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 The study applies a postponement strategy to a multi-item fabrication-shipment decision making 
in a vendor-buyer coordinated environment with multi-delivery, quality reassurance, and overtime. 
To cope with the recent client demand trend asking for rapid response, quality, and diversified 
goods, today’s manufacturers require a multi-item production-shipping scheme to satisfy 
customers’ needs in cost-saving, quality, and timely matter. In our model, we first produce all 
needed mutual components and postpone manufacturing of finished goods in the second phase. To 
expedite mutual parts’ fabrication time, overtime is used. Product quality is reassured through 
screening the defeats and reworking repairable defectives in both fabrication phases. To decide the 
optimal fabrication-shipment policy, we build a math model and apply the cost minimization 
technique to the problem. Upon deriving the optimal policy, we utilize an example to demonstrate 
how our model works and its capability in exposing various previously inaccessible information 
to the problem. These detailed results can facilitate managerial decision-making and boost the 
performance of such a specific multi-item postponement fabrication-shipment system in cost-
saving, product quality, and timely response. 
 

 

Growing Science Ltd.  All rights reserved. 22© 20 

Keywords: 
Multi-item system  
Fabrication-shipment policy 
Scrap  
Rework  
Multi-delivery  
Overtime 

 

 

Nomenclature 
 

The following are for finished products fabrication: 
L  =  the number of finished goods, 
λi  =  annual demand rate (where i = 1, 2, …, L), 
Qi  =  batch size,  
TA =  a decision variable (manufacturing cycle length), 
h1,i  =  unit holding cost, 
h2,i  =  unit holding cost in rework time, 
h4,i  =  unit safety cost, 
Ci =  unit fabrication cost, 
Ki   =  setup cost, 
P1,i  =  annual production rate, 
P2,i  =  annual rework rate,  
xi  =  random defective proportion, 
θ1,i   =  scrap proportion in uptime, 
θ2,i   =  product i’s scrap proportion in rework time, 
φi   =  overall scrap proportion of end product i, 
d1,i  =  defective items’ production rate, 
d2,i  =  scrapped items’ production rate (where d2,i = P2,iθ2,i), 
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CR,i =  unit rework cost, 
CS,i =  unit disposal cost, 
t1,i =  uptime, 
t2,i =  rework time, 
t3,i =  shipping time, 
KD,i  =  fixed shipping cost, 
CD,i =  unit shipping cost, 
ti

* =  the sum of optimal uptime and rework times, 
Si  =  setup time, 
H1,i =  stock level when uptime ends, 
H2,i =  stock level when rework time ends. 
 

The following are for mutual parts fabrication: 
λ0  =  annual requirements, 
Q0  =  batch size, 
γ  =  completion rate as compared to the finished goods, 
KT0   =  setup cost with overtime implementation, 
CT0  =  unit cost with overtime implementation, 
C0  =  regular unit cost, 
K0   =  regular setup cost, 
t1,0 =  ptime with overtime implementation, 
t2,0 =  rework time with implementation of overtime, 
t3,0 =  depletion time,  
x0  =  random defective proportion, 
θ1,0   =  scrap proportion of defective mutual parts, 
dT1,0  =  defective items’ production rate (i.e., dT1,,0 = PT1,0 x0), 
θ2,0   =  scrap proportion during rework time t2,0, 
dT2,0  =  scrapped items’ production rate in t2,0 (i.e., dT2,0 = PT2,0θ2,0),  
φ0 =  overall scrap proportion, 
H1,0 =  stock level when uptime ends, 
H2,0 =  stock level when rework ends, 
Hi =  stock level when each finished product i’s uptime ends, 
PT1,0  =  annual production rate with overtime implementation, 
PT2,0  =  annual rework rate with overtime implemented, 
P1,0  =  ordinary production rate, 
P2,0  =  regular rework rate, 
α1,0  =  overtime added output-rate proportion, 
α2,0  =  the setup costs’ linking factor, 
α3,0  =  the unit costs’ linking factor, 
h1,0  =  unit holding cost, 
t0

* =  the sum of optimal uptime and rework time, 
CS,0 =  unit disposal cost, 
CTR,0 =  unit rework cost with overtime implemented, 
CR,0 =  regular unit rework cost,  
h2,0  =  reworked mutual n part’s unit holding cost, 
h4,0  =  safety mutual part’s unit holding cost, 
i0 =  unit holding cost’s linking factor (i.e., h1,i = i0Ci),  
S0  =  setup time, 
 

The following are general notation of this study: 
n  =  shipment frequency (i.e., equal-size deliveries), 
tn,i =  interval of shipments (i.e., fixed time-interval between deliveries), 
Di  =  fixed shipping quantity, 
Ii  =  number of finished goods left when tn,i ends, 
I(t)i =  stock level at time t, 
Id(t)i =  defective stock level at time t, 
IS(t)i =  scrapped items’ stock level at time t, 
Ic(t)i =  finished goods’ stock level at the customer side at time t, 
E[TA] = the expected manufacturing cycle length, 
TC(TA, n) = total system cost per cycle, 
E[TC(TA, n)] = the expected total system cost per cycle, 
E[TCU(TA, n)] = the expected system cost per unit time. 
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1. Introduction 

The present work applies a postponement strategy to a multi-item production-delivery decision making in a vendor-buyer 
coordinated environment with a quality reassurance, multi-delivery, and overtime on mutual part’s fabrication. We aim to 
help today’s producers meet recent demand trends on rapid response, quality, and diversified goods. The postponement 
strategy delays the end items’ differentiation point by making all needed mutual parts in the first phase. Hence, it targets 
speeding up the multi-item manufacturing time and lowering production costs. Graman and Magazine (2002) examined the 
influence of capacitated postponement on a single-period multiple-end products inventory system. Upon assembly, certain 
mutual parts items are completed to end products for meeting demand, and some common parts are postponed their 
commitment to finished goods. A numerical analysis shows that having a small portion of postponed capacity can be more 
beneficial than implementing non-postponed or altogether postponed policies. Guericke et al. (2012) developed stochastic 
global distribution networks incorporating the postponement strategies to deal with demand uncertainties regarding 
diversities and lead times. The researchers presented a stochastic two-stage model using mixed-integer linear programming. 
They applied it to apparel industry cases to facilitate production and distribution decision-making in uncertain environments. 
Mathematical programming software helped them demonstrate the potential benefits of their stochastic postponement model. 
Budiman and Rau (2019) explored a mixed-integer postponement model in a green supply chain environment aiming at 
responsive and more environmentally friendly global supply chain operations. Their model incorporated postponement, 
modularization, and processes for single- and multi-period planning horizons. In addition, it is associated with some 
speculating scenarios of carbon cap and tax in a green supply chain environment. Computational examples with comparison 
and extra analyses showed postponement strategies fitted in exploring eco-efficient supply-chain systems. Additional studies 
explored the impact of different postponement strategies on various manufacturing and supply-chain systems (Krishnan and 
Ulrich, 2001; Van Mieghem, 2004; Weber, 2008; Chiu et al., 2021).  
 
In phase one of this study, we implement an overtime strategy to efficiently shorten mutual part’s uptime and rework time in 
the proposed postponement multi-item fabrication-delivery model. Singh (2003) investigated the work efficiency for 
accelerating project-schedule by overmanning and overtime in the construction and architectural environment. The research 
claimed that the conventional judgment of overtime/overmanning relied on experienced superintendent or foreman, and their 
decision sometimes is subjective. The efficiency loss is often left out in their calculations. Hence, the research utilized the 
industry’s commonly used standard charts in a sample problem to demonstrate how the superintendent or foreman can 
correctly and objectively calculate overtime and overmanning. Singer and Obach (2013) built an infinitely repeated game 
model to analyze overtime time and the needed adjustment of the workforce. Their model assumed workers could decide to 
work overtime, and the employer could adjust the amount of required personnel. The Nash equilibrium conditions are 
embedded in the game with the needs of workers-firm collaborative communication. They applied the model to the Chilean 
smelting plant for empirical tests and revealed the importance of communication in personnel decision-making. Jeunet and 
Bou Orm (2020) explored the relationship between workforce and quality in manufacturing projects, focusing on accelerated 
completion by implementing overtime or hiring temporary workers. The researchers specifically investigated retaining 
minimum quality level and productivity losses due to exceeding workforce in their study. They optimized overtime and short-
term work usages using mixed-integer linear programming to simultaneously minimize the system cost, makespan, and 
overall quality losses for each activity. Their model was applied to real locomotive cases with justification via comparison 
with existing approaches from the literature. Additional works explored the influence of various overtime plans on planning 
and management of fabrication systems and supply chains (Lambooij et al., 2007; Conway & Sturges, 2014; Soriano et al., 
2020; Keyvanshokooh et al., 2021). 
  
Defeats are inevitable in most fabrication systems. Our model includes a careful screening of defectives and actions of 
scrapped and reworked to ensure the desired product quality. Glock and Jaber (2013) examined a multi-stage fabrication-
inventory model featuring learning effects, scrap, and rework. Defeats exist at each stage of their serial manufacturing line. 
The rework processes help repair some defective items and items that fail after rework are discarded. The learning and 
forgetting effects are assumed in the manufacturing and remanufacturing stages. The researchers developed a multi-stage 
production-inventory system and used four different measures (i.e., uptime, in-process stock level, frequency of shipment, 
and process yield) to evaluate the aggregate performance of the studied system. When applying the model to real applications, 
the practitioners can weigh each measure according to its importance. Their results include the impact of learning/forgetting 
rates and weight of each measurement on system overall performance. Ullah and Sarkar (2020) considered the selection of 
recovery-channel in a hybrid production-reproduction model with product quality and radio frequency identification (RFID). 
The researchers first explored the reasons for the low return rate on disposed used electronic products and then developed a 
dual return channel hybrid production-reproduction model based on RFID to boost the recycling rate. Next, they built a math 
model incorporating the RFID recovery channel’s implementation costs. Various selections of RFID return channels are 
studied and compared to offer in-depth information to help designers and managers make decisions. Additional studies 
focused on impact of different quality matters and reassurances on manufacturing planning and operations (Moussawi-Haidar 
et al., 2016; Polotski et al., 2019; Sahebi et al., 2019; Son & Van Hop, 2021; Abukhader & Onbaşıoğlu, 2021; Duan et al., 
2021). In a vendor-buyer coordinated business environment, buyers often request their orders to be filled in a fixed quantity 
multi-delivery plan. Jha and Shanker (2013) considered an integrated fabrication-inventory model featuring single vendor, 
multi-buyer, service level constraints, and controllable lead time. Buyers’ demands follow normal distribution independently, 
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and lead times can be shortened by adding the crash cost. Continuous review and backorder policies under services level 
constraints are used. The researchers built a model and applied the Lagrangian multiplier method to jointly find the optimal 
order size, lead time, and shipment frequency that minimizes combined expected vendor-buyers system cost. They also used 
an example to illustrate how their model works. Nogueira et al. (2020) examined the production-delivery problem featuring 
parallel batching machines to increase buyer satisfaction and maximize profits. Generic sizes and fabricating jobs are 
scheduled on identical parallel machines to meet order due time and boost total profits. The researchers proposed a math 
formulation under constraints to enhance the performance of the commercial solver. In addition, they developed two 
polynomial methods to obtain relaxed and feasible solutions separately. Finally, the researchers demonstrated that their 
algorithms’ effective and efficient capability fit practitioner’s daily usage. Additional studies focused on impact of various 
product shipping plans on supply-chain planning and operations (Mabrouk, 2020; Moin et al., 2020; Tran et al., 2020; Sumrit, 
2020; Farmand et al., 2021; Singamsetty and Thenepalle, 2021). This work applies a postponement strategy to a multi-item 
fabrication-shipment decision making in a vendor-buyer coordinated environment with multi-delivery, quality reassurance, 
and overtime. Since little previous works focused on this area, we aim to fill the gap. 
  
2.  Problem statement and mathematical modeling 
  
We propose a two-stage scheme to explore the problem with fabricating the necessary common parts in the 1st stage and 
making the client’s requirement end items in the 2nd stage. We assume a constant mutual part’s completion proportion γ and 
production rate P1,0. We implement an overtime option to increase common parts’ output rate by α1,0 to PT1,0 to reduce its 
production uptime. The following formula explicitly explains its relationship: 

( )T1,0 1,0 1,01P P α= + .  (1) 

The consequent production unit and setup costs related to overtime implementation are given below.  
 

( )T0 3,0 01 ,C Cα= +
    

 
(2) 

( )T0 2,0 01 ,K Kα= +  (3) 

where α3,0 and α2,0 are the factors linked to the regular unit and setup costs. L finished goods have constant demand rates λi 
(where i = 1, 2, …, L) and fabricating rates P1,i depending on the mutual part’s completion rate γ. If γ = 0.5, for example, then 
P1,0 and P1,i both are double their regular production rates as in a production scheme with single stage.  
 
During the production processes, defective proportion x0 and xi are randomly produced. Among them, θ1,0 and θ1,i proportion 
are scrapped. The other (1 – θ1,0) and (1 – θ1,i) items are rework-able. The annual rework rates respectively are PT2,0 (also 
with overtime implemented) and P2,i. The following formula explains PT2,0’s relationship with the regular rework rate P2,0:  
 

( )T2,0 1,0 2,01 .P Pα= +  (4) 

The consequent unit rework cost relating to overtime implementation is given below: 
 

( )TR,0 3,0 R,01 .C Cα= +   (5) 

 
Fig. 1. Stock level of this study as compared to the same system with no overtime (in grey) 
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Assuming θ2,0 and θ2,i proportions of the reworked items are scrapped for they fail the repair process. Fig. 1 depicts the stock 
level of this study. When stage one’s uptime ends, the stock level rises to H1,0. Then, it reaches H2,0 when stage one’s rework 
time ends. Starting stage two, mutual parts’ stocks begin to deplete as the finished goods’ fabrication starts. Meantime, when 
each finished goods’ uptime ends, finished goods’ stock rises to H1,i (see Fig. 1). Then, the stock increases to H2,i when the 
rework ends. Moreover, this study doesn’t allow shortages, so we must have the following relationships (P1,i – d1,i – λi > 0) 
and (PT1,0 – dT1,0 – λ0 > 0). Fig. 2 and Fig. 3 exhibit separately the defective and scrapped stock levels. Fig. 2 indicates that 
when t1,0 and t1,i end, the defective mutual parts and finished goods rise to (dT1,0 t1,0) and (d1,i t1,i). Then, upon removing the 
scraps, the common part’s and end product’s stock levels gradually deplete to zero in the rework processes. Fig. 3 illustrates 
that [d1,it1,i(θ1,i) + d2,i t2,i] and [dT1,0t1,0(θ1,0) + dT2,,0 t2,0] and are the maximal scrapped levels in stages 2 and 1 of this study. 
 

 
 

Fig. 2.  Defective stock levels of this study Fig. 3.  Stock level of scrapped items in the proposed 
problem 

Fig. 1 shows that when each end product’s rework time ends, its stock level reaches H2,i, and end product’s n equal-size 
shipments start in t3,i (see Fig. 4). The total inventories during t3,i is shown in Eq. (6): 
 

( ) ( ) ( )
1

2, 3, 2, 3, 2, 3,2 2
1

1 1 ( 1) 1 .
2 2

n

i i i i i i
i

n n ni H t H t H t
n n n

−

=

− −         =  =                
  

 
(6) 

 
Fig. 5 illustrates customer side’s stock level. Each product i’s total inventories at the customer side are expresses in Eq. (7): 
 

( ) ( ) ( )1, 2,,
,

1
2 2 2

i i ii i n i
i n i

nI t tn D I t n n
I t

 +− +
+ + 

  
, 

 
(7) 

where 

3,
,

i
n i

t
t

n
= , 

 
(8) 

2,i
i

H
D

n
= , 

(9) 

( ),i i i n iI D tλ= − , (10) 

 

  
Fig. 4.  End product i’s stock level in its delivery time t3,i Fig. 5.  Customer side’s stock level of finished item i 
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2.1. Formulas in finished goods’ fabrication 
 
For i = 1, 2, …, L, we observe the following equations according to the problem statement with figures above: 
 

A

1
i

i
i i

TQ
x

λ
ϕ

=
−

, (11) 

1,
1,

1, 1, 1,

i i
i

i i i

H Qt
P d P

= =
−

, 
 

(12) 

( )1, 1, 1, 1,i i i iH t P d= − , (13) 

2, 1,
2,

2, 2, 2,

i i i i
i

i i i

H H x Qt
P d P

−
= =

−
, 

(14) 

( )2, 2, 2, 2, 1,i i i i iH P d t H= − + , (15) 

( )
A 1, 2, 3,

1i i i
i i i

i

Q x
T t t t

ϕ
λ
−

= + += , 
(16) 

( )3, A 1, 2,i i it T t t− += , (17) 

1, 1,i i id P x= , (18) 

2, 2, 2,i i id P θ= , (19) 

( )1, 1, 2 ,1i i i iϕ θ θ θ= + − . (20) 

 
The total requirements of mutual parts are (refer to Eq. (11)): 
 

A

1 1
2,0 1

L L
i

i
i i i i

T
Q

x
H λ

ϕ= =

=
−

=  .  
(21) 

2.2. Formulas in mutual parts’ fabrication 
 
According to the problem statement, Eq. (21), and Figures shown above, the following formulas are directly gained:  
 

2,0
0

0 01
H

Q
xϕ

=
−

, 
(22) 

1,0 0
1,0

1,0 1,0 1,0T T T

H Qt
P d P

= =
−

, 
 

(23) 

( )1,0 1,0 1,0 1,0T TH t P d= − , (24) 

( )0 1,0 02,0 1,0
2,0

T2,0 T2,0 T2,0

1Q xH H
t

P d P
θ−−

= =
−

  , 
 

(25) 

( )2,0 T2,0 T2,0 2,0 1,0H P d t H= − + , (26) 

1
0

A

L

i
i

Q

T
λ ==


, 

 
(27) 

1,0 1,0 0T Td P x= , (28) 

2,0 2,0 2,0T Td P θ= , (29) 

( )0 1,0 1,0 2 ,01ϕ θ θ θ= + − , (30) 

A 1,0 2,0 3,0T t t t= + + , (31) 

1 2,0 1H H Q= − , (32) 
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( )1  ,   2,  3, ...,i iiH H Q for i L−= − =  (33) 

( )1 0L LLH H Q−= − = . (34) 
 

3.  System cost analysis and optimization process 
 
3.1. Cost analysis 
 
TC(TA, n), the total cost per cycle consists of both stages’ cost relating to (1) setup, (2) variable, (3) rework/disposal, (4) end 
products’ delivery, and (5) vendor’s and buyer’s stock holding. So, it includes the follows: 
 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1,0 1,0 1,0
0 0 0 ,0 1,0 0 0 2,0 2,0 4,0 0 0 0

1,0 1,0 1,0 1,0 2,0 1,0
,0 0 0 0 1,0 1,0 2,0 1, 2, 1,

1

1
1

2,  

2 2 2 2

               

T
T T TR A

A L
T i

S i i i i
i

d t
C Q K C Q x h t h x Q T

TC T n
H t d t H H QC Q x h t t H t t t

θ
θ ϕ

ϕ
=

  −
+ + − + +     =  +   + + + + + + +      



( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, 1, , , ,

1, 1, 1, 1, 2, 1,
1, 1, 2, 2, 3, 4,

1, 1, 1, ,
2, 2, 3, ,

1 1
1 

2 2 2 2
1 1
2 2 2

i i i R i i i i S i i i i D i D i i i i

i i i i i i
i i i i i i i i i A

i i i ii i n i
i i i i n i

C Q K C Q x C Q x nK C x Q
d t H t H H nh t t H t h x Q T

n
d t nIn D I tn n

h t h I t

θ ϕ ϕ

ϕ

θ

+ + − + + + −
+ −  + + + + + +    

 − −+
+ + + + 

  

( )
1

1, 2,

2

L

i

i it t
=

 
 
 
  
 
 

 + 
  
    



 

 
 
 
 
 
 
(35) 

 
After extra derivation (see Appendix A), the following E[TCU(TA, n))] is gained: 
 

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )

0 2,0
0 00 0 3,0 ,0 10 1,0 3,0 0

2
2 21,02 2

,0 0 0 10 2,0 10 0 4,0 0 10 0 1,0 0
1 1,2,0 1,0

22
1,0 0 0 00

1
,  1 1 1

1 1     + +
22 1

1      +
2

A R
A

L

S A A i i A
i i

P A i A

K
E TCU T n E C C E

T

C E h E T h E T h E T
PP

h E T E T E

α
λ α θ α λ

θ
λ ϕ λ ϕ λ λ

α

λ λ

=

+
= + + + − +  

 −  
 + +  +    

  + − 
 



( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 0
1 1 1 1

2
, 1, 2

0 , 1 1, , 1 ,

2 22 2
1, 1 3,

4, 1 2,
2,

1
2

     1
+

2

L i L L

iP j j i i i A iP
i j i i

D i i i ii
i i i R i i i i S i i i i D i i A

A A

i i i A i i i
i i i i A i

i

E E T E

nK h EKC E C E C E C T
T T

E T h E
h E T h

P

λ λ λ

λ
λ λ θ ϕ λ λ

λ θ λ
ϕ λ

= = = =

     + ⋅        

 + + − + + + + 
+  −

 + +
  

   

( )3, 1, 21 1
2 2

L

P A i ii
i A iP

i

T h h
T E

n
λ

λ
=

 
 
 
 −   + −    



     

 

 
 
 
 
 
 

(36) 

3.2. The optimization process 
 
Apply the Hessian Matrix Equations to E[TCU(TA, n)] (Rardin, 1998): 
 

[ ]

( ) ( )

( ) ( )
( )

2 2
A A

2
0 2,0A A A

A 2 2
1A A

2
A

,  ,  
2 12 0

,  ,  

L
i

i A A

E TCU T n E TCU T n
KT T n T KT n

n T TE TCU T n E TCU T n
T n n

α

=

 ∂ ∂       
+∂ ∂ ∂    ⋅ ⋅  = + >   ∂ ∂           

 ∂ ∂ ∂ 

       

(37) 

 
Eq. (37) yields positive, since (1 + α2,0), K0, Ki, and TA are positive. It confirms that E[TCU(TA, n)] is strictly convex for all 
n and TA values > 0. Hence, the minimum of E[TCU(TA, n)] exists. By setting first-derivatives of E[TCU(TA, n)] regarding n 
and TA equal to zero to simultaneously decide TA* and n*. 
 

( ) ( ) ( )3, 1,A , 2
2

1

,  1 0
2

L
i iD i

i A iP
i A i

h hE TCU T n K
T E

n T n
λ

λ=

 −∂      = − − =  ∂    


 

 
(38) 
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[ ]

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )

2
20 2,0 1,02

2,0 10 0 4,0 0 10 02
2,0 1,0

2 ,2
1,0 0 2

1 11,

2
2A 0

1,0 0 00 0
A 1 1 1

1 1
+

2 1

1+
2

( ,  )
2

A

L L
i D i

i i
i ii A

L i L

P i iP j j i iP i
i j i

K
h E h E

T P

K nK
h E

P T

E TCU T n
h E E E E E ET

α θ
λ ϕ λ

α

λ

λ λ λ λ λ

= =

= = =

 − + −
 +

+  
 − +   +         

∂   = + − +  ∂    

 

   ( )

( ) ( )

( )

0
1

2 2 22
1, 11, 2

4, 1 2,
2,

21
3, 3, 1, 2

0.

1
+

2 2

1
2 2

L

i
i

i i ii i i
i i i i iL

i

i
i i iP i i

i iP
i

Eh E
h E h

P

h E h h
E

n

θ λλ
ϕ λ

λ
λ

λ

=

=

 
 
 
 
 
 
 
 
     =       
 

   −  + 
     +   
 −   

+ + −   
    





 

 
 
 
 
 
 
 
(39) 

 
Solving linear system of Eqs. (38) and (39)), we obtain optimal policies of TA* and n* as follows: 
 

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

0 2,0 ,
* 1

A 2 2
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and 
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4.  Numerical example 
 

A simulated example demonstrates the capability and applicability of our model. Suppose 5 distinct client-required products 
must be satisfied by a vendor-buyer coordinated system with the postponement, overtime option, and quality reassurance. 
The relating system parameters’ values are assumed as shown in Tables 1, 2(a), and 2(b). In comparison, Table B-1(a) and 
(b) (in Appendix B) show the parameters’ values in its corresponding single-stage scheme.  
 
Table 1  
The parameters’ values in stage one 

C0 P1,0 λ0 K0 γ CS,0 δ α2,0 h1,0 α1,0 
$40 120000 17406 $8500 0.5 $10 0.5 0.1 $8 0.5 
CR,0 P2,0 h4,0 x0 θ1,0 i0 θ2,0 φ0 h2,0 α3,0 
$25 96000 $8 2.5% 0.046 0.2 0.046 0.09 $8 0.25 
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Table 2(a)  
The assumed values for stage two’s parameters (1 of 2) 

Product i Ci P1,i Ki h4,i h1,i λi P2,i h3,i h2,i 
1 $40 112258 $8500 $16 $16 3000 89806 $70 $16 
2 $50 116066 $9000 $18 $18 3200 92852 $75 $18 
3 $60 120000 $9500 $20 $20 3400 96000 $80 $20 
4 $70 124068 $10000 $22 $22 3600 99254 $85 $22 
5 $80 128276 $10500 $24 $24 3800 102621 $90 $24 

   
Table 2(b)  
The assumed values for stage two’s parameters (2 of 2) 

Product i KD,i xi CS,i θ1,i CD,i θ2,i φi CR,i 
1 $1800 2.5% $10 0.046 $0.1 0.046 0.09 $25 
2 $1900 7.5% $15 0.094 $0.2 0.094 0.18 $30 
3 $2000 12.5% $20 0.146 $0.3 0.146 0.27 $35 
4 $2100 17.5% $25 0.200 $0.4 0.200 0.36 $40 
5 $2200 22.5% $30 0.258 $0.5 0.258 0.45 $45 

 
We apply Eqs. (40), (41), and (36) to obtain TA* = 0.5299, n* = 4, and E[TCU(TA*, n*)] = $2,364,584. E[TCU(TA, n)]’s 
convexity relating to TA and n is explicitly demonstrated in Fig. 6. It illustrates E[TCU(TA, n)] remarkably increases as both 
n and TA deviate from their optimal points. 
 

  
Fig. 6.  Convexity of E[TCU(TA, n)] regarding TA and n Fig. 7.  Behavior of E[TCU(TA*, n*)] relating to the 

mean φi and xi 
4.1. Collective effect of key system factors on the problem  
 
The collective effect of mean scrap and nonconforming proportions on E[TCU(TA*, n*)] is depicted in Fig. 7. As both mean 
φi and xi rise, E[TCU(TA*, n*)] significantly surges. It discloses the average xi value has greater influence than the average 
φi on E[TCU(TA*, n*)]. Fig. 8 depicts the combined effect of mean nonconforming and scrap proportions on the optimal 
TA*. As both mean xi and φi increase, TA* considerably declines. It exposes that the changing of n* value causes TA* to have 
a sharp drop. 
 

  
Fig. 8.  The combined effect of mean xi and φi on TA*  Fig. 9.  The behavior of E[TCU(TA*, n*)] relating to α1,0 and γ 

 
The analytical results of joint influence of overtime added proportion α1,0 and common component’s completion rate γ on 
E[TCU(TA*, n*)] are exposed in Fig. 9. As both γ and α1,0 rise, E[TCU(TA*, n*)] noticeably surges. Fig. 10 discloses the 
collective effect of common component’s completion rate γ and overtime added proportion α1,0 on the optimal cycle length 
TA*. As both γ and α1,0 rise, TA*  remarkably drops. It also shows the changing of n* value causes TA* to have a sharp 
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decline. 

  
Fig. 10.  Collective effect of γ and α1,0 on TA* Fig. 11.  The behavior of t0* relating to α1,0 and the mean 

φi 
 
Fig. 11 discloses the combined impact of α1,0 and the mean φi on t0*. As α1,0 increases, t0* declines significantly, and as mean 
φi rises, t0* decreases slightly. 

 
4.2. The effect of the key system feature on the problem  
 
Our model can also analyze individual system feature on the problem. Fig. 12 disposes the impact of the shipment frequency 
on main contributors to E[TCU(TA*, n*)]. It confirms that at n* = 4, E[TCU(TA*, n*)] = $2,364,584. As n deviates from n*, 
E[TCU(TA*, n*)] increases in both directions. As n rises, (i) the total delivery cost upsurges due to the number of fixed 
delivery cost increases; (ii) the number of stocks per shipment Di decreases (refer to Eq. (9)); hence, the buyer’s holding cost 
declines; and (iii) on the contrary, the vendor’s holding cost surges (see Eq. (7)).  
 

  
Fig. 12.  The effect of frequency of delivery n on key cost 
contributors in E[TCU(TA*, n*)] 

Fig. 13.  The effect of ratio (PT1,0 / P1,0) on (t*
1,0 + t*

2,0) 

 
Fig. 13 shows the impact of (PT1,0 / P1,0) ratio on (t*

1,0 + t*
2,0). It tells that (t*

1,0 + t*
2,0) declines to 0.0521 when overtime 

ratio sets at 1.5 (50% more outputs with overtime option).  Fig. 14 exposes the effect of ratio (PT1,0 / P1,0) on utilization. It 
exposes the utilization falls to 0.2521 from 0.3012. A 16.31% drop because of implementing an additional 50% overtime 
outputs. 
 

  
Fig. 14.  The effect of ratio (PT1,0 / P1,0) on utilization Fig. 15.  Breakup of E[TCU(TA*, n*)] 
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Fig. 15 exhibits the breakup of distinct contributors of E[TCU(TA*, n*)]. It discloses two major cost components: the variable 
costs in stages two and one, each contributes 43.98% and 29.44%. The overtime relevant cost of 7.49% is the third large 
contributor. It follows that the buyer’s holding cost 4.20%, the end-items’ setup and delivery cost 3.79% and 3.42%. Then, 
the overall quality relevant cost 3.20%. Furthermore, our model can investigate other detailed influences of system features 
on the problem. Fig. 16 exhibits the impact of (PT1,0 /P1,0) ratio on the stage two’s variable costs for finished goods. It points 
out that (PT1,0 /P1,0) has insignificant effect on variable cost of each finished goods. 
 

  
Fig. 16.  The (PT1,0 /P1,0) ratio’s impact on variable costs of 
finished goods 

Fig. 17.  The effect of (PT1,0 /P1,0) on distinct cost 
contributors of E[TCU(TA*, n*)] 

 

Fig. 17 discloses the impact of (PT1,0 /P1,0) ratio on major cost contributors in E[TCU(TA*, n*)]. It reconfirms for (PT1,0 /P1,0) 
at 1.5, our optimal E[TCU(TA*, n*)] = $2,364,584, and indicates that the significant impact (PT1,0 /P1,0) ratio on the overtime 
cost for making mutual parts. Our postponement model allows production managers to analyze the influence of different 
relationships of γ and its associating values δ on E[TCU(TA*, n*)]. The results are demonstrated in Fig. 18. It confirms for a 
linear relationship with γ = 0.5, E[TCU(TA*, n*)] = $2,364,584. The proposed model can always help reveal the optimal 
operating policy and system cost for any nonlinear relationships as may exist in real application systems. 
 

  
Fig. 18.  The behavior of E[TCU(TA*, n*)] relating to 
different relationships of γ and δ 

Fig. 19.  Comparison of this study’s utilization with that in 
an existing work without overtime 

 

4.3. Comparison  
 

Fig. 19 compares our utilization with that of a previous work (without considering overtime; Chiu et al., 2016). It indicates 
by implementing the overtime for making the common component, our utilization (i.e., (t0

* + ti
*) / TA

*) declines to 0.2521, 
a 16.31% decrease from 0.3012. The price paying is a surge of 8.01% in E[TCU(TA*, n*)], that is from $2,189,250 (Chiu et 
al., 2016) to our $2,364,584. 
 
5.  Conclusions 
 

To meet the recent client demand trend on rapid response, quality, and diversified goods, manufacturers today must seek a 
multi-item fabrication-delivery scheme to retain desirable quality, respond promptly to orders, boost machine utilization, and 
save operating costs. Motivated by helping producers, this study successfully built a postponement multi-item fabrication-
shipment model with overtime and quality reassurance. In addition, we obtain the system cost through modeling, formulation, 
and analytical derivations (as shown in Sections 2 and 3). Lastly, by applying the differential calculus (i.e., the Hessian matrix 
equations) to minimize the system cost, we simultaneously determine the optimal fabricating cycle and shipping frequency. 
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Then, we utilize an example to numerically illustrate how our model works and its capability in exposing various previously 
inaccessible information to the problem. Examples of such decision-relevant information include (1) confirmation of the 
convexity of the system cost (see Fig. 6). (2) Exploring the collective influence of different system factors such as: average 
defective and scrap rates, or overtime add-up proportion and mutual part’s completion proportion, and overtime add-up ratio 
and average scrap rate on system cost, optimal cycle, and optimal stage one’s running time (i.e., uptime and rework time; see 
Figs. 7-11). (3) Disclosing the impact of individual system features such as the delivery frequency on the critical system cost 
contributors (Fig. 12); the overtime ratio on the sum of optimal mutual part’s running time or on the utilization (Figs. 13-14). 
(4) Revealing the breakup of detailed cost contributors (Fig. 15) and the overtime ratio on variable cost of each finished goods 
(Fig. 16) and on significant system-cost contributors (Fig. 17). (5) Exposing various relationships of mutual part’s completion 
rate and its associating values on the system cost (Fig. 18). (6) Exhibiting a comparison of our model against a related model 
in previous work (see Fig. 19). Finally, this work contributes to the existing literature in the following ways: (1) It proposes 
a postponement model to solve explicitly a multi-item fabrication-shipment problem featuring quality reassurance, multi-
delivery, and overtime. (2) It exposes diverse, crucial in-depth system information for helping managerial decision making. 
Incorporating variable demand rates for finished products into this specific problem is worth exploring in the future study. 
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Appendix – A 
 
The derivations of Eq. (36). 
 
This study substitutes Eqs. (1) to (34) in TC(TA, n), applies the expected values E[x0], and E[xi] to deal with random defeats 
proportions, calculates E[TC(TA, n)] / E[TA] to obtain the following E[TCU(TA, n)]: 
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Let E1i, E0i, E10, E00, and E0j be 
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Substitute Eq. (A-2) in Eq. (A-1), we have 
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Let E2i, E0P, and EiP be as follows: 

( )
( ) [ ] [ ]( )

( )
( ) [ ]( )

( )

1,0 0 0 0
0

1,0 1,0 2,0 1,0

1, 0 10 1
2

1, 2,

1, 10

1, 2,

1 2 +11 + ;
1 1

1 11 ;

1
    1,  2, ... , .

P

i i i ii i i
i

i i i

i ii
iP

i i

E x E x
E

P P

E E E xE EE
P P

EEE for i L
P P

θ ϕ
α α

θϕ
λ

θ

   − −  =    + +      
 − −

= + + 
  
 −

= + = 
  

              (A-4) 

Substitute Eq. (A-4) in Eq. (A-3), we obtain Eq. (36). 
 
Appendix B 
 
Table B-1(a)  
The corresponding values of parameters in one-stage manufacturing scheme 

Product i P1,i h4,i Ci P2,i h1,i λi Ki h2,i h3,i 
1 58000 $16 $80 46400 $16 3000 $17000 $16 $70 
2 59000 $18 $90 47200 $18 3200 $17500 $18 $75 
3 60000 $20 $100 48000 $20 3400 $18000 $20 $80 
4 61000 $22 $110 48800 $22 3600 $18500 $22 $85 
5 62000 $24 $120 49600 $24 3800 $19000 $24 $90 

 
Table B-1(b)  
The corresponding values of parameters in one-stage manufacturing scheme 

Product i KD,i CR,i CD,i CS,i θ1,i xi θ2,i φi 
1 $1800 $50 $0.1 $20 0.094 5% 0.094 0.18 
2 $1900 $55 $0.2 $25 0.146 10% 0.146 0.27 
3 $2000 $60 $0.3 $30 0.200 15% 0.200 0.36 
4 $2100 $65 $0.4 $35 0.258 20% 0.258 0.45 
5 $2200 $70 $0.5 $40 0.322 25% 0.322 0.54 
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