Fig. 4. Plotting diagrams produced by two distinct Pareto optimum solutions for 10 × 10 instances.

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

397

N1Load=8 K4,1 K1,1 K5,2 K2,2 K10,3

N2 Load=9 K10,1 K5,3 K9,2 K9,3

N3 Load=8 K6,1 K6,2 K6,3 K3,2

N4Load=10 K8,1 K8,2 K4,2

N5 Load=8 K9,1 K1,2 K3,3 K4,3

N6 Load=9 K5,1 K10,2 K7,2 K7,3

N7Load=11 K2,1 K7,1 K3,1 K1,3 K9,3
 0 11
 Total load=63

Fig. 5. Gantt charts produced by the DPSO-AIW for 10 × 7 instance.

 N1 Load=9 K1,1 K4,1 K2,2 K5,2 K10,3 K4,3

 N2Load=10 K10,1 K5,1 K9,2 K5,3 K3,3

 N3Load=10 K7,1 K6,1 K6,2 K6,3

 N4Load=10 K8,1 K8,2 K4,2

N5 Load=8 K1,2 K9,1 K8,3

N6 Load=7 K7,2 K10,2 K7,3 K3,2

 N7 Load=9 K2,1 K1,3 K3,1 K9,3

0 12
 Total load=63

Fig. 6. Plotting diagrams produced by two distinct Pareto optimum solutions for 10 × 7 instances.

Step 4: Consider, u = u+1for the further iterations.
Step 5: Check whether, (u> 𝑈𝑈) is satisfied or not. If satisfied go to the next step, otherwise, go to the previous one.
Step 6: Update the position of the particle, if it satisfies the conditions. Go to the step 3.
Step 7: POS’s non-dominated solutions will be set as the output which is shown in figure 2.

Table 4
Optimal Solution Representations

Figure No. Optimal Solution
3 (7,6,42)
4 (7,6,43)
5 (11,11,63)
6 (12,10,63)

6. Complexity Analysis

Let, there N machines with the size of the population Q, the length of the OS and MA is expressed by M, the Iterations
number performed is U and the number of the objective is indicated by C. There are several parts of the complexity analysis

 398

for the DPSO-AIW algorithm. Firstly, population initialization, operations of crossover and mutations, Fastly performed
non-dominated sorting with decoding. At the time of initialization of the populations, OS will be generated randomly, and
iteration of computational complexity with the worst case will be found i.e. 𝑃𝑃(𝑀𝑀 × 𝑄𝑄). At the time of performing GSO,
MA will be generated where the computational complexity will be represented as 𝑃𝑃(2 × 𝑁𝑁 × 𝑀𝑀 × 𝑄𝑄). Then, for the opera-
tion of mutation, OS will be mutating in a random order, and the computational complexity for that case will be 𝑃𝑃(𝑀𝑀 × 𝑄𝑄).
There are number of optional machines that will affect MA, the computational complexity for that case will be 𝑃𝑃(𝑁𝑁 × 𝑄𝑄).
Two times the operations for crossover will be performed. For performing the first crossover, POX type crossover will be
used by OS. For that case, computational complexity will be 𝑃𝑃(4 × 𝑀𝑀 × 𝑄𝑄). Then ISX crossover will be used by MA, their
computational complexity will be 𝑃𝑃(2 × 𝑀𝑀 × 𝑄𝑄). For the second operation of the crossover, LOX crossover will be taken
by OS, their worst computational complexity will be 𝑃𝑃(4 × 𝑀𝑀 × 𝑄𝑄). Then, ISX crossover will be used by MA, their com-
putational complexity will be 𝑃𝑃(2 × 𝑀𝑀 × 𝑄𝑄). For the decoding processes, there are two steps performed by OS. Firstly,
selection of the corresponding machine in MA will be performed. Then, the processing time of scheduling will be found,
decoding will be done to generate a solution which will be feasible. Their worst computational complexity will be expressed
by 𝑃𝑃(𝑁𝑁 × 𝑀𝑀2). The non-dominating sorting’s computational complexity is 𝑃𝑃(𝑁𝑁 × 𝐶𝐶2). The overall complexity can be
found from calculation of individual complexity. The representation of that is provided below-

𝑃𝑃(𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(2 × 𝑁𝑁 × 𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(𝑁𝑁 × 𝑄𝑄) + [𝑃𝑃(4 × 𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(2 × 𝑀𝑀 × 𝑄𝑄)] × 2 + 𝑃𝑃(𝑁𝑁 × 𝑀𝑀2) +
𝑃𝑃(𝑁𝑁 × 𝐶𝐶2) ≈ 𝑃𝑃{[14 + 2 × 𝑁𝑁) × 𝑀𝑀 + 𝑁𝑁] × 𝑄𝑄 + 𝑃𝑃[𝑁𝑁 × (𝑀𝑀2 + 𝐶𝐶2)

This equation is basically related to the size of the population, machine number, objective number, chromosome length and
number of iterations which is described above.

7. Comparative Analysis

Our proposed algorithm, DPSO-AIW will be compared with some of the existing algorithms found in different papers of
the existing literature review. For this purpose, Numerical simulations were performed. The algorithm was written in the
programming language, Python and run on HP EliteBook Intel(R) Core (TM) i7-8650U CPU 2.11 GHz with 16GB RAM.
Usually, the scale of Multi-objective FJSP is relatively difficult for the solution. For different instances, the number of
iterations will be (10 × 𝑛𝑛 × 𝑜𝑜). Where, the size of the population is 𝑛𝑛 × 𝑜𝑜, A value of 1.0 will be considered for 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and
0.3 will be considered for 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 . The value of 𝑑𝑑1 and 𝑑𝑑2 is considered as 0.80. The first data set instances will be 4 × 5,
10 × 7, 8 × 8, 10 × 10 and 15 × 10 instances. Only 8 × 8 instances will be considered for P-FJSP, and all the remaining
will be considered for T-FJSP. The Gantt charts shown in the figure are the representations of 10 × 10 and 10 × 7 instances.
At the time of performing the Pareto optimal solution, DPSO-AIW will be compared with other two established algorithms
found from the existing literature review, such as, MOPSO+LS (Moslehi & Mahnam, 2011), and P-EDA (Wang et al.,
2013). The comparative result is shown in the table 5. It may be observed from Table 5, for 4 × 5 instances, the optimal
solution is found from the DPSO-AIW which is (11 6 30) and it is comparatively better than the non-dominated solution
for the other two methods. Then for the 10 × 7 instances, the optimal solution (11 10 55) is comparatively better than others.
For 8 × 8, (12 10 75) is optimal which is found for P-EDA, and it is better than the other two methods. From the tables
representing the result, DPSO-AIW gives the same (6 5 32) as the other two methods. Lastly for 15 × 10, (10 10 90) is
optimal and it is found from DPSO-AIW, better than the other two methods so far. So, it is clearly shown that DPSO-AIW
provides better results for different instances compared to the other two methods. So, this one is more effective and feasible.
All the optimal solutions are bold and indicated in Table 5.

Table 5
Comparative Result for different instances.

Size of the Instances
(𝑜𝑜 × 𝑛𝑛) Objective Function Result of MOPSO+LS Result of P-EDA Result of DPSO-AIW

(4 × 5)
Makespan (𝐺𝐺1) 16 16 12 12 12 13 11 11 12

Total Workload(𝐺𝐺2) 7 8 11 10 9 9 6 6 7
Maximum Workload(𝐺𝐺3) 33 34 33 34 34 33 30 30 31

(10 × 7)
Makespan (𝐺𝐺1) 16 16 17 12 12 14 11 11 12

Total Workload(𝐺𝐺2) 11 12 12 10 11 14 10 10 12
Maximum Workload(𝐺𝐺3) 55 56 56 55 56 56 55 55 55

(8 × 8)
Makespan (𝐺𝐺1) 15 15 15 16 17 12 14 15 16 13 14 13

Total Workload(𝐺𝐺2) 13 14 14 12 12 10 12 12 13 10 11 11
Maximum Workload(𝐺𝐺3) 77 75 75 76 77 75 76 76 77 75 75 76

(10 × 10)
Makespan (𝐺𝐺1) 6 8 7 7 6 7 7 8 6 6 7

Total Workload(𝐺𝐺2) 5 6 6 7 5 5 6 6 5 5 5
Maximum Workload(𝐺𝐺3) 32 34 34 32 32 33 34 31 32 32 32

(15 × 10)
Makespan (𝐺𝐺1) 12 10 12 10 10 11

Total Workload(𝐺𝐺2) 10 12 12 10 11 10
Maximum Workload(𝐺𝐺3) 92 91 92 90 91 92

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

399

Table 6
Result for MK01 instances

No. of
Iteration

MOGA P-EDA DPSO-AIW
(𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3)

1 41 37 170 41 37 170 41 37 169
2 43 40 159 40 38 166 41 37 170
3 44 41 157 42 38 164 41 39 170
4 45 41 155 42 39 161 42 38 170

Table 7
Result for MK02 instances

No. of
Iteration

MOGA P-EDA DPSO-AIW
(𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3)

1 27 27 152 27 27 152 27 27 153
2 28 28 147 28 28 146 28 28 146
3 30 28 146 29 29 145 28 30 151
4 30 30 144 30 30 144 29 31 146
5 32 32 142 31 31 143 30 30 149
6 34 34 141 32 27 151 31 30 150

Table 8
Result for MK03 instances.

No. of
Iteration

MOGA P-EDA DPSO-AIW
(𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3)

1 205 134 885 205 205 852 205 169 851
2 205 136 883 211 211 850 205 171 857
3 205 145 872 214 214 845 207 169 848
4 205 199 856 222 222 843 209 169 851
5 214 200 851 223 223 840 211 169 863
6 215 211 850 232 232 836 211 171 864
7 222 200 851 241 241 834 211 173 864
8 223 200 848 249 250 832 211 177 871

BRdata instances were used for the testing in the second level. MK01, MK02 and MK03 instances were taken, and a com-
parison was performed for the Pareto optimal solution. The data for MOGA was taken from the literature review from the
paper by Wang (2010) and data for P-EDA was taken from the previous tables. Here, the Pareto optimal solution was found
also from the DPSO-AIW and it is shown in bold in the tables. For example, the non-dominated solution of (41 37 169) for
MK01 instance obtained by this algorithm, is better than that of the other two. Similarly, for MK02 instance, (28 28 146) is
optimal and it is for the same algorithm shown in Table 7. Then for MK03 instance, (205 169 851) is non-dominated solution
found using DPSO-AIW. So for all these three instances, DPSO-AIW provides better results compared to others.

It is evident that when it comes to addressing BRdata cases, DPSO-AIW is better than MOGA and P-EDA. In three cases,
DPSO-AIW can produce Pareto optimum solutions that are superior to those produced by the P-EDA and MOGA algo-
rithms. The comparison between Kacem examples and BRdata instances shown above leads to the conclusion that the
DPSO-AIW method is a useful tool for resolving multi-objective FJSP problems.

8. Sensitivity Analysis

For the determination of the impact of parameters which are important for the analysis of the algorithm, a sensitivity analysis
was performed. A (4 × 5) instances were taken into consideration to perform this analysis. It is performed in DPSO-AIW
environment with the combination of different parameters. Here, are four factors P, 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑑𝑑1,𝑑𝑑2) were con-
sidered shown in table 9. Then this experiment was presented as an orthogonal array representation in table 10. Each factor
level has an optional value which is presented in table no. 9. Each of the experiments was performed independently 10
times. Standard deviation and makespan were determined and represented in the following tables. The mean is represented
in Table 11. Here, the mean and standard deviation reflect the significance or impact of each parameter on others. Here, we
can observe that, 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was considered the most influential factor for the calculation of the DPSO-AIW algorithm.

Table 9

 400

Parameters Factor Level

Parameters Factor Level
1 2 3

P
𝑜𝑜 × 𝑛𝑛

2
 𝑜𝑜 × 𝑛𝑛 𝑜𝑜 × 𝑛𝑛 × 2

𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.9 1 0.95
𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 0.2 0.5 0.6

(𝑑𝑑1,𝑑𝑑2) 0.5 0.8 0.9

Table 10
Representation of Orthogonal Array.

Serial Level of Factor
P 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 (𝑑𝑑1,𝑑𝑑2) Makespan

1 1 1 1 1 10.5
2 1 2 2 2 11.1
3 1 3 3 3 11.3
4 2 1 2 3 10.6
5 2 2 3 1 11.7
6 2 3 1 2 11.3
7 3 1 3 2 10.4
8 3 2 1 3 10.5
9 3 3 2 1 11.3

Table 11
Mean and Standard Deviation of the parameters.

Parameters Level of Factor
1 2 3 𝛿𝛿

P 11.02 11.2 10.72 0.1812
𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 10.5 10.7 11.3 0.2276
𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒 10.76 11.07 10.8 0.0726

(𝑑𝑑1,𝑑𝑑2) 11.16 10.87 10.76 0.1045

9. Conclusion And Future Scope

To minimize the makespan, DPSO-AIW was used in this study to solve a Multi-Objective FJSP problem for a specific
hospital dataset. This research demonstrated that, in comparison to other well-established algorithms, the method in question
yields superior results or the best solution. This claim was supported by sensitivity analysis and relative comparison. This
algorithm finds the best outcome while using the least amount of time and offering the most flexibility. Three goals were
considered in this case, and each was accomplished with success. Additionally, it demonstrates how to take a difficult real-
world situation and simplify and effectively construct a simulation model. This is an illustration of how to use the latest
developments in particle swarm optimization to address various aspects of the problem to find a better solution. After all,
the method's implementation reduced the makespan, which was the research's result. This research can be expanded in the
following ways:

1. These methods can be utilized to solve more complex real-life problems consisting of more objective functions
and constraints.

2. The combination of other algorithms with particle swarm optimization can be made to find comparatively more
precise results which will be faster than this one.

Acknowledgment

The authors would like to acknowledge the cooperation of the management of some renowned private hospitals to give us
insights into our study.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

Md. L. R. Lingkon and A. Dash / Journal of Project Management 9 (2024)

401

Dai, Y. (2021). Improved NSGA-II Algorithm for multi-objective flexible job shop scheduling problem. Journal of Physics:

Conference Series, 1952(4). https://doi.org/10.1088/1742-6596/1952/4/042065
Ding, H., & Gu, X. (2020a). Hybrid of human learning optimization algorithm and particle swarm optimization algorithm

with scheduling strategies for the flexible job-shop scheduling problem. Neurocomputing, 414, 313–332.
https://doi.org/10.1016/j.neucom.2020.07.004

Ding, H., & Gu, X. (2020b). Improved particle swarm optimization algorithm based novel encoding and decoding schemes
for flexible job shop scheduling problem. Computers and Operations Research, 121.
https://doi.org/10.1016/j.cor.2020.104951

Fattahi, P., Bagheri Rad, N., Daneshamooz, F., & Ahmadi, S. (2020). A new hybrid particle swarm optimization and parallel
variable neighborhood search algorithm for flexible job shop scheduling with assembly process. Assembly Automation,
40(3), 419–432. https://doi.org/10.1108/AA-11-2018-0178

Fontes, D. B. M. M., Homayouni, S. M., & Gonçalves, J. F. (2023). A hybrid particle swarm optimization and simulated
annealing algorithm for the job shop scheduling problem with transport resources. European Journal of Operational
Research, 306(3), 1140–1157. https://doi.org/10.1016/j.ejor.2022.09.006

Gu, X. L., Huang, M., & Liang, X. (2020). A Discrete Particle Swarm Optimization Algorithm with Adaptive Inertia Weight
for Solving Multiobjective Flexible Job-shop Scheduling Problem. IEEE Access, 8, 33125–33136.
https://doi.org/10.1109/ACCESS.2020.2974014

Huang, S., Tian, N., Wang, Y., & Ji, Z. (2016a). Multi-objective flexible job-shop scheduling problem using modified
discrete particle swarm optimization. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-3054-z

Huang, S., Tian, N., Wang, Y., & Ji, Z. (2016b). Multi-objective flexible job-shop scheduling problem using modified
discrete particle swarm optimization. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-3054-z

Huang, X., & Yang, L. (2019). A hybrid genetic algorithm for multi-objective flexible job shop scheduling problem con-
sidering transportation time. International Journal of Intelligent Computing and Cybernetics, 12(2), 154–174.
https://doi.org/10.1108/IJICC-10-2018-0136

Hui, H. (2012). Approach for multi-objective flexible job shop scheduling. Advanced Materials Research, 542–543, 407–
410. https://doi.org/10.4028/www.scientific.net/AMR.542-543.407

Institute of Electrical and Electronics Engineers. (n.d.). Evolutionary Computation (CEC), 2010 IEEE Congress on : date,
18-23 July 2010.

Jin, X., & Wang, F. (2022). A Multioffspring Genetic Algorithm Based on Sorting Grouping Selection and Combination
Pairing Crossover. Mathematical Problems in Engineering, 2022, 1–20. https://doi.org/10.1155/2022/4203082

Kacem, I., Hammadi, S., & Borne, P. (2002). Pareto-optimality approach for flexible job-shop scheduling problems: hy-
bridization of evolutionary algorithms and fuzzy logic. In Mathematics and Computers in Simulation (Vol. 60).

Kong, J., & Wang, Z. (2024). Research on Flexible Job Shop Scheduling Problem with Handling and Setup Time Based on
Improved Discrete Particle Swarm Algorithm. Applied Sciences, 14(6), 2586. https://doi.org/10.3390/app14062586

Lai, R., Gao, B., & Lin, W. (2021). Solving No-Wait Flow Shop Scheduling Problem Based on Discrete Wolf Pack Algo-
rithm. Scientific Programming, 2021. https://doi.org/10.1155/2021/4731012

Li, M., Qianting, L., Meiqiong, M., & Sicong, L. (2016). Optimization and Application of Single-point Crossover and
Multi-offspring Genetic Algorithm. International Journal of Hybrid Information Technology, 9(1), 1–8.
https://doi.org/10.14257/ijhit.2016.9.1.01

Liu, C., Yao, Y., & Zhu, H. (2022). Hybrid salp swarm algorithm for solving the green scheduling problem in a double-
flexible job shop. Applied Sciences (Switzerland), 12(1). https://doi.org/10.3390/app12010205

Liu, Z., Wang, J., Zhang, C., Chu, H., Ding, G., & Zhang, L. (2021). A hybrid genetic-particle swarm algorithm based on
multilevel neighbourhood structure for flexible job shop scheduling problem. Computers and Operations Research, 135.
https://doi.org/10.1016/j.cor.2021.105431

Moslehi, G., & Mahnam, M. (2011). A Pareto approach to multi-objective flexible job-shop scheduling problem using
particle swarm optimization and local search. International Journal of Production Economics, 129(1), 14–22.
https://doi.org/10.1016/j.ijpe.2010.08.004

Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distributed particle swarm optimiza-
tion algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603–615.
https://doi.org/10.1007/s10845-015-1039-3

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem.
Computers and Operations Research, 35(10), 3202–3212. https://doi.org/10.1016/j.cor.2007.02.014

Piroozfard, H., Wong, K. Y., & Wong, W. P. (2018). Minimizing total carbon footprint and total late work criterion in
flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resources, Conservation and
Recycling, 128, 267–283. https://doi.org/10.1016/j.resconrec.2016.12.001

Ren, W., Wen, J., Yan, Y., Hu, Y., Guan, Y., & Li, J. (2021). Multi-objective optimisation for energy-aware flexible job-
shop scheduling problem with assembly operations. International Journal of Production Research, 59(23), 7216–7231.
https://doi.org/10.1080/00207543.2020.1836421

Tan, W., Yuan, X., Huang, G., & Liu, Z. (2021). Low-carbon joint scheduling in flexible open-shop environment with
constrained automatic guided vehicle by multi-objective particle swarm optimization. Applied Soft Computing, 111.
https://doi.org/10.1016/j.asoc.2021.107695

 402

Wang, L., Wang, S., & Liu, M. (2013). A Pareto-based estimation of distribution algorithm for the multi-objective flexible
job-shop scheduling problem. International Journal of Production Research, 51(12), 3574–3592.
https://doi.org/10.1080/00207543.2012.752588

Wang, X., Gao, L., Zhang, C., & Shao, X. (2010). A multi-objective genetic algorithm based on immune and entropy
principle for flexible job-shop scheduling problem. International Journal of Advanced Manufacturing Technology,
51(5–8), 757–767. https://doi.org/10.1007/s00170-010-2642-2

Wu, M., Yang, D., & Liu, T. (2022). An Improved Particle Swarm Algorithm with the Elite Retain Strategy for Solving
Flexible Jobshop Scheduling Problem. Journal of Physics: Conference Series, 2173(1). https://doi.org/10.1088/1742-
6596/2173/1/012082

Xu, M., Lu, J., Zhu, F., Yu, F., Han, T., & Xu, M. (2021). Research and application for hydraulic cylinder workshop
scheduling considering on time delivery rate. Chinese Control Conference, CCC, 2021-July, 1905–1910.
https://doi.org/10.23919/CCC52363.2021.9550547

Xu, X., & Wang, L. (2021). An Improved Gaming Particle Swarm Algorithm Based the Rules of Flexible Job Shop Sched-
uling. ICSAI 2021 - 7th International Conference on Systems and Informatics.
https://doi.org/10.1109/ICSAI53574.2021.9664124

Zhang, J., Jie, J., Wang, W., & Xu, X. (2017). A hybrid particle swarm optimisation for multi-objective flexible job-shop
scheduling problem with dual-resources constrained. In Int. J. Computing Science and Mathematics (Vol. 8, Issue 6).

Zhang, S., & Gu, X. (2023). A discrete whale optimization algorithm for the no-wait flow shop scheduling problem. Meas-
urement and Control (United Kingdom), 56(9–10), 1764–1779. https://doi.org/10.1177/00202940231180622

Zhang, Y., Cheng, S., Shi, Y., Gong, D. W., & Zhao, X. (2019). Cost-sensitive feature selection using two-archive multi-
objective artificial bee colony algorithm. Expert Systems with Applications, 137, 46-58.
https://doi.org/10.1016/j.eswa.2019.06.044

Zhang, Y., Zhu, H., & Tang, D. (2020). An improved hybrid particle swarm optimization for multi-objective flexible job-
shop scheduling problem. Kybernetes, 49(12), 2873–2892. https://doi.org/10.1108/K-06-2019-0430

Zhu, Z., & Zhou, X. (2021). A multi-objective multi-micro-swarm leadership hierarchy-based optimizer for uncertain flex-
ible job shop scheduling problem with job precedence constraints. Expert Systems with Applications, 182.
https://doi.org/10.1016/j.eswa.2021.115214

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

	Journal of Project Management 9 (2024) 387–402
	C H R O N I C L E A B S T R A C T
	1. Introduction

