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 This research aims to show how decision sciences can make a significant contribution on handling 
the supply chain problem during Covid-19 Pandemic. The paper discusses how robust optimization 
handles uncertain demand in agricultural processed products supply chain problems within two 
scenarios during the pandemic situation, i.e., the large-scale social distancing and partial social 
distancing. The study assumes that demand and production capacity are uncertain during a 
pandemic situation. Robust counterpart methodology is employed to obtain the robust optimal 
solution. To this end, the uncertain data is assumed to lie within a polyhedral uncertainty set. The 
result shows that the robust counterpart model is a computationally tractable through linear 
programming problem. Numerical experiment is presented for the Bandung area with a case on 
sugar and cooking oil that is the most influential agricultural processed products besides the main 
staple food of the Indonesian people, rice.  
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1. Introduction 
 

Since the emergence of the 2019 novel coronavirus (2019-nCoV) in Wuhan, China, many countries around the world have 
been infected with the virus with very serious cases (Lu et al., 2020). On February 11, 2020, the World Health Organization 
(WHO) announced the new name for the virus to be 2019-nCoV: Coronavirus Desease (Covid-19). The International 
Committee on Taxonomy decided that Covid-19 is a Severe Acute Respiratory Syndrome (SARS) that has a very high speed 
of spread. Until July 2021, the total number of Covid-19 cases in the world reached 199.022.248 and continues to increase 
with a death total of 4.240.374 since 17 November 2019 (Worldometers, 2021). This has resulted in a weakening of the 
economy due to a decrease in household consumption or purchasing power (Irawan & Alamsyah, 2021), especially for 
Indonesia as a country with a lower middle class of 115 million people or 45% of the total population. The rapid spread of 
the virus through droplets (liquid that comes out of a person's nose or mouth when sneezing, coughing, or talking) has resulted 
in the Indonesian government implementing a lockdown system called Pembatasan Sosial Berskala Besar (PSBB) or we 
known as Large-scale Social Distancing (Andriani, 2020). This system is an attempt to break the chain of viruses (Allen, 
2021). The government also launched a health protocol for the public, such as maintaining hand hygiene, not touching faces, 
implementing coughing and sneezing ethics, wearing masks, maintaining distance, and increasing the body's immune strength 
(Sari et al., 2020). Unfortunately, this system has an impact on economic growth (Muhyiddin & Nugroho, 2021), changes in 
consumer behavior (Mehta et al., 2020), and decreased food buying and selling, causing losses for people in various sectors 
such as tourism, education, social, economic, health, and food needs which must be properly distributed (Andriani, 2020). 
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Bandung is the capital city of West Java Province and is one of the major cities in Indonesia that has been heavily affected 
by the Covid-19 pandemic. Apart from being a big city, Bandung benefits from its position because it acts as the first and 
main point of food distribution, including agricultural processed products, where about 90% of the food needs are supplied 
from outside the region. The supply of agricultural processed products obtained by Bandung is very diverse, such as cooking 
oil, sugar, wheat flour, and rice. These processed products are very important and must always be available and well 
distributed to the public. However, government regulation during pandemic situations limits the movement of consumers and 
producers, so that they only move by 30%. Therefore, the supply chain management of agricultural processed products in 
Bandung is disrupted. A study of the food supply chain system, especially agricultural processed products, must be carried 
out. An effective strategy to ensure product distribution runs well during a pandemic is to develop a food hub, which is part 
of the local food system that helps farmers to develop their business through offering a combination of production, 
distribution, and marketing services. The food hub concentrates on the relationship between producers (farmers and breeders) 
and food consumers (restaurants, hospitals, schools, etc.) on a local and regional scale (Matson, 2013). Food hubs benefit 
farmers in providing additional markets on a larger scale, serve as a single pick-up point for distributors and customers, and 
can benefit consumers as well as the public by creating new jobs. Local Food Hubs (LFH) are food hubs that operate on a 
local scale. In the case of Bandung as a local scale, it must be ensured that the LFH is built in each district or at least it is 
built in the right district and works properly. This study also aims to show how decision science such as Operations Research 
and Optimization Modeling can make a significant contribution on handling the supply chain problem during Covid-19 
pandemic. With considering the supply chain problem, in this paper the objective is to maximize product suppliers so that all 
demands are fulfilled. The best scenario is determined at the end of the study. There are two uncertainty assumptions that 
apply to this research model, the uncertainty of demand and the production capacity of agricultural processed products that 
are in the polyhedral uncertainty set. In this paper, robust optimization modeling is used to model the problem. Previous 
research that discusses Robust optimization models related to supply chain problems, namely Pishvaee et al. (2011), which 
discusses Robust optimization models to deal with data uncertainty in closed-loop supply chain design problems by assuming 
parameters of uncertainty in the amount of product returns. Second, Li's research (2016) which discusses the Robust 
optimization model with one producer and many consumers to correct inaccurate supply chain demand by assuming 
uncertainty parameters in demand. Third, the research by Delkhosh and Sadjadi (2019), which discusses the Robust 
optimization model to develop a micro-algae organic fuel supply chain with the aim of maximizing the benefits of the organic 
fuel supply chain and minimizing greenhouse gas emissions. Fourth, the research of Perdana et al. (2020) which discusses 
the Robust optimization model of food supply chain problems in the form of vegetables, eggs, and rice in West Java Province 
during the Covid-19 period, the study assumes uncertainty in the parameters of demand, production capacity, and the selling 
price of food which is in the set of box uncertainty. Differs to Perdana et al. (2020), in this paper, a robust optimization model 
for agricultural processed products is presented. 

2. Materials and Methods 
 

2.1. Robust Optimization 

Optimization problems in real life often use data that cannot be known precisely. This kind of data is named uncertainty. The 
methodology for dealing with uncertainty data in optimization is the Robust Counterpart proposed by Ben-Tal and 
Nemirovski (2002). This uncertainty can be caused by errors in data measurements such as measurement of dimensions and 
temperature of an object, errors in estimating data, and errors in rounding numbers (Perdana, et al., 2020). This uncertainty 
problem can be solved using Robust optimization. A general model of the linear optimization problem is as follows (Ben-
Tal and Nemirovski, 2002): 𝐦𝐢𝐧𝐱 𝐜𝐓𝐱:𝐀𝐱 ≤ 𝐛, (1) 
where 𝐜 ∈ ℝ୬, 𝐱 ∈ ℝ୬,𝐀 ∈ M୫,୬(ℝ),𝐛 ∈ ℝ୫. 

The general uncertain form of the linear optimization is obtained by assuming the parameter (𝐜,𝐀,𝐛) is uncertain. The general 
model of the uncertain linear optimization problem is as follows (Ben-Tal, et al., 2009): min୶ 𝐜୘𝐱:𝐀𝐱 ≤ 𝐛| (𝐜,𝐀,𝐛) ∈  .  (2) 

The uncertain linear optimization problem model can always be formed into an uncertain linear optimization problem which 
only contains uncertainty in the constraint function (Yanikoglu et al., 2018). The Robust Counterpart is a single deterministic 
problem that has its uncertainty removed. All of the uncertainties in the model can be collected in the constraint matrix 𝐀 
with 𝐀 ∈  , so that all Robust optimization problems become: min୶ 𝐜୘𝐱:𝐀𝐱 ≤ 𝐛| 𝐀 ∈  ,  (3) 

where 𝐱 ∈ ℝ୬, 𝐛 ∈ ℝ୫,   is a primitive uncertain set, and 𝐀 is a matrix size (m × n). Furthermore, the constraint matrix 𝐀 
is expressed in terms of a primitive uncertain parameter ζ ∈ , where  ⊂ ℝ୐ is the uncertain set of primitives, so we get: min୶ 𝐜୘𝐱:𝐀(ζ )𝐱 ≤ 𝐛| ζ ∈  ,  (4) 
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 min୶ 𝐜୘𝐱:𝐚୧୘ ൬ζ ൰ 𝐱 ≤ 𝐛୧, 
 

(5) 

i = 1, . . , m,∀ζ ∈  . (6) 

The solution   ∈ ℝ୐ is called robust feasible if it satisfies all uncertain constraints [𝐀(ζ )𝐱 ≤ 𝐛] for all realizations of ζ∈ . Given the uncertainty on the Robust optimization assumptions that are constraint-wise, the model problem (5) can be 
focused on a single constraint: ൬𝐚ത + 𝐏ζ ൰୘ 𝐱 ≤ 𝐛,∀ζ ∈  , 

(7) 

which (𝐚ത + 𝐏ζ ) is a affine function of the primitive uncertain parameter ζ ∈ ,  𝐚 ∈ ℝ୬, and 𝐏 ∈ M୬,୐(ℝ). Next is the determination of ζ  which depends on the use of the uncertain set   by assuming a 
polyhedral uncertainty set. Polyhedral uncertainty set defined as follows (Gorissen, BL, et al., 2015): Z = ൜ζ :𝐝 − 𝐃ζ ≥ 0ൠ, (8) 

where 𝐃 ∈ M୫,୐(ℝ), ζ ∈ ℝ୐, and 𝐝 ∈ ℝ୫. Uncertain set   can be defined as: 

 = ൜𝐚ฬ𝐚 = 𝐚ത + 𝐏ζ ,𝐝 − 𝐃ζ ≥ 0ൠ (9) 

 

To obtain a formulation of Robust Counterpart with the uncertainties present in the polyhedral uncertainties, then applied the 
definition of the set of polyhedral uncertainties to inequality (7) as follows: ൬𝐚ത + 𝐏ζ ൰୘ 𝐱 ≤ 𝐛,∀ζ :𝐝 − 𝐃ζ ≥ 0. 

(10) 

Gorissen, BL, et al. (2015) stated that a Robust Counterpart formulation with a set of polyhedral uncertainties was 
computationally tractable obtained through the following three steps: 

1. Reformulation of the left side inequality constraint in (10) so that it is equivalent to the worst-case formulation, max
ζ :𝐝ି𝐃ζ ஹ଴ ൬𝐚ത + 𝐏ζ ൰୘ 𝐱, 

(11) 

which is equivalent to 𝐚ത୘𝐱 + max
ζ :𝐝ି𝐃ζ ஹ଴(𝐏୘𝐱)୘ ζ . (12) 

2. Formulation of the dual form of the maximization problem on inequality (12). The primal form of equation (12):  max
ζ

൝(𝐏୘𝐱)୘ ζ :𝐝 − 𝐃ζ ≥ 0ൡ . (13) 

Next, the primal form is changed to the dual form. The dual form of (13) is as follows:     minሼ𝐝୘𝐲:𝐃୘𝐲 = 𝐏୘𝐱,𝐲 ≥ 𝟎ሽ. (14) 
Based on the Strong Duality Theorem, the value of the objective function of the inequality (13) and its dual form in (14) 
have the same value, so that equation (12) is equivalent to: 𝐚ത୘𝐱 + min𝐲 ሼ𝐝୘𝐲:𝐃୘𝐲 = 𝐏୘𝐱,𝐲 ≥ 𝟎ሽ ≤ 𝐛. (15) 

3. The constraint function in (15) is fulfilled for a feasible solution contained in the feasible set ℱ = ሼy ∶ 𝐃୘y = 𝐏୘𝐱, 𝐲 ≥ 0ሽ, 
then the constraint function can be ascertained to be fulfilled for the upper minimum value of 𝐲. The final formulation of 
Robust Counterpart: ∃𝐲: 𝐚ത୘𝐱 + 𝐝୘𝐲 ≤ 𝐛,𝐃୘𝐲 = 𝐏୘𝐱,𝐲 ≥ 𝟎. (16) 

Constraints in Eq. (16) is in the form of Linear Programming (LP), so that referring to Ben-Tal and Nemirovski (2002), the 
Robust Counterpart is guaranteed to be computationally tractable. 
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2.2. Optimization Model for Supply Chain Problem 

Perdana et al. (2020) developed a optimization model for supply chain problem with two objective functions that is 
minimizing logistics costs and maximizing product suppliers for all demand. Perdana, et al. (2020) have three addition 
scenarios that differentiate the type of distribution between producers and consumers, between Regional Food Hubs (RFH) 
and consumers, and their aims. The supply chain optimization model is related to the distribution of vegetables, rice, and 
eggs between producers, RFH, and consumers in 37 cities affected by Covid-19 in West Java Province. The objective function 
of the model is formulated as follows: 

maxቐ෍෍෍𝑣௖௜𝑤௖௝௜௝∈௃௜∈ூ௖∈஼ ቑ , (17) 

min  ሼa + b + c + dሽ, (18) 
where: 𝑎 = ℎ෍𝑥௝௝∈௃ , 𝑏 = ෍෍෍𝑏௝௜𝑑௖௜𝑤௖௝௜௜∈ூ௝∈௃௖∈஼ , 𝑐 = 𝑞෍෍𝑝௖௝௝∈௃௖∈஼ ,𝑑 = ෍෍෍𝑏௞௝𝑓௖௞𝑦௖௞௝௝∈௃ ௞∈௄௖∈஼ , 
with six general constrains:  ෍𝑓௖௞𝑦௖௞௝ = 𝑝௖௝௞∈௄ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, (19) 

෍𝑑௖௜𝑤௖௝௜ = 𝑝௖௝௜∈ூ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, (20) 

෍𝑦௖௞௝ ≤ 1,∀ 𝑐 ∈ 𝐶,௝∈௃ 𝑘 ∈ 𝐾, (21) 

෍𝑤௖௝௜ ≤ 1,∀𝑐 ∈ 𝐶,௝∈௃ 𝑖 ∈ 𝐼, (22) 𝑦௖௞௝ ≤ 𝑥௝ ,∀ 𝑐 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, (23) 𝑤௖௝௜ ≤ 𝑥௝ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼. (24) 
Additional constraints for scenarios 1: 𝑦௖௞௥ = 0,∀𝑘 ∈ 𝐾 − ሼ𝑟ሽ, 𝑐 ∈ 𝐶, 𝑟 ∈ 𝑅, (25) 𝑤௖௝௥ = 0, 𝑗 ∈ 𝐽 − ሼ𝑟ሽ, 𝑐 ∈ 𝐶, 𝑟 ∈ 𝑅, (26) 𝑦௖௝௥ = 0,∀𝑗 ∈ 𝐽 − ሼ𝑟ሽ, 𝑐 ∈ 𝐶, 𝑟 ∈ 𝑅, (27) 𝑤௖௥௜ = 0,∀𝑖 ∈ 𝐼 − ሼ𝑟ሽ, 𝑐 ∈ 𝐶, 𝑟 ∈ 𝑅. (28) 
Additional constraints for scenarios 2 are (27) and (28) with the addition of two other constraints, namely: ෍ 𝑦௖௞௥ ≤ 𝑚ଶ௥𝑛௖ ,∀ 𝑐 ∈ 𝐶,௞∈௄ି{௥} 𝑟 ∈ 𝑅, (29) 

෍ 𝑤௖௝௥ ≤ 𝑚ସ௥𝑛௖,∀ 𝑐 ∈ 𝐶,௝∈௃ି{௥} 𝑟 ∈ 𝑅. (30) 

Additional constraints for scenarios 3 are (29) and (30) with the addition of two other constraints, namely: ෍ 𝑦௖௥௝𝑓௖௥ ≤ 𝑚ଵ௥𝑛௖,∀ 𝑐 ∈ 𝐶,௝∈௃ି{௥} 𝑟 ∈ 𝑅, (31) 

෍ 𝑦௖௥௜𝑑௖௜ ≤ 𝑚ଷ௥𝑛௖,∀ 𝑐 ∈ 𝐶,௜∈ூି{௥} 𝑟 ∈ 𝑅, (32) 

where: 𝑥௝ ∈ [0,1],∀𝑗 ∈; 𝑃௖௝ ∈ ℝ,∀𝑐 ∈ 𝑐, 𝑗 ∈ 𝐽; 𝑦௖௞௝ ,𝑦௖௞௥ ,𝑦௖௝௥ ∈ [0,1] ,∀ 𝑐 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽;  𝑤௖௝௜ ,𝑤௖௝௥ ,𝑤௖௥௜ ∈[0,1], ,∀ 𝑐 ∈ 𝐶, 𝑗 ∈  𝐽, 𝑖 ∈ 𝐼. 
The description of the set, parameters, and objective variables used in the model is as follows. 
• Sets 𝐼 ∶ Demand/consumer zone 𝐽 ∶ Regional Food Hubs (RFH) zone 𝐾 ∶ Production zone/producers zone 𝐶 ∶ Commodity 𝑅 ∶ Red zone (the biggest center of   the spread of Covid-19) 
• Parameters 𝑑௖௜ ∶ Demand for products c in City 𝑖 (tonnes) 𝑣௖௜ ∶ Selling prices of products 𝑐 in City 𝑖 (Rp/ton) 
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243𝑓௖௞ ∶ Production capacity of products 𝑐 in City Producers 𝑘 (tonnes) 𝑏௝௜  ∶ Distribution costs between City 𝑗 and City 𝑖 to transport the product (Rp/tonnes) 𝑏௝௞ ∶ Distribution costs between City 𝑗 and City 𝑘 to transport the product (Rp/tonnes) 𝑞   ∶ Product handling cost based on health protocol (Rp/tonnes) ℎ   ∶ RFH handling cost (Rp/hub) 𝑛௖   : Maximum amount of product 𝑐 that can be distributed in one line (tonnes/distribution) 
• Decision Variables 𝑥௝ = 1 if RFH is will be built in City 𝑗 and 𝑥௝ = 0 if RFH will not be built in City 𝑗 (∀𝑗 ∈ 𝐽). 𝑝௖௝   ∶  RFH capacity for products 𝑐 in City 𝑗 (tonnes/day), 𝑃௖௝ ∈ ℝ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽. 𝑦௖௞௝ ∶ The number of products 𝑐 in City producers 𝑘 that are sent to RFH in City j, 𝑦௖௞௝ ∈ ℝ[0,1],∀ 𝑐 ∈ 𝐶,𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽. 𝑦௖௞௥ ∶ The number of products 𝑐 in City producers 𝑘 that are sent to red zone RFH in City r, 𝑦௖௞௥ ∈ ℝ[0,1],∀ 𝑐 ∈ 𝐶,𝑘 ∈𝐾, 𝑗 ∈ 𝐽. 𝑦௖௝௥ ∶ The number of products 𝑐 in City producers 𝑗 that are sent to red zone RFH in City r, 𝑦௖௝௥ ∈ ℝ[0,1],∀ 𝑐 ∈ 𝐶,𝑘 ∈𝐾, 𝑗 ∈ 𝐽. 𝑤௖௝௜ ∶The number of requests for products 𝑐 in City 𝑖 that are fulfilled by RFH in City 𝑗, 𝑤௖௝௜ ∈ ℝ[0,1],∀ 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, 𝑖 ∈𝐼. 𝑤௖௝௥ ∶ The number of requests for products 𝑐 in City 𝑗 that are fulfilled by red zone RFH in City 𝑟, 𝑤௖௝௥ ∈ ℝ[0,1],∀ 𝑐 ∈𝐶, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 𝑤௖௥௜ ∶ The number of requests for products 𝑐 in red zone City 𝑟 that are fulfilled by RFH in City 𝑖, 𝑤௖௥௜ ∈ ℝ[0,1],∀ 𝑐 ∈𝐶, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼. 𝑚ଶ௥ : Variable that determines how many times the distribution of products 𝑐 must be done from producers in the green 

zone to RFH in the red zone 𝑟. 𝑚ସ௥ : Variables that determine how many times the distribution of products 𝑐 must be done from RFH in the green zone 
to consumers in the red zone 𝑟. 𝑚ଵ௥ :Variable that determines the number of times the distribution of product 𝑐 must be completed from producers in the 

red zone to RFH in the green zone 𝑟. 𝑚ଷ௥ ∶Variable that determines the number of times the distribution of product 𝑐 must be completed from RFH in the red 
zone to consumers in the green zone 𝑟. 

3. Results and discussion 

3.1. Robust Optimization Model of Agricultural Processed Product Supply Chain Problem 

This study uses a nominal optimization model sourced from Perdana et al. (2020) as in (2.2) with some changes. Then, the 
model is changed to a Robust optimization model with uncertainty parameters which are discussed later.  
 
There are four differences between this research and Perdana, et al. (2020). First, the commodities used are agricultural 
processed products, namely sugar and cooking oil, while the reference article uses rice, eggs and vegetables. This is because 
sugar and cooking oil are the most influential agricultural processed products besides the main staple food of Indonesian 
people, rice. Second, using the Linear Programming method of solving because it has one objective function, that is the first 
objective function that maximizes the demand for the product, while the reference article uses the lexicographic method 
because it has two objective functions.  
 
Third, the research was carried out on a smaller scale, namely the districts in Bandung, while in the reference article, the 
research was carried out on a larger scale, namely cities in West Java Province, so that the naming of Regional Food Hubs 
(RFH) was changed to Local Food Hubs (LFH). Fourth, this study uses two scenarios, large-scale social distancing and partial 
social distancing as shown in Table 1. Therefore, the secondary data used in this study are clearly different, namely data on 
agricultural processed products of sugar and cooking oil obtained from various sources.  
 
In this problem, in changing the nominal optimization model with to a Robust optimization model, the parameters that are 
uncertain are the demand for products in the consumer zone and the production capacity in the production zone because the 
amount of demand and capacity of a product will change depending on the needs of consumers and because of the limited 
movement of consumers in the production zone. Limited distribution of agricultural processed products, the slowdown in the 
production process, and changes in the supply chain system caused by the Covid-19 pandemic are also causes for the 
uncertainty of the amount of capacity and demand for a product. Therefore, the uncertainty parameter in this model are the 
demand of product 𝑐 in Districts 𝑖 (ton) symbolized by 𝑑௖௜ dan production capacity of product 𝑐 in the producer Districts 𝑘 
(ton) symbolized by 𝑓௖௞, so it can be assumed that 𝑑௖௜ ,𝑓௖௞ ∈  . 
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Table 1 
 Differences between scenario 1 and scenario 2 

DISTRIBUTION TYPE 
SCENARIO 1 
(LARGE SCALE SOCIAL 
DISTANCING) 

SCENARIO 2 
(PARTIAL SOCIAL DISTANCING) 

BETWEEN PRODUCER AND LFH Only applies product distribution in each 
green and red zone 

The distribution of products from producers in the green 
zone to LFH in the red zone is permitted, otherwise it is not 
permitted 

BETWEEN LFH AND CONSUMER Only applies product distribution in each 
green and red zone 

The distribution of products from LFH in the green zone to 
consumers in the red zone is permitted, otherwise it is not 
permitted 

AIM Reduce the spread of Covid-19 and see if 
each zone can meet its own needs or not 

Reducing the spread of Covid-19 from the red zone to the 
green zone, but the green zone can still support the 
distribution process to the red zone 

 
To reformulate the uncertainty parameter in the constraint function, based on the definition of the uncertainty set as in (9), 
the 𝑓௖௞ and 𝑑௖௜ parameter can be written as: 
 𝑓௖௞ = 𝑓௖௞തതതത + 𝐏𝟏ୡ୩ζ ,∀ζ ∈ Z, (33) 𝑑௖௜ = 𝑑௖పതതതത + 𝐏𝟐ୡ୧ζ ,∀ζ ∈ Z, (34) 

 
with 𝑓௖௞തതതത, 𝑑௖పതതതത ∈ ℝ௡ is the nominal value vector of production capacity 𝑐 in District 𝑘 and production demand 𝑐 in District 𝑖, 𝐏𝟏ୡ୩,𝐏𝟐ୡ୧ ∈ ℝ௡×௅ is the confounding matrix, and ζ ∈ ℝ௅ is a primitive uncertainty vector. Next, substitute (33) to 
constrains that have an uncertainty 𝑓௖௞തതതത in (19) and (34) to constrains that have a uncertainty  𝑑௖పതതതത in (20): ෍(𝑓௖௞തതതത + 𝐏𝟏ୡ୩ζ )𝑦௖௞௝ = 𝑝௖௝௞∈௄ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, ζ ∈ 𝑍, (35) 

෍( 𝑑௖పതതതത + 𝐏𝟐ୡ୧ζ )𝑤௖௝௜ = 𝑝௖௝௜∈ூ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, ζ ∈ 𝑍, 
 

(36) 

Next, based on 2.1, Robust Counterpart formulation with the assumption that the uncertain parameters 𝑑௖௜ and 𝑓௖௞ are in the 
set the polyhedral uncertainty is computationally tractable and is obtained in the following three steps. 

 
Step 1: Reformulate the inequality constraint containing the uncertainty ζ , so that it is equivalent to the worst-case 
formulation. 
Constraints (35) and (36) can be expressed in vector form: ൬𝑓̅ + 𝐏𝟏ζ ൰் 𝑦 = 𝑝, (37) 

that equivalent to: 𝑓்̅𝑦 + ൬𝐏𝟏ζ ൰் 𝑦 = 𝑝, (38) 

and ൬�̅� + 𝐏𝟐ζ ൰் 𝑤 = 𝑝, (39) 

that equivalent to: �̅�்𝑤 + ൬𝐏𝟐ζ ൰் 𝑤 = 𝑝. (40) 

Constraints (38) and (40) reformulation is performed worst-case, obtained: 𝑓்̅𝑦 + max
ζ

൬𝐏𝟏ζ ൰் 𝑦 = 𝑝, (41) 

that equivalent to: 𝑓்̅𝑦 + max
ζ

(𝐏𝟏்𝑦)்ζ = 𝑝, (42) 

and �̅�்𝑤 + max
ζ

൬𝐏𝟐ζ ൰் 𝑤 = 𝑝, (43) 

that equivalent to: 
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ζ

(𝐏𝟐୘𝑤)்ζ = 𝑝. (44) 

Step 2: Dual form formulation based on Duality Theory. 
The set of polyhedral uncertainties is defined as 𝑍 = ൜ζ :𝐝 − 𝐃ζ ≥ 0ൠ, where 𝐃 ∈ 𝑀௠,௅(ℝ), ζ ∈ ℝ௅, and 𝐝 ∈ ℝ௠, so 
that (42) and (44) change to: 𝑓்̅𝑦 + max

ζ :𝐝𝟏ି𝐃𝟏ζ ஹ଴(𝐏𝟏்𝑦)்ζ = 𝑝, (45) 

And �̅�்𝑤 + max
ζ :𝐝𝟐ି𝐃𝟐ζ ஹ଴(𝐏𝟐்𝑤)்ζ = 𝑝. (46) 

Next, focused on the second term of the left-hand side in Eq. (45) and Eq. (46): max
ζ :𝐝𝟏ି𝐃𝟏ζ ஹ଴(𝐏𝟏୘𝑦)்ζ , (47) 

which can be expressed as a primal problem as: max(𝐏𝟏்𝑦)்ζ , (48) 𝑠. 𝑡 𝐃𝟏ζ ≤ 𝐝𝟏,∀ζ ∈ 𝑍, (49) 

and max
ζ :𝐝𝟐ି𝐃𝟐ζ ஹ଴(𝐏𝟐்𝑤)்ζ , 
 

(50) 

which can be expressed as a primal problem as: max(𝐏𝟐்𝑤)்ζ , (51) 𝑠. 𝑡 𝐃𝟐ζ ≤ 𝐝𝟐,∀ζ ∈ 𝑍. (52) 

 
The dual problem of primal problem Eq. (48), Eq. (49) and Eq. (51), Eq. (52) are: min𝐝𝟏்𝛾,  𝑠. 𝑡.𝐃𝟏୘𝛾1 = 𝐏𝟏்𝑦, (53) 𝛾1 ≥ 0,  
and min𝐝𝟏்𝛾2  𝑠. 𝑡.𝐃𝟐்𝛾2 = 𝐏𝟐୘𝑤, (54) 𝛾2 ≥ 0.  
The primal-dual relationship used is strong duality, so that the optimum values for primal problems are same as the optimum 
values for dual problems, so that:  max

ζ
ቄ(𝐏𝟏୘y)୘ζ :𝐃𝟏ζ ≤ 𝐝𝟏ቅ= minஓଵ {𝐝𝟏୘γ1:𝐃𝟏୘γ1 = 𝐏𝟏୘y, γ1 ≥ 0}, (55) 

and max
ζ

ቄ(𝐏𝟐୘w)୘ζ :𝐃𝟐ζ ≤ 𝐝𝟐ቅ= minஓଶ {𝐝𝟐୘γ2:𝐃𝟐୘γ2 = 𝐏𝟐୘w, γ2 ≥ 0}. (56) 

Substitute Eq. (55) to Eq. (31) and Eq. (45) to Eq. (46), so that: 𝑓்̅𝑦 + minఊଵ {𝐝𝟏்𝛾1:𝐃𝟏୘𝛾1 = 𝐏𝟏்𝑦, 𝛾1 ≥ 0} = 𝑝, (57) 

and �̅�்𝑤 + minఊଶ {𝐝𝟐୘γ2:𝐃𝟐୘γ2 = 𝐏𝟐୘w, γ2 ≥ 0} = 𝑝. (58) 

Step 3: The dual formulations are fulfilled for a feasible solution.  
The dual formulations in (57) and (58) are fulfilled for a feasible solution 𝛾1 and 𝛾2  that contained in the feasible set  ℱ1 ={𝛾1|𝐃𝟏୘𝛾1 = 𝐏𝟏்𝑦, 𝛾1 ≥ 0 }, so ∃𝛾1 ≥ 0 ∋ 𝐃𝟏்𝛾1 = 𝐏𝟏்𝑦  and ℱ2 = {𝛾2|𝐃𝟐୘𝛾2 = 𝐏𝟐்𝑤, 𝛾2 ≥ 0 }, so ∃𝛾2 ≥ 0 ∋𝐃𝟐்𝛾2 = 𝐏𝟐்𝑤. Due to the existence of the guaranteed solution, then the constraints in (57) and (58) can be written as: 𝑓்̅𝑦 + 𝐝𝟏୘𝛾1 = 𝑝,  𝐃𝟏்𝛾1 = 𝐏𝟏୘𝑦, (59) 𝛾1 ≥ 0,  



 246

And �̅�்𝑤 + 𝐝𝟐்𝛾2 = 𝑝,  𝐃𝟐்𝛾2 = 𝐏𝟐୘𝑤, (60) 𝛾2 ≥ 0.  
The form of constraints (59) and (60) can be restated in sigma and index form as:  ෍𝑓௖௞തതതത 𝑦௖௞௝௞∈௄ + ෍𝐝𝟏୦𝛾1௛௛∈ு = 𝑝௖௝ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, 

 

 

෍𝐃𝟏௭௛𝛾1௛௛∈ு = ෍෍𝐏𝟏௭௝𝑦௖௞௝,∀𝑐 ∈ 𝐶௝∈௃ ,௞∈௄  (61) 

∀𝑧 = 1,2,3, … ,𝐿,𝛾1௛ ≥ 0,∀ℎ ∈ 𝐻,  
and ෍𝑑௖పതതതത𝑤௖௝௜௜∈ூ + ෍𝐝𝟐௛𝛾2௛௛∈ு = 𝑝௖௝ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽,  

෍𝐃𝟐௭௛𝛾2௛௛∈ு = ෍෍𝐏𝟐௭௝𝑤௖௝௜௜∈ூ௝∈௃ ,∀𝑐 ∈ 𝐶, (62) ∀𝑧 = 1,2,3, … ,𝐿,𝛾2௛ ≥ 0,∀ℎ ∈ 𝐻.  
 
It can be seen that the constraints in (61) and (62) are linear and for all 𝛾1௛ and 𝛾2௛ are nonnegative. The Robust Counterpart 
model of the supply chain problem for agricultural processed products with a polyhedral uncertainty set is as follows: maxቐ෍෍෍𝑣௖௜𝑤௖௝௜௝∈௃௜∈ூ௖∈஼ ቑ 

(63) 

with general constraints: ෍𝑦௖௞௝ ≤ 1,∀ 𝑐 ∈ 𝐶,௝∈௃ 𝑘 ∈ 𝐾, (64) 

෍𝑤௖௝௜ ≤ 1,∀𝑐 ∈ 𝐶,௝∈௃ 𝑖 ∈ 𝐼, 
 

(65) 

𝑦௖௞௝ ≤ 𝑥௝ ,∀ 𝑐 ∈ 𝐶, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, (66) 𝑤௖௝௜ ≤ 𝑥௝ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼, 
 

(67) 

෍𝑓௖௞തതതത 𝑦௖௞௝௞∈௄ + ෍𝐝𝟏୦𝛾1௛௛∈ு = 𝑝௖௝ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, 
 

(68) 

෍𝐃𝟏௭௛𝛾1௛௛∈ு = ෍෍𝐏𝟏௭௝𝑦௖௞௝௝∈௃௞∈௄ ,∀𝑐 ∈ 𝐶, 
 

(69) 

෍𝑑௖పതതതത𝑤௖௝௜௜∈ூ + ෍𝒅𝟐௛𝛾2௛௛∈ு = 𝑝௖௝ ,∀𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, (70) 

෍𝐃𝟐௭௛𝛾2௛௛∈ு = ෍෍𝐏𝟐௭௝𝑤௖௝௜௜∈ூ௝∈௃ ,∀𝑐 ∈ 𝐶, 𝑧 = 1,2,3, … , 𝐿, (71) 

and additional constraints in scenarios 1 and 2 as in (25) to (30), where: 𝑥௝ ∈ [0,1],∀𝑗 ∈; 𝑃௖௝ ∈ ℝ,∀𝑐 ∈ 𝑐, 𝑗 ∈ 𝐽; 𝑦௖௞௝ , 𝑦௖௞௥ ,𝑦௖௝௥ ∈ [0,1] ,∀ 𝑐 ∈ 𝐶,𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, 𝑤௖௝௜ ,𝑤௖௝௥ ,𝑤௖௥௜ ∈ [0,1],∀ 𝑐 ∈ 𝐶, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼;    𝛾1௛ ≥ 0, 𝛾2௛ ≥ 0,∀ℎ ∈ 𝐻. 
 
3.2. Case Study 

This numerical experiment uses secondary data obtained from various sources. The data used is data in 2020 because it is the 
year that the Covid-19 pandemic began in Indonesia, especially in Bandung. There are 30 districts in Bandung that act as a 
producer zone, a potential zone for LFH development, a consumer zone, and a red zone which are determined based on the 
high number of Covid-19 cases. Five districts in Bandung that have the highest active cases confirmed by Covid-19 can be 
seen in Table 2 (Covid-19 Information Center/Pusicov Bandung, 2020). The 30 districts can be symbolized based on the 
required index, where the sequence of numbers is based on the order of the districts in Table 3. There are two types of 
agricultural processed products used, sugar and cooking oil, so we have 𝑐 = {1,2}, where index 1 is for sugar and index 2 is 
for cooking oil. Consumer demand for commodities can be calculated from the average per capita consumption multiplied 
by the number of residents in each district in Bandung, where all data uses in 2020. Average sugar per capita consumption 
of people in Bandung is predicted 13.6 kg/capita/year, while for cooking oil is 11.38 liters/capita/year or equivalent to 9.11 
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kg/capita year (Sabarella et al., 2018). It is assumed that the sugar production capacity is 46% more than the total demand, 
while the cooking oil production capacity is 42% more than the total demand (Sabarella, et al., 2018). Data on consumer 
demand and production capacity for commodities can be seen in Table 3. 
 
Table 2 
Red zone districts in Bandung. 

NO DISTRICT ACTIVE CASE (PEOPLE) 
1 Antapani 52 
2 Arcamanik 56 
3 Bandung Kulon 25 
4 Batununggal 36 
5 Bojongloa Kaler 35 

 
The selling price of sugar and cooking oil in each district in Bandung is assumed to be the same, Rp12,833/kg or equivalent 
to Rp12,833,000/ton and Rp15,333/liter or equivalent to Rp17,016,630/ton (Food Price Information Forum, 2021). The 
maximum amount of agricultural processed products that can be distributed in one lane is assumed to be 20 tons.  
 
Table 3 
Demand and capacity of sugar and cooking oil 

Index District Demand Capacity 
Sugar (tonnes/year) Cooking Oil Sugar (tonnes/year) Cooking Oil (tonnes/year) 

1 Andir 1.350 905 1.971 1.284 
2 Antapani 1.081 724 1.578 1.028 
3 Arcamanik 1.057 708 1.544 1.006 
4 Astana Anyar 4.451 2.982 6.499 4.234 
5 Babakan Ciparay 1.920 1.286 2.804 1.827 
6 Bandung Kidul 824 552 1.203 784 
7 Bandung Kulon 1.838 1.231 2.683 1,748 
8 Bandung Wetan 390 261 570 371 
9 Batunuggal 1.642 1.100 2.397 1.562 
10 Bojongloa Kaler 1.683 1.127 2.457 1.601 
11 Bojongloa Kidul 1.181 791 1.725 1.124 
12 Buah Batu 1.394 934 2.036 1.326 
13 Cibeunying Kaler 956 640 1.395 909 
14 Cibeunying Kidul 1.531 1.026 2.235 1.456 
15 Cibiru 1.009 676 1.472 959 
16 Cicendo 1.303 873 1.903 1.240 
17 Cidadap 734 492 1.072 698 
18 Cinambo 344 231 503 328 
19 Coblong 54 36 78 51 
20 Gedebage 556 372 812 529 
21 Kiara Condong 1.773 1.188 2.589 1.687 
22 Lengkong 967 648 1.411 920 
23 Mandala Jati 4.452 2.982 6.499 4.234 
24 Panyileukan 544 365 795 518 
25 Ranca Sari 1.153 772 1.683 1.097 
26 Regol 1.095 734 1.599 1.042 
27 Sukajadi 1.392 932 2.032 1.324 
28 Sukasari 1.052 705 1.537 1.001 
29 Sumur Bandung 510 341 744 485 
30 Ujungberung 1.196 801 1.747 1.138 

 
3.2.1. Determination of Convex Hull, Uncertainty Martix, and Uncertainty Vector 

This study uses data on demand and capacity for processed agricultural products, sugar and cooking oil which have been 
assumed to contain uncertainty. To ensure that the optimal solution for the Robust Counterpart model is definitely obtained, 
according to Ben-Tal and Nemirovskri (1998), the convex hull theory can be used. This theory can connect and contain all 
available indefinite data without including unnecessary data and provides a “boundedness assumption” that if there is a 
convex and compact set 𝑄 ⊂ ℝ௡, then the set must contain a set of feasible solutions to all problems (𝑃) ∈ ℘. Therefore, this 
section determines the convex hull of each uncertainty parameter with the help of software R. The resulting convex hull 
image shows the comparison between the x-axis as the index of the 30 districts and the y-axis as the number of requests and 
capacities of sugar and cooking oil, to obtain four types of convex hull, namely convex hull demand for sugar as in Figure 1, 
convex hull capacity of sugar in Fig. 2, convex hull demand for cooking oil in Fig. 3, and convex hull capacity for cooking 
oil in Fig. 4. 
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Fig. 1. Convex hull demand for sugar  

Fig. 2.  Convex hull capacity of sugar 
 

 
Fig. 3.  Convex hull demand of cooking oil 

 
Fig. 4.  Convex hull capacity of cooking oil 

 
Departing from the acquisition of four types of convex hull, next is the determination as uncertainty 
matrix and uncertainty vector for each parameter using the help of the polyhedral uncertainty set 
definition. These uncertainty matrices and vectors are required and used in the Robust Counterpart 
calculation using R. Determination of uncertainty matrix and vector can be seen in Table 4 and Table 5 
by assuming 𝑥 as 1ζ  and 𝑦 as 2ζ  . 
Table 4 
Determination of uncertainty matrix on sugar commodities 

De
m

an
d 

of
 S

ug
ar

 

Line equations: 𝒚 − 𝟏.𝟎𝟐𝟑,𝟔𝟕𝒙 ≥ 𝟑𝟓𝟔,𝟑𝟑𝟑 𝒚 − 𝟎,𝟎𝟓𝟐𝟔𝟑𝟏𝟔𝒙 ≥ 𝟒.𝟒𝟓𝟎,𝟕𝟗 𝒚 + 𝟒𝟔𝟓,𝟏𝟒𝟑𝒙 ≥ 𝟏𝟓,𝟏𝟓𝟎.𝟑 𝒚 − 𝟔𝟖𝟔𝒙 ≥ −𝟏𝟗.𝟑𝟖𝟒 𝒚 − 𝟒𝟓,𝟔𝒙 ≥ −𝟖𝟏𝟐,𝟒 𝒚 + 𝟑𝟎,𝟓𝟒𝟓𝟓𝒙 ≥ 𝟔𝟑𝟒,𝟑𝟔𝟒 𝒚 − 𝟎𝒙 ≥ 𝟒.𝟒𝟓𝟏 𝒚 + 𝟐𝟗𝟗𝒙 ≥ 𝟏.𝟔𝟕𝟗 
 

Matrix form:  

⎣⎢⎢
⎢⎢⎢
⎢⎡−𝟏 𝟏.𝟎𝟐𝟑,𝟔−𝟏−𝟏−𝟏−𝟏−𝟏−𝟏−𝟏

𝟎,𝟎𝟓𝟐𝟔𝟑𝟏𝟔−𝟒𝟔𝟓,𝟏𝟒𝟑
− 𝟔𝟖𝟔𝟒𝟓,𝟔𝟑𝟎,𝟓𝟒𝟓𝟓𝟎−𝟐𝟗𝟗 ⎦⎥⎥

⎥⎥⎥
⎥⎤ ቂ𝒚𝒙ቃ ≤

⎣⎢⎢
⎢⎢⎢
⎢⎡ −𝟑𝟓𝟔,𝟑𝟑𝟑−𝟒.𝟒𝟓𝟎,𝟕𝟗−𝟏𝟓.𝟏𝟓𝟎,𝟑𝟏𝟗.𝟑𝟖𝟒𝟖𝟏𝟐,𝟒−𝟔𝟑𝟒,𝟑𝟔𝟒−𝟒.𝟒𝟓𝟏−𝟏.𝟔𝟕𝟗 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
Obtained:  

𝐃𝟏 =
⎣⎢⎢
⎢⎢⎢
⎢⎡−1 1.023,6−1−1−1−1−1−1−1

0,0526316−465,143
− 68645,630,54550−299 ⎦⎥⎥

⎥⎥⎥
⎥⎤   𝐝𝟏 =

⎣⎢⎢
⎢⎢⎢
⎢⎡−356,333−4.450,79−15.150,319.384812,4−634,364−4.451−1.679 ⎦⎥⎥

⎥⎥⎥
⎥⎤
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Line equations: 𝑦 + 393𝑥 ≥ 2.364 𝑦 + 168𝑥 ≥ 1.914 𝑦 + 44,7273𝑥 ≥ 927,818 𝑦 − 66,6𝑥 ≥ −1.187,4 𝑦 − 1.003𝑥 ≥ −28,343 𝑦 + 678,857𝑥 ≥ 22.122,7 𝑦 − 0𝑥 ≥ 6.499 𝑦 − 1.509,33𝑥 ≥ 461,667 
 

Matrix form:  

⎣⎢⎢
⎢⎢⎢
⎢⎡−1 −393−1−1−1−1−1−1−1

−168−44,727366,61.003−678,85701.509,33 ⎦⎥⎥
⎥⎥⎥
⎥⎤ ቂ𝑦𝑥ቃ ≤

⎣⎢⎢
⎢⎢⎢
⎢⎡ −2.364−1.914−927,8181.187,428,343−22.122,7−6.499−461,667 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
Obtained:  

𝐃𝟏ᇱ =
⎣⎢⎢
⎢⎢⎢
⎢⎡−1 −393−1−1−1−1−1−1−1

−168−44,727366,61.003−678,85701.509,33 ⎦⎥⎥
⎥⎥⎥
⎥⎤   𝐝𝟏′ =

⎣⎢⎢
⎢⎢⎢
⎢⎡ −2.364−1.914−927,8181.187,428,343−22.122,7−6.499−461,667⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
 
Table 5 
Determination of the uncertainty matrix on cooking oil commodities 
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Line equations: 𝒚 + 𝟏𝟖𝟏𝒙 ≥ 𝟏.𝟎𝟖𝟔 𝒚 + 𝟕𝟕,𝟏𝟔𝟔𝟕𝒙 ≥ 𝟖𝟕𝟖,𝟑𝟑𝟑 𝒚 + 𝟐𝟎,𝟒𝟓𝟒𝟓𝒙 ≥ 𝟒𝟐𝟒,𝟔𝟑𝟔 𝒚 − 𝟑𝟎,𝟓𝒙+≥ −𝟓𝟒𝟑,𝟓 𝒚 − 𝟒𝟔𝟎𝒙 ≥ −𝟏𝟐,𝟗𝟗𝟗 𝒚 + 𝟑𝟏𝟏,𝟓𝟕𝟏𝒙 ≥ 𝟏𝟎.𝟏𝟒𝟖,𝟏 𝒚 − 𝟎𝒙 ≥ 𝟐.𝟗𝟖𝟐 𝒚 − 𝟔𝟗𝟐,𝟑𝟑𝟑𝒙 ≥ 𝟐𝟏𝟐,𝟔𝟔𝟕 
 
 

Matrix form:  

⎣⎢⎢
⎢⎢⎢
⎢⎡−𝟏 −𝟏𝟖𝟏−𝟏−𝟏−𝟏−𝟏−𝟏−𝟏−𝟏

−𝟕𝟕,𝟏𝟔𝟔𝟕−𝟐𝟎,𝟒𝟓𝟒𝟓𝟑𝟎,𝟓𝟒𝟔𝟎−𝟑𝟏𝟏,𝟓𝟕𝟏𝟎𝟔𝟗𝟐,𝟑𝟑𝟑 ⎦⎥⎥
⎥⎥⎥
⎥⎤ ቂ𝒚𝒙ቃ ≤

⎣⎢⎢
⎢⎢⎢
⎢⎡ −𝟏.𝟎𝟖𝟔−𝟖𝟕𝟖,𝟑𝟑𝟑−𝟒𝟐𝟒,𝟔𝟑𝟔𝟓𝟒𝟑,𝟓𝟏𝟐,𝟗𝟗𝟗−𝟏𝟎.𝟏𝟒𝟖,𝟏−𝟐.𝟗𝟖𝟐−𝟐𝟏𝟐,𝟔𝟔𝟕 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
Obtained: 

𝐃𝟐 =
⎣⎢⎢
⎢⎢⎢
⎢⎡−1 −181−1−1−1−1−1−1−1

−77,1667−20,454530,5460−311,5710692,333 ⎦⎥⎥
⎥⎥⎥
⎥⎤   𝐝𝟐 =

⎣⎢⎢
⎢⎢⎢
⎢⎡ −1.086−878,333−424,636543,512,999−10.148,1−2.982−212,667 ⎦⎥⎥

⎥⎥⎥
⎥⎤
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Line equations: 𝑦 + 256𝑥 ≥ 1.540 𝑦 + 109,5𝑥 ≥ 1.247 𝑦 + 29,0909𝑥 ≥ 603,727 𝑦 − 43,3𝑥 ≥ −773,6 𝑦 − 628𝑥 ≥ −17,727 𝑦 + 45,857𝑥 ≥ 14.488,7 𝑦 − 0𝑥 ≥ 4.234 𝑦 − 983,333𝑥 ≥ 300,667 
 

Matrix form:  

⎣⎢⎢
⎢⎢⎢
⎢⎡−1 −256−1−1−1−1−1−1−1

−109,5−29,090943,3628−45,8570983,333 ⎦⎥⎥
⎥⎥⎥
⎥⎤ ቂ𝑦𝑥ቃ ≥

⎣⎢⎢
⎢⎢⎢
⎢⎡ −1.540−1.247−603,727773,617,727−14.488,7−4.234−300,667 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
Obtained: 

𝐃𝟐ᇱ =
⎣⎢⎢
⎢⎢⎢
⎢⎡−1 −256−1−1−1−1−1−1−1

−109,5−29,090943,3628−45,8570983,333 ⎦⎥⎥
⎥⎥⎥
⎥⎤   𝐝𝟐′ =

⎣⎢⎢
⎢⎢⎢
⎢⎡ −1.540−1.247−603,727773,617,727−14.488,7−4.234−300,667⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
3.2.2 Numerical Experiments 

Numerical Experiments of Agricultural Processed Products Supply Chain Problem in Robust Optimization Model with 
Polyhedral Uncertainty Sets Scenario 1        

This section discusses the results of numerical experiments that are applied to the Robust optimization model for the 
agricultural processed products supply chain problem Scenario 1. The uncertainty parameters that are demand and product 
capacity are in the polyhedral uncertainty set. Scenario 1 is an additional constraint to the nominal model in Perdana, et al. 
(2020) when large-scale social distancing is applied as described in Table 1 with the types of agricultural processed products 
in the form of sugar and cooking oil. This numerical experiment requires an uncertainty matrix and 
vector 𝐝𝟏,𝐝𝟏ᇱ,𝐝𝟐,𝐝𝟐ᇱ,𝐃𝟏,𝐃𝟏ᇱ,𝐃𝟐, and 𝐃𝟐ᇱ  that has been obtained in Table 4 and Table 5. 
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The total maximum demand for sugar is Rp5.000.000.000, while for cooking oil is Rp5.000.000.000. The supply chain for 
the distribution of sugar and cooking oil from the producer zone to LFH scenario 1 is shown in Fig. 5 and Fig. 7, while the 
distribution from LFH to the consumer zone is shown in Fig. 6 and Fig. 8. The Fulfillment Ratio for the two products is 
shown in Table 6. 

 

  
Fig. 5.  Sugar distribution flow from producers to LFH in 
robust optimization model scenario 1 

Fig. 6.  Sugar distribution flow from LFH to consumers in 
robust optimization model scenario 1 

 
Fig. 5 shows the distribution flow of sugar from the producer zone to the LFH, from the figure there are 11 out of a total of 
30 districts that are the optimal locations for LFH which is symbolized by the red dot, namely Andir, Antapani, Astana Anyar, 
Bandung Wetan, Buah Batu, Cibeunying Kidul, Cicendo, Cinambo, Panyileukan, Sukasari, and Ujungberung. There are 19 
other districts that are not an optimal location. This is due to the constraints of the first scenario which limit the movement 
between the red zone and the green zone. In this study, all distribution does not consider costs as described by Ritonga (2021) 
in the previous sub-chapter, so that to meet and maximize demand in each LFH district, the distribution is carried out among 
various districts from the production zone. Fig. 6 shows the next distribution flow of sugar, namely from the selected optimal 
LFH district to the final zone, the consumer zone marked with a green dot. There are still 11 consumer zones that have not 
been distributed by LFH. This can also be seen in Table 6. The fulfillment ratio is the ratio that determines the percentage of 
the number of requests that are fulfilled in each consumer district. This ratio is determined by adding up the number of 
distributions to the last location (consumers) in each district. For sugar, there are still 11 districts that have not been fulfilled 
with a 0% ratio, namely Arcamanik, Bandung Kulon, Bandung Wetan, Batununggal, Bojongloa Kaler, Cibeunying Kaler, 
Coblong, Kiara Condong, Mandala Jati, and Regol. This is because there is no distribution to these districts due to the 
exhaustion of capacity to be distributed to other districts.  
 

  
Fig. 7.  Cooking oil distribution flow from producers to 
LFH in robust optimization model scenario 1 

Fig. 8.  Cooking oil distribution flow from LFH to 
consumers in robust optimization model scenario 1 

 
 
With the same explanation as for sugar agricultural processed products, the first oil distribution flow from the producer zone 
to LFH is shown in Fig. 7, then continued to the second distribution from LFH to the consumer zone is shown in Fig. 8. For 
the oil fulfillment ratio, there is one more zone consumer who are not distributed, namely Astana Anyar District. 

 
Numerical Experiments of Agricultural Processed Products Supply Chain Problem in Robust Optimization Model with 
Polyhedral Uncertainty Sets Scenario 2 

This section discusses the results of numerical experiments applied to the Robust optimization model for supply chain 
problems of processed agricultural products. Scenario 2. Parameters of uncertainty on demand and product capacity are in a 
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polyhedral indeterminate set. Scenario 2 is an additional obstacle to the nominal model when partial social distancing is 
applied as described in Table 1 with the types of processed agricultural products in the form of sugar and cooking oil. This 
numerical experiment requires an uncertainty matrix and vector 𝐝𝟏,𝐝𝟏ᇱ,𝐝𝟐,𝐝𝟐ᇱ,𝐃𝟏,𝐃𝟏ᇱ,𝐃𝟐, and 𝐃𝟐ᇱ that has been 
obtained in Table 4 and Table 5. The total maximum demand for sugar is Rp5.000.000.000, while for cooking oil is 
Rp5.000.000.000. The supply chain for the distribution of sugar and cooking oil from the producer zone to LFH scenario 1 
is shown in Fig. 9 and Fig. 11, while the distribution from LFH to the consumer zone is shown in Fig. 10 and Fig. 12. The 
Fulfillment Ratio for the two products is shown in Table 7. 

Table 6 
Fulfillment ratio of sugar and cooking oil in robust optimization model scenario 1 

Consumer District Demand (Ton) Demand Fulfilled (Ton) Fulfilment Ratio 
Sugar Cooking Oil Sugar Cooking Oil Sugar Cooking Oil 

Andir 1.350 905 1.350 905 100% 100% 
Antapani 1.081 724 1.081 724 100% 100% 

Arcamanik 1.057 708 0 0 0% 0% 
Astana Anyar 4.451 2.982 4.451 0 100% 0% 

Babakan Ciparay 1.920 1.286 1.920 1.286 100% 0% 
Bandung Kidul 824 552 824 552 100% 100% 
Bandung Kulon 1.838 1.231 0 0 0% 0% 
Bandung Wetan 390 261 0 0 0% 0% 

Batunuggal 1.642 1.100 0 0 0% 0% 
Bojongloa Kaler 1.683 1.127 0 0 0% 0% 
Bojongloa Kidul 1.181 791 1.181 791 100% 100% 

Buah Batu 1.394 934 1.394 0 100% 0% 
Cibeunying Kaler 956 640 0 640 0% 100% 
Cibeunying Kidul 1.531 1.026 1.531 1.026 100% 100% 

Cibiru 1.009 676 0 0 0% 0% 
Cicendo 1.303 873 1.303 873 100% 100% 
Cidadap 734 492 734 492 100% 100% 
Cinambo 344 231 344 231 100% 100% 
Coblong 54 36 0 0 0% 0% 

Gedebage 556 372 556 372 100% 100% 
Kiara Condong 1.773 1.188 0 0 0% 0% 

Lengkong 967 648 967 648 100% 100% 
Mandala Jati 4.452 2.982 0 0 0% 0% 
Panyileukan 544 365 544 365 100% 100% 
Ranca Sari 1.153 772 1.153 772 100% 100% 

Regol 1.095 734 0 0 0% 0% 
Sukajadi 1.392 932 1.392 932 100% 100% 
Sukasari 1.052 705 1.052 705 100% 100% 

Sumur Bandung 510 341 510 341 100% 100% 
Ujung Berung 1.196 801 1.196 801 100% 100% 

 
Fig. 9 shows the distribution flow of sugar from the producer zone to LFH, from the figure there are 14 out of a total of 30 
districts that are the optimal locations for LFH which is symbolized by the red dot, namely Arcamanik, Astana Anyar, 
Batununggal, Bojongloa Kaler, Bojongloa Kidul, Buah Batu, Cibeunying Kidul, Cidadap, Cinambo, Gedebage, Lengkong, 
Panyileukan, Regol, and Sukajadi. There are 16 other districts that are not optimal. However, scenario 2 gives the optimal 
number of districts for the construction of more LFH than scenario 1. This is due to the constraints of the second scenario 
where the tightness of the distribution is reduced, namely that it is permitted the distribution of products from producers in 
the green zone to LFH in the red zone and the distribution of products from LFH in the green zone to consumers in the red 
zone. 

  
Fig. 9.  Sugar distribution flow from producers  to 
LFH in robust optimization model scenario 2 

Fig. 10.  Sugar distribution flow from LFH to 
consumers in robust optimization model scenario 2 
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Fig. 11.  Cooking oil distribution flow from producers 
to LFH in robust optimization model scenario 2 

Fig. 12.  Cooking oil distribution flow from LFH  to 
consumers in robust optimization model scenario 2 

 
Since there are more LFH locations and the influence of scenario 2 constraints, then in Figure 10 and Figure 12, which are 
images showing the distribution flow of sugar and cooking oil from LFH to the end zone (consumer) marked with a green 
dot, demand in the consumer zone is more fulfilled than scenario 1. In scenario 2, for sugar, there are 8 districts of consumer 
zones that are not distributed, namely Bandung Wetan, Bojongloa Kidul, Buah Batu, Cibeunying Kidul, Cinambo, 
Panyileukan, Sukasari, and Sumur Bandung districts. As for cooking oil, there are only 2 districts of the consumer zone that 
are not fulfilled, namely Buah Batu District, and Cibeunying Kaler. This can also be seen in Table 7. 
 
Table 7 
Fulfillment ratio of sugar and cooking oil in robust optimization model scenario 2 

Consumer District Demand (Tonnes) Fulfilled Demand (Tonnes) Fulfillment Ratio 
Gula Pasir Minyak Goreng Gula Pasir Minyak Goreng Gula Pasir Minyak Goreng 

Andir 1.350 905 1.350 905 100% 100% 
Antapani 1.081 724 1.081 724 100% 100% 

Arcamanik 1.057 708 1.057 708 100% 100% 
Astana Anyar 4.451 2.982 4.451 2.982 100% 100% 

Babakan Ciparay 1.920 1.286 1.920 1.286 100% 100% 
Bandung Kidul 824 552 824 552 100% 100% 
Bandung Kulon 1.838 1.231 1.838 1.231 100% 100% 
Bandung Wetan 390 261 0 261 0% 100% 

Batunuggal 1.642 1.100 1.642 1.100 100% 100% 
Bojongloa Kaler 1.683 1.127 1.683 1.127 100% 100% 
Bojongloa Kidul 1.181 791 0 791 0% 100% 

Buah Batu 1.394 934 0 0 0% 0% 
Cibeunying Kaler 956 640 956 0 100% 0% 
Cibeunying Kidul 1.531 1.026 0 1.026 0% 100% 

Cibiru 1.009 676 1.009 676 100% 100% 
Cicendo 1.303 873 1.303 873 100% 100% 
Cidadap 734 492 734 492 100% 100% 
Cinambo 344 231 0 231 0% 100% 
Coblong 54 36 54 36 100% 100% 

Gedebage 556 372 556 372 100% 100% 
Kiara Condong 1.773 1.188 1.773 1.188 100% 100% 

Lengkong 967 648 967 648 100% 100% 
Mandala Jati 4.452 2.982 4.452 2.982 100% 100% 
Panyileukan 544 365 0 365 0% 100% 
Ranca Sari 1.153 772 1.153 772 100% 100% 

Regol 1.095 734 1.095 734 100% 100% 
Sukajadi 1.392 932 1.392 932 100% 100% 
Sukasari 1.052 705 0 705 0% 100% 

Sumur Bandung 510 341 0 341 0% 100% 
Ujung Berung 1.196 801 1.196 801 100% 100% 

 
Furthermore, in Table 8 and Table 9, the order based on the index of the optimal district and its capacity in tons for the 
distribution of sugar and cooking oil in scenario 1 and scenario 2. 
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Table 8 
List of LFH optimal location and its optimal capacity for sugar (S1 for scenario 1 and S2 for scenario 2) 

Index District S1 (Tonnes) S2 (Tonnes)  Index District S1 (Tonnes) S2 (Tonnes) 
1 Andir 1.255,56 -  16 Cicendo 1.153 - 
2 Antapani 1.081 -  17 Cidadap - 570 
3 Arcamanik - 812  18 Cinambo 1.683 1.980 
4 Astana Anyar 4.619 4.659  20 Gedebage - 4.531 
8 Bandung Wetan 1.531 -  22 Lengkong - 3.521 
9 Batunuggal - 1.723,9158  24 Panyileukan 4.478 822,0842 
10 Bojongloa Kaler - 872  26 Regol - 5.010 
11 Bojongloa Kidul - 503  27 Sukajadi - 744 
12 Buah Batu 2.484 3.684  28 Sukasari 1.052 - 
14 Cibeunying 

Kidul 
2.267 2.073  30 Ujungberung 3.116 - 

 

Table 9 
List of LFH optimal location and its optimal capacity for cooking oil (S1 for scenario 1 and S2 for scenario 2) 

Index District S1 (Tonnes) S2 (Tonnes)  Index District S1 (Tonnes) S2 (Tonnes) 
1 Andir 500,959 403,759  16 Cicendo 772 1.295,242 
2 Antapani 724 724  18 Cinambo 1.127 261 
4 Astana Anyar 3.094 3.204  20 Gedebage - 4.531 
5 Babakan Ciparay - 5,64  22 Lengkong - 3.912,242 
8 Bandung Wetan 1.026 -  24 Panyileukan 2.998 1.629 
9 Batunuggal - 1.723,9158  26 Regol - 4.384,759 
10 Bojongloa Kaler - 670,364  27 Sukajadi - 744 
12 Buah Batu 1.664 5.108  28 Sukasari 705 705 
14 Cibeunying Kidul 1.519 1.827  30 Ujungberung 2.088 979 

 

Based on the previous explanation, the Robust optimization model for the supply chain problem of agricultural processed 
products in the form of sugar and cooking oil scenario 1 gives the results of the maximization objective function is smaller 
than scenario 2. Scenario 1 provides lower costs because of the larger distribution restrictions. However, this study does not 
consider the cost of fulfilling demand, so with the aim of maximizing consumer demand in order to be fulfilled, scenario 2 is 
better to do. In addition, scenario 2 also provides more optimal LFH locations than scenario 1, so that demand fulfillment in 
the consumer zone will be greater and distribution will run optimally. Therefore, scenario 2 is still better to do. 

4.    Conclusions 

One of the contributions of Operations Research and Optimization Modeling during Covid-19 Pandemic is in a role of 
decision support system, such as solving the uncertain supply chain problem for agricultural processed products with Robust 
optimization methodology. Taking into account the uncertainty parameter is assumed to be the demand and capacity of 
agricultural processed products. Robust optimization model of the supply chain problem for agricultural processed products 
is solved using a polyhedral uncertainty set approach, then a model is obtained computationally tractable, it means that the 
problem can be solved computationally in polynomial time, thus the robust optimal solution is obtained. The result of this 
study can be considered as scientific proof for the government to regulate the processed product supply chain problem, 
especially for sugar and cooking oil in Bandung Area.   
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