
* Corresponding author  
E-mail address  mohs005@brin.go.id  (Moh. Saeri) 
 
ISSN 2291-6830 (Online) - ISSN 2291-6822 (Print)  
© 2024 by the authors; licensee Growing Science, Canada. 
doi: 10.5267/j.uscm.2023.12.002 
 

 
 

 
 

Uncertain Supply Chain Management 12 (2024) 1065–1082 
 

 

Contents lists available at GrowingScience 
 

Uncertain Supply Chain Management 
 

homepage: www.GrowingScience.com/uscm 
 
 
 

 
 
 
Strategic resilience: Integrating scheduling, supply chain management, and advanced operations 
techniques in production risk analysis and technical efficiency of rice farming in flood-prone areas   
 
 
 

Moh. Saeria*, Rusli Burhansyaha, Supriyadia, Juliana C. Kilmanuna, Zainuri Hanifa, Dedi 
Sugandia, Adria, Firdausa, Nurmalindaa, Dewa Ketut Sadra Swastikaa, Nurul Istiqomahb, Dwi 
Setyorinib, Zainal Arifinb, Wenny Mamiliantic, Desy Cahyaning Utamic and Basrowid  
 
 
 
 
 
 

aResearch Center for Behavioral and Circular Economics, Research Organization for Governance, Economy, and Community Welfare, National Research 
and Innovation Agency, Indonesia 
bResearch Center for Horticulture and Plantation Research Organization for Food and Agriculture, National Research and Innovation Agency, Indonesia 
cFaculty of Agriculture, Yudharta University, Pasuruan, Indonesia  
dUniversitas Bina Bangsa, Indonesia 
A B S T R A C T 

Article history:  
Received September 22, 2023 
Received in revised format 
October 20, 2023 
Accepted December 1 2023 
Available online  
December 1 2023 

 Farmers face various risks such as production risks in the use of technology, pests, climate change 
and natural disasters. Farmers in disaster-prone areas have different responses depending on their 
behavior towards the risks posed. The main problem in this research is how farmers behave towards 
production risks due to flooding and the technical efficiency of rice farming in flood-prone areas. 
The aim of this research is to analyze farmers' behavior towards production risks due to flooding 
and the technical efficiency of rice farmers in flood-prone areas. The results of this research will 
provide important information for policy simulations that the government can implement towards 
farmers affected by natural disasters and for sustainable disaster mitigation strategies. The novelty 
of this research is that it combines two theories, namely risk behavior and agricultural technical 
efficiency in producing disaster mitigation strategies. The research location was determined 
purposefully in Pasuruan and Bojonegoro Regencies. The data in this research are primary and 
secondary data with the sample in this research being farmers. The sampling technique in this 
research is a multi-stage cluster sampling technique. The analysis method in this research uses Just 
Pope. and the Cobb-Douglas production function model with the Stochastic Production Frontier 
approach. The target of these research findings is a model of the types of behavior regarding the 
risks of farmers who are flood victims, as well as the level of technical efficiency of rice farming 
and the factors that influence it. The expected findings are policy recommendations regarding 
disaster mitigation from economic and agricultural risk aspects to create sustainable agriculture.   
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1. Introduction 

 
The majority of Indonesians live from agriculture because Indonesia is an agricultural country (Iboko et al., 2023; Zabidi et 
al., 2022). The agricultural sector is very important to develop at every stage of development in Indonesia because it makes a 
significant contribution to Gross Domestic Income (GDP) (Islam et al., 2023; Mbah et al., 2023). The high demand for the 
food industry has encouraged efforts to increase rice production (Burggräf et al., 2023; Sanogo et al., 2023). This increase in 
production was caused by an increase in the use of superior varieties and planting area (Islam et al., 2023; Zabidi et al., 2022). 
Increasing the productivity of rice farming which results in increased production does not necessarily have a direct impact on 
increasing farmers' income (Ghimire et al., 2023; Hatta et al., 2023). 
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If farmers do not use production factors effectively, there is unutilized potential to increase farming income and create a 
surplus (Ferrer et al., 2022; Gehring et al., 2022). Apart from that, low production and high costs will ultimately result in low 
farmer incomes (Nguyen-Thi-Lan et al., 2023; Talhelm et al., 2023). To achieve this, measuring the efficiency of use of 
production factors is necessary (Forgione & Migliardo, 2023; Sanogo et al., 2023). This is based on the idea that a high level 
of efficiency will be profitable because efficiency cannot be separated from an optimal combination of production factors 
(Burggräf et al., 2023; Mamgbi Zozimo et al., 2023). One way to find out how efficiently rice farming production factors are 
used is to calculate the technical efficiency value (Kanthilanka et al., 2023; Sanogo et al., 2023). Technical efficiency shows 
the relationship between input and output (Abualigah et al., 2023; Islam et al., 2023). Technical efficiency measures the extent 
to which a farmer converts input into output at the production level (Ghimire et al., 2023; Sanogo et al., 2023). 
 
Agriculture is faced with conditions full of risk and uncertainty (Sanogo et al., 2023; Zabidi et al., 2022). Farmers as business 
actors face various sources of risk (Mbah et al., 2023; Motbaynor Workneh & Kumar, 2023). Farmers as business actors must 
determine their behavior towards risk because this is important in making decisions about farming management (Kanthilanka 
et al., 2023; Sanogo et al., 2023). Behavior towards risk is divided into risk seeking, neutral and risk averse (F. Wang et al., 
2023; Xie et al., 2023). The dependence of agricultural activities on nature poses production risks (Khatri-Chhetri et al., 2023; 
MAO et al., 2023).  Production risks result in a decrease in the quality and quantity of harvests, even though production is the 
main source of income for farmers (Islam et al., 2023; Nguyen-Thi-Lan et al., 2023). Indonesia has a diverse climate and 
topography that provides benefits and causes disasters. In the agricultural sector, disasters have a sustainable impact on 
farmers' lives (Zabidi et al., 2022; ZHAO et al., 2023). Farmers in disaster-prone areas have different responses to natural 
disasters that occur. This response depends on their behavior towards the risks posed (YUAN et al., 2022; Zabidi et al., 2022). 
 
Rice is the main food crop commodity which is the heart of farmers in Indonesia, where rice is consumed by people every 
day (Hatta et al., 2023; Talhelm et al., 2023). However, rice farmers currently still face many problems, one of which is 
climate change which causes changes in the rainy and dry seasons, floods and landslides, pest attacks, and low prices for grain 
during the harvest season (Ferrer et al., 2022; van Aalst et al., 2023). This makes farmers have to face risks in rice farming, 
so farmers must have the ability to manage their farming with the changes that occur (Hatta et al., 2023; Zabidi et al., 2022). 
 
Apart from facing production risks, farmers must also be able to manage their farming efficiently so that their farming goals 
are achieved, namely maximum production and profits (Begum et al., 2023; Mbah et al., 2023). Farming risk conditions 
influence farmers in allocating production inputs, where farmers are faced with several alternative choices of production 
factors which are expected to reduce production risks (Burggräf et al., 2023; Sanogo et al., 2023; Xie et al., 2023). Reducing 
production risks by using the right inputs automatically also increases the level of technical efficiency (Forgione & Migliardo, 
2023; Sanogo et al., 2023). Therefore, farmers' decisions in using inputs for the ongoing production process are related to 
farmers' behavior in facing farming risks (Ghimire et al., 2023; Motbaynor Workneh & Kumar, 2023). Farming risk factors 
show changes or events in their farming business where farmers are faced with resource allocation choices that affect the 
production they produce (Nguyen-Thi-Lan et al., 2023; van Aalst et al., 2023). 

2. Literature review 

2.1 Strategic Resilience 
 
Strategy is the art for individuals or groups to utilize their abilities and resources in order to achieve targets through procedures 
that are considered effective and efficient in achieving the expected goals. Meanwhile, resilience is the condition of a system 
and its parts that can anticipate, absorb, or recover from various unexpected events quickly and efficiently (Ghobakhloo et al., 
2023; Kunisch et al., 2023). This includes protecting, enhancing, and repairing the underlying system structure and function, 
as well as an emphasis on learning aspects (Li et al., 2022; ZHAO et al., 2023). A resilience strategy consists of a number of 
interventions or actions that are expected to increase the resilience of a city, both at the system, agent and institutional levels 
(Smith & Shashkina, 2023; Varajão et al., 2023). With the existence of strategic resilience in the world of agriculture (Dowlati 
et al., 2023; Nelson & Ahmadpoor, 2023), it can provide an idea for rice farmers who want to plant rice to prepare all the 
needs for farming such as superior rice seeds that are resistant to pest and disease attacks, tolerant of environmental conditions, 
good fertilizer and adequate pesticides (Czakon et al., 2023; Kunisch et al., 2023). so that the harvest results obtained are as 
expected. Apart from that, the resilience strategy is also able to provide recovery in crop yield conditions from poor to better, 
so that crop yields are very satisfactory even in flood-prone areas (MAO et al., 2023; Oliveira et al., 2023). 

 
2.2 Integrating Scheduling 
 
Scheduling is an activity carried out to allocate facilities, equipment and labor, and determine the sequence of implementation 
for an operational activitym(Tantawy et al., 2022; Yeardley et al., 2022). Agriculture requires scheduling to allocate all 
activities to be carried out such as preparing labor, superior rice seeds, fertilizer, urea and pesticides to be used (Li et al., 2022; 
Martinazzo et al., 2023). Scheduling aims to minimize processing time, waiting time and harvest time so as to minimize losses 
(Fernandez-Viagas & Framinan, 2022; Zhang et al., 2022). Good scheduling also has several criteria such as; 1) overall 
completion time, namely by measuring the time required from the start of planting rice seeds to harvest (Gehring et al., 2022; 
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Zhang et al., 2022). 2) average, namely by calculating the average time required for planting rice to harvest (Fernandez-Viagas 
& Framinan, 2022; Tantawy et al., 2022). 3) average delay time, namely by calculating the average difference in harvest 
scheduling from the previous year to the current year (L. Chen & Zhou, 2023; Gehring et al., 2022). Apart from criteria, 
scheduling also has several objectives, namely increasing utility and reducing waiting time so that it can reduce and increase 
the productivity of rice farmers, minimize costs, and meet consumer needs in terms of rice quality and timeliness of rice 
delivery to consumers (Talhelm et al., 2023; van Aalst et al., 2023). 

 
2.3 Supply Chain Management 
 
Supply chain management is a series of actions that include planning, managing and activating products (Akkerman et al., 
2023; Dzikriansyah et al., 2023). Every activity carried out requires good planning, and in the agricultural world the planning 
carried out includes everything related to planting rice seeds until harvest, processing resources regarding good labor, superior 
rice seeds, and processing the fertilizer that will be used (Abualigah et al., 2023; Taj et al., 2023). The function of supply 
chain management in the agricultural world is related to various physical costs which include material costs, storage costs, 
delivery transportation costs, and so on (Burgess et al., 2023; Z. Chen & Hammad, 2023). Apart from function, there is also 
a goal of supply chain management, namely being able to align demand with existing supply (Liu et al., 2023; Yontar, 2023). 
In addition, there are several problems or challenges that are often faced in supply chain operations, such as procurement 
management, supplier management, customer relationship management, risk management, and finding problems and dealing 
with them (Burgess et al., 2023; Z. Chen & Hammad, 2023). The supply chain must be able to provide products that are cheap, 
high quality, varied, and available on time to be a winner in the supply chain (Dzikriansyah et al., 2023; Liu et al., 2023). 
 
2.4 Production Risk Analysis  
 
Production risk is a risk that farming businesses always face (Begum et al., 2023; Burggräf et al., 2023). Production risk is a 
source of risk that originates from production activities, including crop failure, low productivity, damage to goods caused by 
pest and disease attacks, differences in climate and weather, human resource errors and much more (Mazzi, 2023; Mbah et 
al., 2023). Production risk usually describes the production received by farmers that does not match the farmers' expectations 
(Islam et al., 2023; F. Wang et al., 2023). Therefore, to find out how big the production risk is, we need to know how big the 
risk is to anticipate and overcome things that will happen (Begum et al., 2023; Mazzi, 2023). 
Therefore, to reduce production risks, farming businesses must be able to use good strategies, tools and seeds so that all 
production activities run as expected (Nguyen-Thi-Lan et al., 2023; Xiong et al., 2023). Farming businesses must also have 
good farming skills and have knowledge about choosing superior seeds, choosing good fertilizer for plants, choosing 
pesticides to prevent pests and diseases in plants, understanding differences in climate and weather because this is very 
important to anticipate things that don't happen desired during the planting process until harvest (Hatta et al., 2023; Talhelm 
et al., 2023). 
 
2.5 Technical Efficiency 
 
Technical efficiency is the ability of a farm to use minimum inputs to produce maximum output at a certain technological 
level (Mamgbi Zozimo et al., 2023; Martinazzo et al., 2023). Technical efficiency is a necessity to measure allocative and 
economic efficiency (Martinazzo et al., 2023; Nguyen-Thi-Lan et al., 2023). Cultivation techniques and production 
components used in farming greatly influence farming efficiency (Can-ping et al., 2023; Cano-Leiva et al., 2023). Apart from 
that, farmers' socio-economic factors also influence efficiency, which is closely related to their ability to manage (Ghimire et 
al., 2023; Khatri-Chhetri et al., 2023). With technical efficiency, it can make it easier for farming businesses to minimize the 
costs incurred for rice cultivation, especially on land that is prone to flooding by using various methods that have been 
developed, apart from that, technology which is increasingly developing rapidly also greatly influences existing human 
resources to become more Good (Forgione & Migliardo, 2023; Nguyen-Thi-Lan et al., 2023). Not only that, good technical 
efficiency can also produce ideal production results so that it can increase farmers' income (Cano-Leiva et al., 2023; Islam et 
al., 2023). 

3. Research Method 

This research is survey research where the data used are primary data obtained through interviews and questionnaires. 
Supporting data in the form of data on the number of farmers, climate information, and seasonal data are taken from related 
agencies. This research is a quantitative study in which the data are analyzed quantitatively using risk function analysis and 
technical efficiency. 

3.1 Data Collection Techniques 

The data in this study are primary data and secondary data. Primary data was obtained through interviews and questionnaires 
from respondents. Secondary data were obtained from related agencies, including the Department of Agriculture, BNPB, and 
local government. The samples in this study were farmers in the research locations, namely in Bojonegoro and Pasuruan 
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Regencies.sampling technique in this study was a multi-stage cluster sampling technique, namely the sampling process was 
carried out through two or more stages. The multi-stage cluster sampling technique in this study used four stages, namely: 1) 
Determining the research location District, 2) Determining the sub-district in district, 3) Determining the village to be the 
research location, 4) Determining the sample according to the profile of the research objectives in the selected village. 

3.2 Research Locations and Sampling Techniques 

The research locations were determined purposely according to the research objectives. The research location was conducted 
in Bojonegoro Regency and Pasuruan Regency. This location was chosen because it is a rice center in East Java and is a flood-
prone area every year. 
 
3. Data Analysis 
 
3.1 Data Analysis Method of Input Effects on Production and Production Risk 

 
Production risk faced by farmers is analyzed using the Just and Pope (1979) model which explains that the resulting production 
is not only influenced by production factors, but also influenced by risk factors. The assumptions used are input and output in 
competitive markets so that prices are known with certainty or there is no price risk. The Just and Pope (1979) model is: 

 𝑦 = 𝑓(𝑥, 𝑧) + 𝑢 = 𝑓(𝑥, 𝑧) + 𝑔(𝑥, 𝑧)𝜀 (1) 

where: 
y = production achieved f(x,z) = function average production 
g(x,z) = risk function or variance function 
x = inputs / production factors used (x1, …, xj) 𝑧 = quasi-fixed number of inputs (z1, …, zk) 𝜀 = error term with E(𝜀)=0 and var (𝜀) = 𝜎2 
 

The Just and Pope function model requires that no restrictions are placed on the risk effect using the condition that 𝜕[𝑣𝑎𝑟(𝑦)/𝜕𝑋𝑗] has a possible value of ≤ 0 or ≥ 0 which indicates that the input is risk increasing or risk decreasing to the 
production risk faced by farmers. The production function used in this study is the Cobb-Douglas production function in the 
form of natural logarithms. The model used to estimate the parameter estimation of the Cobb-Douglas function is the 
Stochastic Frontier Production Function approach. Factors that are thought to directly affect production are input factors used 
by farmers, namely land, seeds, chemical fertilizers, pesticides, labor (Basrowi & Maunnah, 2019; Basrowi & Utami, 2023; 
Marwanto et al., 2020; Suseno & Basrowi, 2023; Suwarno et al., 2020). The model is composed based on the specifications 
of the Cobb-Douglas production function in the form of natural logarithms. 

 
Production and Risk Function is assumed to be in the form of COBB-Douglas production function using natural logarithm, 
as follows: 

 f(x): 𝑙𝑛𝑃𝑟𝑜𝑑𝑖 = 𝛽0 + 𝛽1𝑙𝑛𝐿𝑢𝑠𝑖 + 𝛽2𝑙𝑛𝐵𝑛ℎ𝑖 + 𝛽3𝑙𝑛𝑈 + 𝛽4𝑙𝑛𝑍𝐴 +5𝑙𝑛𝑁𝑃𝐾 + 𝛽6𝑙𝑛𝑃𝑒𝑠𝑖 + 𝛽7𝑙𝑛𝑇𝐾𝑖 +𝛽8𝑙𝑛𝑃𝑂𝑖 + 𝜀 (2) 

where: 
 

f (x): 𝑙𝑛𝑃𝑟𝑜𝑑𝑖 = 𝛽0 + 𝛽1𝑙𝑛𝐿𝑢𝑠𝑖 + 𝛽2𝑙𝑛𝐵𝑛ℎ𝑖 + 𝛽3𝑙𝑛𝑈 + 𝛽4𝑙𝑛𝑍𝐴 +5𝑙𝑛𝑁𝑃𝐾 + 𝛽6𝑙𝑛𝑃𝑒𝑠𝑖 + 𝛽7𝑙𝑛𝑇𝐾𝑖 + 𝛽8𝑙𝑛𝑃𝑂𝑖 + 𝜀 
g (x): 𝑙𝑛 𝜎2𝑃𝑟𝑜𝑑𝑖 = 𝛼0 + 𝛼1𝑙𝑛𝐿𝑢𝑠𝑖 + 𝛼2𝑙𝑛𝐵𝑛ℎ𝑖 + 𝛼𝑙𝑖4 𝑙4𝑖𝑖 + 𝛼5𝑙𝑛𝑁𝑃𝐾𝑖 + 𝛼6𝑙𝑛𝑃𝑒𝑠𝑖 + 𝛼7𝑙𝑛𝑃𝑒𝑠𝑖 + 𝛼8𝑙𝑛𝑃𝑂𝑖 + 𝜀 

 
expected parameter value is 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽7, 𝛽8, 𝛼0 > 1 The 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7, 𝛼8 <0 or > 0 

 
If α <0 input is reduced risk, α> 0 input is increasing the risk where: 
 𝜎2𝑃𝑟𝑜𝑑𝑖 = (𝑌 - 𝑌̂𝑖)2 𝜎2𝑃𝑟𝑜𝑑𝑖 = Rice production variant 

lnProd = Total production/output (kg) 
lnLus  = Land area (ha) 
lnBnh = Seed amount (kg) 
lnU  = Total Urea fertilizer (kg) 
lnZA  = Total ZA fertilizer (kg) 
lnNPK = Total fertilizer NPK (kg) 
lnPes  = Amount of pesticides (kg) 
lnTK  = Amount of labor used (HOK) 
lnPO  = Amount of organic fertilizer (kg) 
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i  = Number of respondent farmers 𝛽0  = Int ersep 𝛽1 − 𝛽8 = parameter coefficient in the estimated production function 𝛼1 − 𝛼8 = parameter coefficient in the estimated risk function 𝜀  = error term with E(𝜀)=0 and var (𝜀) = 𝜎2 
 

3.2 Behavioral Analysis Method Farmers Against Production Risk and Its Impact on Input Allocation 

The analytical method used is the risk model developed by Just and Pope. In this model, farming risk is assumed to be input 
and output in a competitive market so that the price is known with certainty or there is no price risk (Hatta et al., 2023; 
Promkhambut et al., 2023). Another assumption is that farmers in conducting their farming try to maximize utility where 
maximizing this utility uses an income maximization approach in farming, and farmers get production y at the price level p. 
Maximization of utility (expected utility) which is a normalized function of expected profit (Burggräf et al., 2023; van Aalst 
et al., 2023). The utility function can be written as 𝐸 = ቂ𝑈 ቀగ೐௣ ቁቃ. Expected profit (𝜋𝑒) formulated as follows: 
 𝜋௘ = 𝑝𝑦 − 𝑤ᇱ𝑥 = 𝑝𝑓(𝑥, 𝑧) − 𝑤ᇱ𝑥 + 𝑝𝑔(𝑥, 𝑧)𝜀   (3) 

where: 
 𝜋௘  = Exoected profit  

p  = output price (Rp) 
y  = production/output 
w  = variable input prices vector (w1,…, wj) 
x = number of input used 

 
The normalized expected profit is formulated as follows: 
 గ೐௣ = 𝑦 −  ௪ᇲ௣ = 𝑓(𝑥, 𝑧) − ௪ᇲ௫௣ + 𝑔(𝑥, 𝑧)𝜀 = 𝑓(𝑥, 𝑧) − 𝑤ᇱ෪𝑥 + 𝑔(𝑥, 𝑧)𝜀  (4) 

𝑤෥  : the vector of normalized input price  𝑤ఫ෦ = ௪ೕᇲ௣  ∀𝑗 = 1, … … . 𝑗 
Assuming the producer maximizes the expected utility of the profit that expected normalized 𝐸 = ቂ𝑈 ቀగ೐௣ ቁቃ, then 
the first-order condition (FOC) : 
 
 𝐸 ቂ𝑈ᇱ ቀగ೐௣ ቁ  (𝑓௝(𝑥, 𝑧) −  𝑤ఫ෦ + 𝑔௝(𝑥, 𝑧)𝜀ቃ = 0   ∀𝑗 = 1, … . . 𝑗   (5) 

where: 
 𝑈ᇱ ቀగ೐௣ ቁ   = normalized marginal utility of the expected profit 

fj   = first derivative of the production function with respect to the j-th variable input 
gj   = first derivative of the production function with respect to the j-th variable input 

 
To obtain function of risk behavior, equation (5) can be rewritten as follows: 

 𝑓௝(𝑥, 𝑧) =  𝑤ఫ෦− 𝑔௝(𝑥, 𝑧) ா൤௎ᇲ൬ഏ೐೛ ൰ఌ൨ா ቔ௎ᇲ ቀഏ೐೛ ቁቕ = 𝑤ఫ෦ − 𝑔௝(𝑥, 𝑧)𝜃ଵ  ∀𝑗 = 1, … . . 𝑗  (6) 

where: 
 ா൤௎ᇲ൬ഏ೐೛ ൰ఌ൨ா ቔ௎ᇲ ቀഏ೐೛ ቁቕ = 𝜃ଵ  

 
and the value of 𝜃ଵ is the value of behavior towards risk. So the risk behavior function is: 

 𝑓௝ = 𝑤ఫ෦ − 𝑔௝𝜃ଵ  
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If, 𝑔௝ > 0 𝑎𝑛𝑑 𝜃ଵ < 0 =>  𝑓௝ < 𝑤ఫ෦ − 𝑔௝𝜃ଵ => 𝑓௝ must increase so that 𝑓௝ = 𝑤ఫ෦ − 𝑔௝𝜃ଵ, or input x1 must go down.  
 
then : 
gj > 0 and 𝜃ଵ< 0 then producers behave risk averse 
gj > 0 and 𝜃ଵ> 0 then producers behave risk seeking or risk taker 

 
If, 𝑔௝ < 0 𝑎𝑛𝑑 𝜃ଵ > 0 =>  𝑓௝ < 𝑤ఫ෦ − 𝑔௝𝜃ଵ => 𝑓௝ must increase so that 𝑓௝ = 𝑤ఫ෦− 𝑔௝𝜃ଵ, or the input x1 must increase. 

then : 
gj < 0 and 𝜃ଵ> 0 then producers behave risk averse 
gj < 0 and 𝜃ଵ< 0 then producers behave risk seeking or risk taker 

 

3.3 Method of Analysis of Factors Affecting Farmer Behavior on Production Risk 

The analysis method used is probit regression model. The probit regression model is a qualitative response model based on 
the normal distribution probability function. Observations with certain characteristics will be one of the categories as the main 
objective of probability estimation. The probit regression model is a model that analyzes the dependent variable with only 
two values. The probit regression model is a non-linear model so the method used to estimate the probit model is the Maximum 
Likelihood (ML) method, to interpret the coefficient values of the probit regression model. The value of the probit model 
estimator cannot be interpreted directly because the probability value is based on the normal Z distribution, so it can only 
interpret the sign of the coefficient directly (Basrowi & Utami, 2020, 2023; Mustofa et al., 2023; Soenyono & Basrowi, 2020). 
The probit model equation is: 

 𝑌𝑖𝑗 = 𝑋′𝛽 + 𝜀 (2) 

where, Y is the dependent variable and X is the independent variable that explains Y. 𝛽 is the estimated parameter coefficient 
and εi is the error term. The dependent variable in binary form is shown by Yij, Y is worth 1 and 0. In this study Y shows the 
behavior of farmers towards production risk, worth 1 if farmers are risk seekers and 0 if they are risk averse. Further 
explanation of the variables used in the probit regression model is as follows: 
 

Y (farmer's behavior towards risk)  = Farmer's risk taker is worth 2, risk averse is worth 1 and is 0 for risk  
   neutral 

X1 Age    = Farmer's age, the variable unit is year. 
X2 Education    = The length of time a farmer has been studying is measured by years 
X3 Farming experience   = The length of time a farmer has been doing farming is measured by 
years 
X4 Number of family dependents = Number of family dependents, measured by people 
X5 Frequency of counseling and training  = Frequency of farmers attending counseling and training in one     

   season growing frequency is measured 
X6 Off farm income    = Total income from outside the farm is 
measured in rupiah (Rp) 
D1 growing season   = Rainy planting season 1, worth 0 if the growing season is dry 
D2 Use of cultivation technology  = Farmers use technology equal to 1.0 otherwise method 
 

3.4 Method of Analysis of Factors Affecting Farmer Behavior on Production Risk 

The production function model used in measuring technical efficiency is the Cobb Dauglas production function with the 
Stochastic Production Frontier approach (Alexandro & Basrowi, 2024b, 2024a; Kittie & Basrowi, 2024; Purwaningsih et al., 
2024). The production function model can be written as follows: 𝑙𝑛𝑃𝑟𝑜𝑑𝑖 = 𝛽0 + 𝛽1𝑙𝑛𝐿𝑢𝑠𝑖 + 𝛽2𝑙𝑛𝐵𝑛ℎ𝑖 + 𝛽3𝑙𝑛𝑈 + 𝛽4𝑙𝑛𝑍𝐴 + 𝛽5𝑙𝑛𝑁𝑃𝐾 + 𝛽6𝑙𝑛𝑃𝑒𝑠𝑖 + 𝛽7𝑙𝑛𝑇𝐾𝑖 +𝛽8𝑙𝑖 + 𝜀 (2) 

 

where: 

lnProd = Total production/output (kg) 
lnLus = Land area (ha) 
lnBnh = Total Seeds (kg) 
lnU = Total Urea fertilizer (kg) 
lnZA = Total ZA fertilizer (kg) 
lnNPK = Total NPK fertilizer ( kg) 
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lnPes = Amount of pesticides (kg) 
lnTK = amount of labor used (HOK) 
lnPO = amount of organic fertilizer (kg) 
i =    Number of respondent farmers 𝛽0 =  Intercept 𝛽1 − 𝛽8 = coefficient of estimated parameter variable/factor of production 
(𝛽1 − 𝛽8 > 0) 
Vi - Ui 

= Error (inefficiency effect in the model) 

Vi = Random variable, where the variable is an external factor (climate, pest attack or error in modeling) 
the distribution is symmetrical and the distribution is normal (𝑉𝑖𝑗~ 𝑁 ( 0, 𝜎𝑣2) 
 

Ui = Positive random variable (the variable is assumed to have an influence on technical inefficiency and a 
relationship with internal factors. This variable also has a half-normal distribution (𝑉𝑖𝑗~ |𝑁(0, 𝜎𝑣2|). 
 

Measurement of efficiency technical quality of potato production is measured using the following formula (Coelli, et al 2005): 𝑙𝑛𝑃𝑟𝑜𝑑𝑖 = 𝛽0 + 𝛽1𝑙𝑛𝐿𝑢𝑠𝑖 + 𝛽2𝑙𝑛𝐵𝑛ℎ𝑖 + 𝛽3𝑙𝑛𝑈 + 𝛽4𝑙𝑛𝑍𝐴 + 𝛽5𝑙𝑛𝑁𝑃𝐾 + 𝛽6𝑙𝑛𝑃𝑒𝑠𝑖 + 𝛽7𝑙𝑛𝑇𝐾𝑖 +𝛽8𝑙𝑖 + 𝜀 (2) 

where 𝑦𝑖 is the actual production of the observations, 𝑦∗ is the potential production conjecture of the stochastic frontier 
function. Technical efficiency for a farmer range from 0 to 1. This technical efficiency has a value opposite to the effect of 
technical inefficiency (Hamdan & Basrowi, 2024; Junaidi, Masdar, et al., 2024; Miar et al., 2024; Nuryanto et al., 2019). 

3.4 Methods of Analysis of the Influence of Production Risk Behavior and Other Factors on the Level of Technical Efficiency 

In estimating the factors that affect the level of technical efficiency, a tobit regression model is used. This study uses tobit 
regression because the value of the dependent variable, namely the technical efficiency index, is constrained between 0 – 1. 
The model for calculating TE (Technical Efficiency) is analyzed separately. In estimating the tobit regression parameters, 
MLE (Maximum Likelihood Estimator) (Hadi et al., 2019; Hamdan & Basrowi, 2024; Junaidi, Basrowi, et al., 2024; 
Purwaningsih et al., 2024). The estimation model for factors that affect the level of efficiency using the Tobit regression model 
is: 

TE = δ0+δ1Z1 +δ2Z2+δ3Z3+δ4Z4+δ5Z5+δ6Z6+δ7D1+δ8D2+δ9D3+δ10D4+ε 
 (2) 

where: 

TE = value of technical efficiency 
Z1 Age = age/age of farmer (years) 
Z2 PDK = length of education (years) 
Z3 LU = farming experience (years) 
Z4 AK = number of family dependents (people) 
Z5 FPL = frequency of counseling and training attended by farmers during the planting season (number 1.2) 
Z6Off = total income from outside agriculture is measured by rupiah (rp) 
D1 M = dummy planting season, 1 if applying planting season 1 and 0 others. 
D2 T = dummy technology, 1 if using technology, and 0 if not 
D2 Risk behavior = worth 2 risk seekers, risk averse worth 1 and risk neutral 0 

 𝛿𝑛 =    coefficient of variable parameter estimated 𝜀 = random error term assumed to be free and is freely distributed and the distribution is normally truncated 
with n (0, 𝛿) 

4. Result and Discussion 

4.1 Result 
 
The effect of inputs on the risk of rice production in flood-prone areas 
 

Bojonegoro Regency 

Several studies on production risk using the Just and Pope (1979) model show that only a few variables have a significant 
effect because the model emphasizes more on seeing signs from the parameter coefficients so that it can be seen whether these 
inputs increase or decrease production risk (Ferrer et al., 2022; Hatta et al., 2023). The results of the data analysis show that 
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the inputs that reduce production risk during the rainy season are land area, urea and labor, while those that increase production 
risk are seeds, NPK and pesticides (L. Chen & Zhou, 2023; Forgione & Migliardo, 2023). Seeds have a significant effect on 
increasing production risk (Kanthilanka et al., 2023; J. Wang et al., 2023). Farmers in Bojonegoro Regency use various seed 
varieties, namely ciherang, inpari 32, sitbagendit (Hatta et al., 2023; Sanogo et al., 2023). Seeds used during the rainy season 
should be resistant to waterlogging so that production risks can be reduced (Zabidi et al., 2022; ZHAO et al., 2023). In the 
dry season, the inputs that reduce production risk are land area, seeds, urea and pesticides, while the inputs that increase 
production risk are NPK and labor (Kanthilanka et al., 2023; Mbah et al., 2023). 
 
Table 1  
Results of the analysis of the risk function of Bojonegoro Regency 

 
Variable 

Rainy Season Drought Season 
Coefficient Standard Error T - calculate Coefficient Standard Error T - calculate 

Konstanta * 1.032067 0.418805 2.464315 * 0.517324 0.278529 1.857346 
Luas Lahan -0.075485 0.062853 -1.200977 -0.000251 0.049046 -0.005126 
Benih * 0.078518 0.055519 1.414251 -0.004359 0.024690 -0.176552 
Urea -0.066131 0.058937 -1.122067 * -0.094511 0.057472 -1.644475 
NPK 0.058660 0.053307 1.100414 0.034218 0.046904 0.729527 
Pesticides 0.032735 0.031208 1.048940 -0.007987 0.027937 -0.285900 
HR -0.049694 0.072808 -0.682533 0.051939 0.074836 0.694040 
R-square 0.046 0.065 
F-count 0.751 0.809 
Note: * significant at α = 0.1; 
** significant at α = 0.05 
*** significant at α = 0.01 
 

Pasuruan Regency 

Table 2  
Results of the analysis of the risk function of Pasuruan Regency 

 
Variable 

Rainy Season Drought Season 
Coefficient Standard Error T - calculate Coefficient Standard Error T - calculate 

Konstanta 0.039678 0.274456 0.144570 0.030065 0.271285 0.144963 
Luas Lahan 0.016493 0.041351 0.398846 0.016503 0.041351 0.407632 
Benih -0.005437 0.046744 -0.116313 - 0.004421 0.033001 -0.116313 
Urea 0.090860 0.059926 1.516202 0.091060 0.061119 1.801462 
NPK -0.028715 0.033927 -0.846375 -0.024057 0.033398 -1.649021 
Pesticide  -0.066656 0.031992 -2.083492 -0.066656 0.031992 -2.083492 
Human Resources -0.010362 0.060917 -0.170102 -0.010362 0.060917 -0.170102 
R-square 0,131 0,185 
F-count 3.183 2.348 

Note: * significant at α = 0.1; 
** significant at α = 0.05 
*** significant at α = 0.01 
 

The results of the data analysis show that the inputs that reduce production risk during the rainy and dry seasons are the same, 
namely seeds, NPK, pesticides and labor, while those that Raising the risk of production is land, and urea (Kanthilanka et al., 
2023; Martinazzo et al., 2023; Promkhambut et al., 2023).  
 
Farmer behavior towards production risk in flood-prone areas 
 
Bojonegoro Regency 
 
Table 3  
Respondent Farmer's Behavior towards Production Risk 

Farmer's Behavior towards Rainy  Season 
Farmer's Risk (Person) Percentage (%) Farmer (Person) Percentage (%) 

Risk seeker 14 14 36 36 
Risk Averse 87 87 64 64 
Risk Neutral 0 0 0 0 
Total 100 100 100 100 

Source: Primary data analysis 2022 
 
Based on the results of the analysis it is known that when planting in the rainy season the respondent farmers tend to be risk 
averse or do not dare to accept the risk, which is equal to 87%, while when planting in the dry season it is 64%.  
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Pasuruan Regency 
 
Table 4  
Respondent Farmer's Behavior towards Production Risk 

Farmer's Behavior towards Rainy  Season 
Farmer's Risk (Person) Percentage (%) Farmer (Person) Percentage (%) 

Risk seeker 93 93 74 74 
Risk Averse 7 7 26 26 
Risk Neutral 0 0 0 0 
Total 100 100 100 100 

Source: Primary data analysis 2022 
 
Based on the results of the analysis above, in Pasuran district, farmers' behavior during the rainy season tends to be risk seeker 
by 93%. Meanwhile, in the dry season it is 74%. 

 
The effect of farmer risk behavior on the allocation of production inputs in Bojonegoro Regency 
 
Farmers' Production Risk Preferences for Each Production Input 
 
The behavioral analysis model used is the model developed by Just and Pope (1979) based on the derivative of the utility 
function, yielding the value of θ and the first derivative of the risk function or gj (Liu et al., 2023; Talhelm et al., 2023). These 
two values can be used to determine a farmer's risk preference for input allocation (Ferrer et al., 2022; Mbah et al., 2023). 
This means that farmers who are risk seekers of inputs are more willing to allocate inputs in larger quantities than farmers 
who are risk averse (Nguyen-Thi-Lan et al., 2023; Promkhambut et al., 2023). 

 
Table 5  
Production Risk Preference for each Production Input (Rainy Season) 

Variable Average Value θ Average Value gj Risk Preference 
Seed -452.7663966 0.476208 Risk averse 
Urea -124484.2022 -0.000223 Risk seeker 
NPK -162096.2001 0.000314 Risk averse 
Pesticide -2.140555767 107.14904 Risk averse 
Labor -160626.506 -0.001012 Risk seeker 

Source: Primary data analysis 2022 
 

Based on the results of the analysis above, it can be concluded that the production risk for each production input during the 
rainy season in Bojonegoro Regency is found in the input allocation made by farmers who tend to be risk seekers for urea and 
labor (Mbah et al., 2023; YUAN et al., 2022).  

 
Table 6  
Production risk preference for each input Production (Dry) 

Variable Average Value θ Average Value gj Risk Preference 
Seed -2.7435 -5.5937 Risk 
Urea -13811.1537 -0.000298 Risk Seeker 
NPK -11716.8438 0.004276 Risk averse 
Pesticides -3.7921 -22.14292 Risk seeker 
Labor -18687.289 0.022428 Risk averse 

Source: Primary data analysis 2022 
 
Based on the results of the analysis above, it can be seen that the production risk of production inputs during the dry season 
in Bojonegoro Regency is that the input allocation is in seeds, urea and pesticides (Khatri-Chhetri et al., 2023; van Aalst et 
al., 2023).   
 
Pasuruan Regency 
 
Farmers' Production Risk Preferences for Each Production Input 
 
Table 7  
Results of Analysis of Factors Influencing Farmer Behavior on Production Risk 

Variable Average Value θ Average Value gj Preference Risk 
Seed 11.9674 -10.6909 Risk averse 
Urea -52207.1077 0.006023 Risk averse 
NPK 90533.1823 -0.000028 Risk averse 
Pesticide -0.0541 -85.9242 Risk seeker 
Labor 1612437.51 -0, 000275 Risk averse 

Source: Primary data analysis 2022 
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Based on the results of the analysis above, it is known that farmers' risk for each production input in Pasuruan Regency, during 
the rainy season, farmers' input allocation is more likely to be pesticide risk seekers. 

 
Table 8 
Production Risk Preference for each Production Input (Dry) 

Variable Average Value  θ Average Value gj Risk Preference 
Seed -77201.193 0.00002 Risk averse 
Urea 476824 .321 -0.000011 Risk averse 
NPK 3738.931 -0.000001 Risk averse 
Pesticides 7795.795 0.000074 Risk seekers 
Labor 725215.177 -0.001489 Risk averse 

Source: Primary data analysis 2022 
 

Based on the research results above, it can be seen that during the dry season farmers in Pasuruan district are more likely to 
be risk-seeking pesticides, the same as in the rainy season. 
 
Factors influencing behavior Farmer production risks in flood-prone areas 
 
Bojonegoro Regency 

 
Table 9  
Results of Analysis of Factors Influencing Farmer Behavior on Production Risk 

Variable Coefficient Standard Error z - Statistical 
Constant *-0.433639 0.218991 -1.980172 
Age **0.014788 0.004230 3.496316 
Education 0.005205 0.008975 0.57953 
Farming duration *-0.0051 77 0.003192 -1.622028 
Dependents of Family Members 0.005814 0.019079 0.304756 
Frequency of Counseling and Training 0.029078 0.031387 0.926439 
Offarm Revenue ***5.27E-08 1.19E-08 4.447640 
DUMMY Offarm ***-0.239574 0.056736 -4.222580 

Note: significant at  α = 0,1; 
** significant at α = 0.05 
*** significant at α = 0.01 
 

Factors that have a significant effect on farmer production risk behavior are age, length of farming/farming experience, off-
farm income and planting season. From this it can be seen that the growing season determines the behavior of farmers towards 
risk, the results of the analysis show that in the rainy season farmers are more likely to be risk averse (Mbah et al., 2023; F. 
Wang et al., 2023). 

Pasuruan Regency 
 
Table 10  
Results of Analysis of Factors Influencing Farmer Behavior on Production Risk 

Variable Coefficient Standard Error z - Statistical 
Constant * -1.862052 0.932304 -1.997257 
Age ** 0.041990 0.014095 2.979064 
Education -0.044131 0.046240 -0.954385 
Farming duration *0.018920 0.011106 1.703483 
Dependents of Family Members 0.079008 0.107213 0.736923 
Frequency of Counseling and Training 0.122838 0.249691 0.491960 
Of farm Revenue 3.09E-08 7.68E-08 0.402047 
DUMMY Of farm *** 0.971137 0.272936 3.558113 

Note: significant at  α = 0,1; 
** significant at α = 0.05 
*** significant at α = 0.01 

 

Factors that have a significant effect on farmer production risk behavior are age, length of farming/farming experience, and 
planting season. From this it can be seen that the growing season determines the behavior of farmers towards risk, the results 
of the analysis show that during the rainy season farmers are more likely to be risk seekers (Nguyen-Thi-Lan et al., 2023; 
Zachmann et al., 2022). 
 

The level of technical efficiency of rice farming in flood-prone areas 
 
Bojonegoro Regency 

 
The distribution of technical efficiency of rice farmers in Bojonegoro Regency can be seen in Tables 11 and 12, while the 
value of the technical efficiency of each farmer can be seen in Figures 1 and 2. 



Moh. Saeri et al.  /Uncertain Supply Chain Management 12 (2024) 

 

 

1075

Table 11  
The distribution of technical efficiency levels in rainy season 

Technical efficiency level of farmers (person) Percentage (%) 
0 - 0.25 30 30 
0.26 - 0.5 43 43 
0.51 - 0.7 21 21 
0.71 – 0.85 5 5 
0.86 - 1 1 1 
TOTAL 100 100 
Min 0.107 
Max 0.999 
Average 0.394 

Source: Primary data analysis 2022 

           Fig. 1. Technical efficiency level of rice farmers in Bojonegoro Regency during the rainy season 
 
Based on the results of the analysis above, the level of technical efficiency in the rainy season has a minimum value of 0.107, 
a maximum value of 0.999 and an average value of 394. 
 

Table 12  
Distribution of Technical Efficiency Levels in the dry season 

Efficiency Levels of Farmers ( people) Percentage (%) 
0 - 0.25 3 3 
0.26 - 0.5 14 14 
0.51 - 0.7 31 31 
0.71 – 0.85 47 47 
0.86 – 1 5 5 
TOTAL 100 100 
Min 0.897  
Max 0.231  
Average 0.671  

 Source: Primary data analysis 2022 
 

Fig. 2. The level of technical efficiency of rice farmers in Bojonegoro Regency during the dry season Rainfall 
 

Based on the results of the analysis above, the level of technical efficiency in the dry season has a minimum value of 0.897, 
a maximum value of 0.231, and an average value of 0.671. 
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Pasuruan  Regency 
 

The distribution of technical efficiency of rice farmers in Pasuruan Regency can be seen in Table 13 and Table 14, while the 
value of the technical efficiency of each farmer can be seen in Fig. 3 and Fig. 4. 
 
Table 13  
The distribution of technical efficiency levels in rainy season 

levels N  Percentage (%) 
0 - 0.25 2 2 
0.26 - 0.5 4 4 
0.51 - 0.7 20 20 
0.71 – 0.85 49 49 
0.86 – 1 15 15 
TOTAL 100 100 
Min 0.103 
Max 0.899 
Average 0.735 

Source: Primary data analysis 2022 

 
Fig. 3. The level of technical efficiency of rice farmers in Pasuruan Regency during the rainy season 

 

Based on the results of the analysis above, the level of technical efficiency in the dry season has a minimum value of 0.103, 
a maximum value of 0.899, and an average value of 0.735. 
 
Table 14  
The distribution of technical efficiency levels in rainy season 

levels Table (people) Percentage (%) 
0 - 0.25 0 0 
0.26 - 0.5 7 7 
0.51 - 0.7 26 26 
0.71 – 0.85 44 44 
0.86 – 1 23 23 
TOTAL 100 100 
Min 0.364 
Max 0.906 
Average 0.755 

Source: Primary data analysis 2022 
 

 
 

Fig. 4. The level of technical efficiency of rice farmers in Pasuruan Regency during the dry season 
 

Based on the results of the data analysis above, the level of technical efficiency in the dry season has a minimum value of 
0.364, a maximum value of 0.906 and an average value of 0.755. 
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The factors that affect the level of technical efficiency in the two regions show different results. In Bojonegoro Regency, the 
risk behavior of farmers affects the level of technical efficiency, where farmers who are risk seekers are more accepting of 
risks. Farmers are bolder in determining inputs, so they are more efficient. 
  
5. Discussion 
  
Based on the results of the research above, the influence of input on the risk of rice production in flood-prone areas in 
Bojonegoro Regency is that the input that increases the risk of production in the rainy season is seeds, NPK fertilizer and 
pesticides, while the input that reduces the risk of production in the rainy season is the rainy season. are land, urea, and labor 
(Begum et al., 2023; Islam et al., 2023). In the dry season, inputs that increase risk are NPK fertilizer and labor, while those 
that reduce risk are land, seeds, urea and pesticides (Martinazzo et al., 2023; Tohidimoghadam et al., 2023; ZHAO et al., 
2023). Pasuruan Regency, the inputs that increase production risk in the rainy and dry seasons are the same, namely land and 
urea, while the inputs that reduce risk are seed production, NPK, pesticides and labor (Hatta et al., 2023; Mbah et al., 2023). 
Urea, pesticides and labor have a significant influence on risk. Urea poses a production risk in both the rainy and dry seasons, 
this happens because most farmers do not know the fertilizer doses in these two seasons, another thing is because the rainy 
season is unpredictable so fertilizer is not done on time and in the dosage (Johnson et al., 2023; Promkhambut et al., 2023). 
In the rainy and dry seasons, farmers are more likely to behave as risk seekers or dare to take risks, even though in the rainy 
season the number of risk seekers is greater than in the dry season (Johnson et al., 2023; Promkhambut et al., 2023). 
  
Farmers' behavior towards production risks in flood-prone areas in Bojonegoro district (Martinazzo et al., 2023; Zabidi et al., 
2022). In the rainy season, most farmers behave in a risk averse manner, while in the dry season the number of risk averse is 
less than in the rainy season (Abualigah et al., 2023; Begum et al., 2023). Farmers in Bojonegoro Regency, which are in flood-
prone areas, mostly behave in a risk-averse manner, this is of course influenced by seasonal conditions where floods occur in 
the rainy season, and in the dry season they take precautions by irrigating with pumps (Mbah et al., 2023; ZHAO et al., 2023). 
Meanwhile, in Pasuruan Regency, during the rainy and dry seasons, farmers are more likely to behave as risk seekers or dare 
to take risks, even though in the rainy season the number of risk seekers is greater than in the dry season (Khatri-Chhetri et 
al., 2023; Xiong et al., 2023). 
  
The influence of farmers' risk behavior on the allocation of production inputs in Bojonegoro Regency in the rainy season, the 
input allocation made by farmers tends to be risk seeking for urea and labor, while in the dry season the input allocation is 
seeds, urea and pesticides (Martinazzo et al., 2023; Zabidi et al., 2022). In The Pasuruan Regency, in the rainy season, input 
allocation by farmers is more likely to be pesticide risk seekers, as is the case in the dry season (Kanthilanka et al., 2023; 
Mbah et al., 2023). The influence of socio-economic factors, technology, and planting season on the production risk behavior 
of farmers in flood-prone areas in Bojonegoro district, factors that have a significant influence on production risk behavior 
are age, length of farming, farming income, and planting season (Promkhambut et al., 2023; Sanogo et al., 2023). Pasuruan 
Regency factors that have a real influence on production risk behavior are age, length of farming and planting season. 
  
The level of technical efficiency of rice farming in flood-prone areas in Bojonegoro Regency regarding the level of technical 
efficiency in the rainy season is 0.394, while in the dry season it is 0.671. The level of technical efficiency in Bojonegoro 
Regency is relatively low because it is below 0.7. In the Pasuruan Regency the level of technical efficiency in the rainy season 
is 0.735, while in the dry season it is 0.755. The level of technical efficiency of farmers in Pasuruan Regency is not much 
different because the input locations in both seasons are almost the same (Islam et al., 2023; Martinazzo et al., 2023). The 
influence of production risk behavior and other factors on the technical efficiency of rice farming in flood-prone areas (MAO 
et al., 2023; Zabidi et al., 2022). Bojonegoro Regency, the factors that influence the technical efficiency of rice farming in 
flood-prone areas are age, number of dependents in the family, outside income, and risky production behavior, while in 
Pasuruan Regency, the factors that influence the technical efficiency of rice farming in flood-prone areas namely age, 
education, and number of dependents in the family (Begum et al., 2023; Martinazzo et al., 2023). 

6. Conclusion 

The influence of inputs on the risk of rice production in flood-prone areas in Bojonegoro Regency is that inputs that increase 
production risk in the rainy season are seeds, NPK fertilizer and pesticides and in the dry season, inputs that increase risk are 
NPK fertilizer and labor. Meanwhile, in Pasuruan district, the inputs that increase production risk in the rainy and dry seasons 
are the same, namely land and urea. Farmers' behavior towards production risks in flood-prone areas in Bojonegoro district. 
In the rainy season, most farmers behave in a risk averse manner, while in the dry season the number of risk averse is less 
than in the rainy season. Meanwhile, in the Pasuruan Regency, during the rainy and dry seasons, farmers are more likely to 
behave as risk seekers or dare to take risks. The influence of farmers' risk behavior on the allocation of production inputs in 
Bojonegoro Regency in the rainy season, the input allocation made by farmers tends to be risk seeking for urea and labor, 
while in the dry season the input allocation is seeds, urea and pesticides. In The Pasuruan Regency, in the rainy season, input 
allocation by farmers is more likely to be pesticide risk seekers, as is the case in the dry season. The level of technical 
efficiency of farmers in Pasuruan Regency is not much different because the input locations in both seasons are almost the 
same. The influence of production risk behavior and other factors on the technical efficiency of rice farming in flood-prone 
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areas. Bojonegoro Regency, the factors that influence the technical efficiency of rice farming in flood-prone areas are age, 
number of dependents in the family, outside income, and risky production behavior, while in Pasuruan Regency, the factors 
that influence the technical efficiency of rice farming in flood-prone areas namely age, education, and number of dependents 
in the family. 
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