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 When aiming on improving efficiency and reducing cost in manufacturing environments, 
production scheduling can play an important role. Although a common workshop is full of 
uncertainties, when using mathematical programs researchers have mainly focused on 
deterministic problems. After briefly reviewing and discussing popular modeling approaches in 
the field of stochastic programming, this paper proposes a new approach based on utility theory 
for a certain range of problems and under some practical assumptions. Expected utility 
programming, as the proposed approach, will be compared with the other well-known methods 
and its meaningfulness and usefulness will be illustrated via a numerical examples and a real 
case.    
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1. Introduction 

 
Scheduling problem deals with the allocation of scarce resources to tasks over time and it is 
considered as a combinatorial optimization problem and may be handled as a decision-making 
process with the goal of optimizing one or more objectives (Lopez & Roubellat, 2008). A job shop 
scheduling problem (JSSP), as a branch of scheduling, is to schedule jobs when each job requires a 
sequence of operations on all different machines. Many researchers have considered this problem for 
deterministic cases and one may determine reliable solution for JSSP when all parameters are known 
in advance (Xhafa & Abraham, 2008; Brucker, 2007). 
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There are some certain information about resources and tasks, which define a scheduling problem. 
Many real-world problems are full of uncertainty, which makes it inevitable to devise complicated 
techniques where deterministic ones are considered as a basis. Although generally the task duration is 
uncertain, scholars have frequently suppressed that uncertainty when stating the problem (Baker & 
Trietsch , 2009). In the context of job shop scheduling, processing time of work pieces, the frequency 
of machine faults and the interval of orders often have a fluctuating nature and managers must make 
decisions without full knowledge of the coefficients.  For instance, the exponential distribution may 
be an appropriate model for arrival processes, processing times and sometimes for waiting times 
(Baker & Trietsch , 2009). 
 
Gua et al. (1984) employed an expected value model (EVM) to deal with stochastic job shop 
scheduling problem (SJSSP). EVM has been a popular modeling technique, which could be used as a 
benchmark for our approach (EVM substitutes uncertain parameters by their expected value, refer to 
Liu, 2007). Besides operational research methods, which are the primary focus of the present work, 
other approaches have been used. For example, Gu & Lu (2009) devised an online approximate 
policy for the preemptive stochastic online scheduling on two uniform machines and Gourgand et al. 
(2003) developed a recursive algorithm to compute the expected makespan based on a Markov chain. 
Liu (2007) has employed chance constrained programming (CCP) to model scheduling problems, 
namely machine and project scheduling. In addition, methods of recourse (two-stage and multi-stage 
optimization) may be applied to deal with uncertainty via mathematical frameworks (Birge & 
Louveaux, 1997).  
 
Initially introduced by Charnes and Cooper (1959), CCP tries to maintain feasibility condition (e.g. 
not to exceed resource availability) by forcing each constraint to hold with a predetermined 
confidence level. For the objective function, CCP ensures that the provided solution will yield an 
acceptable value again with a predetermined confidence level. Here the primary objective is about 
feasibility of CCP solutions and their implications. For instance, if the problem remains feasible with 
the probability of 95 percent, what about the cases, which could occur with the probability of 5 
percent? In fact, after realization of some uncertain parameters, the CCP solutions may not be feasible 
anymore. Furthermore, when deciding on confidence levels, what can the model tell the decision 
maker (DM) about the tradeoff between maintaining feasibility and having a better return from 
objective function? CCP is silent about these issues because it does not take into account the 
phenomenon of infeasibility occurrence (i.e. violation of stochastic constraints). With this 
background, expected utility programming (EUP), as the proposed approach, tries to model JSSP 
with respect to some practical assumptions, appropriately. Here, putting aside regular 
presuppositions, the following assumptions are different from some of the classical problem: 
 
1) Processing times can be stochastic. 
2) If the required resources (e. g. machine capacity) for processing of any job are not available at a 
requested time, the scheduled job should be delayed. 
3) Job postponement will result in some measurable outcomes (e. g. shop floor disorder or extra effort 
for rescheduling).   
4) If for some resource types, the required amounts at any time exceed the available supply, 
additional amounts cannot be acquired at the needed time or under any acceptable expenses. 
 
The third assumption makes CCP not capable of adequately modeling the problem and the fourth 
assumption implies a situation, which contradicts the underlying assumptions of recourse methods.  
Although JSSP has frequently been recognized as a multiobjective problem (Qian et al., 2008; Lei, 
2008; Huang, 2010) and the DM may wish to simultaneously satisfy several possibly conflicting 
goals (e. g. minimizing tardiness or makespan and maximizing preventive maintenance times), here 
the problem will be modeled as a single objective one to keep presentation of main contributions 
simple. Obviously one may simply apply the proposed approach for multiobjective cases.  
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Large-scale JSSPs have been recognized as extremely NP-hard problems for deterministic cases 
(Lenstra et al., 1977). Furthermore, incorporation of uncertainty into these mathematical programs 
will make them even more complicated. However, heuristic and metaheuristic algorithm can smooth 
the disadvantages of these programs. Here we employ a heuristic method based on genetic algorithm 
to solve our proposed model. The solution method will be discussed and detailed later in section 4. 
 
The reminder of this paper is organized as follow: section 2 presents the problem definition along 
with its parameters and the deterministic JSSP. Briefly reviewing CCP and providing some required 
knowledge from utility theory, section 3 presents EUP and uses a numerical example to compare it 
with CCP and EVM. Section 4 contains a real case to illustrate usefulness and meaningfulness of 
proposed approach. Finally, section 5 summarizes the results and gives the concluding remarks.       
 
2. Problem definition  
 
The job shop scheduling deals with the allocation of n jobs (1,2,…, n) to m different machines (1,2,…, 
m). The jobs are subject to machine precedence constraints and the completion of job � consists of a 
sequence of operations: ���, ���, ..., ���� (machine list). The precedence in the machine list indicates 

that job � should be processed first on machine 1, then machine 2, until the last machine, ��. Here, the 
objective is to minimize the maximum completion time of the jobs and so the problem is to find a 
feasible schedule, which yields the minimum makespan. The followings are assumed in a 
deterministic JSSP: 
  
(1) There is no machine breakdown and no preemption of operations is allowed. 
(2) A machine can process only one job at a time.   
(3) A job is not allowed to visit the same machine twice.  
(4) Transportation times between different machines and setup times for different jobs are all 
neglected.  
(5) Among the operations on different machines, jobs can wait in an unlimited buffer.  
 
2.1. Parameters 
 
� a large positive number 
�,� index of jobs  
�,ℎ index of machines  

� index of states of the world  
��� the processing time of job � on machine � 

��� 
financial and non-financial returns from postponement of scheduled job � on 
machine � (specified by the DM) 

�� the set which indicates precedence of machines (���, ���, ..., ����) for job �: 

(�,ℎ) ∈ �� if machine � comes right before machine � in the machine list  
  

2.2. Decision variable 
 
��� the starting time of job � on machine � 
���� is 1 if job � is before job � on machine �, and 0 otherwise 

 
2.3. Deterministic JSSP 
 
When all processing times are known with certainty, the rational decision is to work with a schedule 
that never results in delays for scheduled jobs. This way, all returns from postponements may be 
disregarded. The deterministic problem can be formulated as: 
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Min      � (1) 

Z ≥ ��� + ���     ∀�,� (2) 

���+ ��� ≤ ���      ∀(�,ℎ) ∈ �� (3) 

���+ ��� ≤ ��� + �(1 − ����)      ∀�,�,� (4) 

���+ �����≥ ��� + ���      ∀�,�,� (5) 

��� ≥ 0     ∀�,� ,  ����∈ {0,1}     ∀�,�,� (6) 

 
The objective function given in Eq. (1) along with constraint (2) minimizes the makespan. Constraint 
(3) ensures that the processing sequence of each job’s operations is in accordance with the machine 
list. Constraints (4, 5) guarantee that each machine will not process more than one job at a time. 
Constraint (6) forces decision variables to take their proper values. 

 
3. EUP as an appropriate approach for modeling SJSSP 
 
3.1. A brief review of CCP 
 
Here, we review CCP, as a popular modeling approach, to justify the need for a new one. In addition, 
we use it as a benchmark to clarify some features of EUP as the proposed method.  Consider the 
linear program above (1-6). Now, if the values of some parameters are not fixed, first we will need to 
clarify the meaning of minimization in the objective function. In addition, the feasibility of a 
decision, say, can be quite different from that of conventional linear programs. For this matter, CCP 
rewrites the problem as: 
 

��������  � (7) 

Pr{� ≥ ���+ ���}≥ �  ∀�,� (8) 

Pr{���+ ��� ≤ ���}≥ �   ∀(�,ℎ) ∈ �� (9) 

Pr����+ ��� ≤ ��� + �(1 − ����)�≥ �  ∀�,�,� (10) 

Pr����+ �����≥ ��� + ����≥ �   ∀�,�,� (11) 

��� ≥ 0     ∀�,� ,  ����∈ {0,1}     ∀�,�,� (12) 

 
where α and β are predetermined confidence levels, and � is the α-optimistic return. CCP tries to 
maintain feasibility of constraints with a high confidence level (e.g. β = .95) and assumes that 
violation of constraints can be disregarded due to the very low chance of occurrence.  In some cases 
that consequences of constraint violations are not known or they are hard to estimate, CCP can be of 
good use. In constraint (9) the DM determines his/her acceptable confidence level for the value of 
objective function, which indicates his/her attitude toward risk. If � > .5 the DM is risk averse, if 
� < .5 he is risk seeker and � = .5 models the neutral behavior. 
 
3.2. Some required knowledge from utility theory 
 
Here we examine the utility theory to understand, based on some rational axioms, what should be 
done about a decision in an uncertain environment. In the classical problems of utility theory, 
decision maker considers a situation that stochastic events determine the payoff to him.  
Let X be a set of “prizes” and ℓ be a lottery with payoffs in X. Lottery ℓ is a function p: X→[0,1] such 
that ∑ �(�)= 1��� . �(�) is the probability that the payoff is ��� and when � = {��,��,… ,��} for 
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some finite number n, we will write �(��)= ��. The expected value of a lottery is the sum of the 
payoffs, where each payoff is weighted by the probability that the payoff occur (Gintis, 2009). If the 
lottery ℓ has payoffs ��,��, …, ��  with probability of ��,��, …,�� , one can write 
ℓ = (��,��),(��,��),…,(��,��), with expected value of: 

�(ℓ)= � ����

�

�� �

 
 

(13) 

Feller (1950) argued that Eq. (13) is significant because of the law of large numbers, which states that 
as the number of times a lottery is played goes to infinity, the average payoff converges to expected 
value of the lottery with probability 1. Assuming that individuals have consistent preferences over an 
appropriate set of lotteries, Von Neumann and Morgenstern (1944), Friedman and Savage (1948), 
Savage (1954), and Anscombe and Aumann (1963) showed that expected utility principle will be 
valid in stochastic environment. 
 
The other issue from utility theory, which will be of good use for our argument, is utility functions. 
This is especially important because for practical cases, this is not generally true that one can repeat 
his/her choice for infinite times, and there are many cases that one can choose a lottery only one time. 
To model this condition, scholars have introduced various types of utility functions. The shape of 

utility function depends on the level of risk that DM is looking for, for example ln� and √�
�  are two 

utility function which can model risk aversion and ��  can be used for a risk seeker DM. Therefore, 
the revised measure for assessing the value of a lottery which is more accurate can be written as 
below: 

�(ℓ)= � �� �(��)

�

�� �

 
 

(14) 

where �(��) is the utility of payoff ��for the DM.  
 
3.3. The proposed approach 
 
Consider some processing times in the deterministic model to be uncertain. Every scheduling 
decision is a lottery. In the other words, for a given decision we will have different payoffs based on 
realization of uncertain parameters. If after realization of uncertain parameters all constraints are 
satisfied, the payoff is the objective function stated in Eq. (1). Otherwise, the payoff is a combination 
of the obtained makespan and some function of the difficulties from postponement of some jobs. 
Here, we assume that the distributions of stochastic processing times to be discrete (if not, one can 
use discretization to convert continuous distributions, refer to Birge & Louveaux, 1997). 
Abiding by Eq. (14), we construct the following model: 

Min      �(�)+ � Pr(�)� �(���)�����+ �(���)�����+ �(���)������

�,�,�,�,�

 (15) 

Z ≥ ���+ E[���]     ∀�,� (16) 

���+ ����−  ������ ≤ ���      ∀(�,ℎ)∈ �� , �= 1,2,… ,� (17) 

���+ ����−  ������≤ ��� + ��1 − �����     ∀�,�,�,� (18) 

���+ �����+  ������≥ ��� + ����      ∀�,�,�,� (19) 

��� ≥ 0     ∀�,� ,  ����,�����,�����,�����∈ {0,1}     ∀�,�,�,� (20) 

 
The objective function maximizes the utility of a given decision. For every states of the world, a 
scheduled job may or may not be delayed, if delayed its penalty will be incurred. Constraint (16) has 
an interpretation similar to constraint (2). Here, the only difference is that we have substituted ��� 
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with its expected value, E[���], because doing so will have a negligible effect on the obtained 
makespan. Constraint (17) states that if a job is scheduled simultaneously on more than one machine, 
the penalty should be incurred. Constraints (18) and (19) have similar implications. Constraint (20) 
forces decision variables to take their proper values. 
 
One may simply think that EUP works in the sense of an expected value operator. This is wrong 
because EUP brings the tradeoff between feasibility of the original problem and consequences of a 
given decision (makespan and penalty) in a single term and uses a set of constraints, which will hold 
almost surely. 
 
3.4. Numerical example 
 
Here we use a very simple but useful example to compare EUP with CCP and EVM. 

 
Example1. Considering one job and two machines, we can rewrite the Deterministic JSSP as: 

  

min      ��� + ��� (21) 

��� ≥ ��� + ��� (22) 

���,��� ≥ 0 (23) 

 
where ���,��� = 1,3 ,4 with probability of 1 5⁄  ،3 5⁄  and 1 5⁄ ,  respectively. When constraint (22) 
is violated, processing of job 1 on machine 2 should be delayed. Assume that the DM considers shop 
disorder unfavorable and sets �(��� = disorder) is equal to 2. Considering �(�)= � 2⁄  for 
makespan, one may rewrite (15-20) as: 
 

min      
��� + E[���]

2
+ �

1

5
(2�����)+

3

5
(2�����) +

1

5
(2�����)� (24) 

��� + ������ ≥ ��� + ���� (25) 

��� + ������ ≥ ��� + ���� (26) 

��� + ������ ≥ ��� + ���� (27) 

���,��� ≥ 0     , �����,�����,����� ∈ {0,1} (28) 

 
The above model is a linear one and the optimal solution is: ��� = ����� = ����� = 0 , ����� = 1 , 
��� = 3 with utility of 19 10⁄ . 
 
Using EVM one can write: 

min      ��� + 2.2 (29) 

��� ≥ ��� + 2.2 (30) 

���,��� ≥ 0 (31) 

 
The optimal solution is ��� = 0 and ��� = 2.2. It is obvious that this solution is sub-optimal for the 
model stated by (24-28). In fact, this model cannot consider shop disorder caused by violation of the 
original constraint stated in Eq. (22). Comparing with the concept of safety stock (SS) in inventory 
planning, we may introduce safety time (ST) which, for this example, can be calculated as: �� = 3 −
2.2 = .8. Here, we schedule job 1 on machine 2 a little later, compared with the optimal solution from 
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EVM, to guard against unfavorable events in the implementation stage. This notion is quite similar to 
that of safety stock. 
 
Using CCP one can write: 

min      � (32) 

Pr{��� + ��� ≤  �}≥ � (33) 

Pr{���  ≥ ��� + ���}≥ � (34) 

���,��� ≥ 0 (35) 

With � > .8 we should have ��� −��� ≥ 4 , with 2 < � ≤ .8 we should have ��� −��� ≥ 3  and with 
0 < � ≤ .2  we should have ��� −��� ≥ 1 . This means that the optimal solution for the first interval 
is ��� = 0  , ��� = 4  and , for the second one is ��� = 0  ��� = 3  and  and for the third one is ��� = 0  
 ,��� = 1 . Also � only has an effect on �∗. Putting aside this fact that CCP cannot consider the 
consequences of job postponements, one can see that the quality of CCP solutions, compared with the 
rational approaches of utility theory, is very low. Besides, it is hard to repeat the same analysis 
performed above for large examples and virtually impossible for real cases. 

 
4. A case study 
 
Saipa Group is a reputable automobile manufacturer in Iran and has 10 subsidiaries and many more 
suppliers and contractors. The group has various manufacturing systems including job shops, flow 
shops, assembly lines and fully automated lines. The group produces nearly 20 different products. 
Some of the subsidiaries produce parts and components for low production rate products, such as 
molding dies, and use job shops to maintain flexibility. Table 1 summaries the production 
information for one of these shops which supplies parts for 4 different final products. 
 

Table 1  
Production information 
Item Job Operations 

1 2 3 4 5 

Processing time �� �� 3 5 1 �� 
�� 1 4 �� 2 3 
�� �� 2 5 1 3 
�� 1 3 1 �� �� 
�� �� 2 2 4 2 
�� �� 3 4 �� 1 
�� 4 �� 4 1 1 
�� �� 4 �� 2 �� 
�� 1 �� 2 �� 2 
��� 2 3 �� 1 1 
��� 4 �� �� �� 3 
��� �� �� �� �� �� 

Machine Sequence �� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
�� �� �� �� �� �� 
��� �� �� �� �� �� 
��� �� �� �� �� �� 
��� �� �� �� �� �� 
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In Table 1, some jobs have uncertain processing times represented by ��, ��, ��, �� , ��. 
Historical data shows that these parameters can be satisfactorily modeled by discrete distributions 
shown in table 2. 
 
Table 2  
Discrete distributions of processing times 

�� 1 2 
 

Pr(��) .25 .5 

�� 1 2 3 
 

Pr(��) .25 .5 .25 

�� 1 3 5  

Pr(��) .3 .4 .3  

�� 2 3 4 
 

Pr(��) .55 .25 .2 

�� 1 2 3 5 

Pr(��) .3 .4 .2 .1 

 

The only scarce resource is machine capacity, which should be allocated appropriately to jobs in 
order to minimize makespan. Recently due to introduction of two new jobs (���and ���) scheduling 
has become more important than before. A significant challenge is that some processing times are 
uncertain, and so when implementing a schedule, processing of some jobs on some machines may 
have overlaps which results in shop floor disorders. Production manager has announced that “it is 
better to have no schedule rather than a tight one”, which shows his/her attitude towards the problems 
arisen from coincidence of two scheduled jobs on a machine. Compared with the other jobs,  ��� is 
considered to have more importance and it is undesired to encounter overlapping for this job. 
Therefore, the production manager decides to set �(�12�)= 5  for � = 1,2,…,5 and for all other jobs he 
sets �(���)= 2 . Although it is possible to completely prevent overlapping by using a prolonged 
schedule, but it will result in an expensive makespan. Therefore, one should consider a tradeoff 
between having a better makespan and avoidance from overlapping. For this matter, one may use 
�(�)= �  to model the relative importance of makespan. 
Using the above information, the problem can be written as: 

min      �(�)+ � Pr(�)� �(���)�����+ �(���)�����+ �(���)������

�,�,�,�,�

 (36) 

Z ≥ ���+ E[���]     ∀�,� (37) 

���+ ����−  ������ ≤ ���      ∀(�,ℎ)∈ �� , �= 1,2,… ,� (38) 

���+ ����−  ������≤ ��� + ��1 − �����     ∀�,�,�,� (39) 

���+ �����+  ������≥ ��� + ����      ∀�,�,�,� (40) 

��� ≥ 0     ∀�,� ,  ����,�����,�����,�����∈ {0,1}     ∀�,�,�,� (41) 

 
4.1. Solution method 
 
JSSP problem is regarded as NP-hard problem (Cheng et al., 1996). To solve the above model we use 
a heuristic approach, which incorporates genetic algorithm (GA) in its steps. Genetic algorithm is one 
of the modern metaheuristic algorithms and has been successfully applied to many NP-hard problems 
(Lin, 2008, Alves & Almeida, 2007, Li et al., 2009, Ghorbani & Rabbani, 2009). In addition, GA has 
been used to solve JSSP with satisfactory results compared to other available solution methods 
(Gonçalvesa et al., 2005, Pezzellaa et al., 2008, Qing-dao-er-ji & Wang, 2012, Yusof et al., 2011). 
GA uses the concept of evolutionary computation imitating the natural selection and biological 
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reproduction of animal species. It originates from Darwin’s “survival of the fittest” concept, which 
means good parents produce better offspring. 
 
First, we consider an initial sequence for the scheduling problem. Note that every schedule is feasible 
with regard to constraints (37-40) and it should be feasible only for constraints (41). To make all the 
variable binary we need to redefine ���. In our genetic algorithm, we consider a sequence and set 
���� = 1  if job 1 is the first job in the sequence which visits machine 1 and set ���� = 0, otherwise. 
Similarly, we set ���� = 1  if job � is �th job in the sequence, which visits machine � and set ���� = 0, 
otherwise. Next, we compute ��� as the sum of the “expected processing times” of the jobs coming 
before � in the sequence. Note that here we have 216 scenarios or states of the world: two states for �� 
, three states for each of ��, �� and �� and four states for �� which results in a total of 2 × 3 × 3 × 3 ×
4 or 216 states of the world for our production system. Now we may write the following algorithm: 
 
Algorithm 1 
 
Step1: Candidate an initial population using t��� for a potential sequence of jobs and then compute x�� 
(as the sum of “the expected processing times” of the jobs coming before i in the sequence).    
Step 2: Based on 216 different scenarios postpone some jobs. For this matter set binary variables in a 
way that constraint (41) be satisfied and the best value for the objective function stated in Eq. (36) be 
achieved.   
Step 3: Check the stopping criterion and if confirmed go to step 5, otherwise go to step 4. 
Step 4: Generate the next population using crossover and mutation operators and return to step 2. 
Step 5: Stop. 
 
Obviously, we need some efficient methods or algorithms to find the optimal or near optimal 
decisions in step 2. For this matter we use the following algorithm: 
 
Algorithm 2 
 
Step1: Candidate an initial population of feasible solutions using genetic algorithm respect to 
constraints represented by Eq. (41). 
Step 2: Simplify the objective function in (36) using proposed solution in step 1. 
Step 3: Consider all of the constraints under 216 scenarios and compute value of the objective 
function.  
Step 4: Check the stopping criterion and if confirmed go to step 6, otherwise go to step 5. 
Step 5: Generate the next population using crossover and mutation operators and return to step 2. 
Step 6: Stop. 
 
Algorithms 1 and 2 solve the sequencing problem and now we can proceed to solve the scheduling 
problem. We should determine values of ��� based on values of ����. If we set values of ��� equal to 
the sum of “the expected processing times” of the jobs coming before i in the sequence, the 
probability of job postponements will be about 50 percent. Now we employ the following algorithm 
to balance makespan and adverse consequences of postponements. 
  
Algorithm 3 
 
Step1: Candidate an initial population of feasible solutions for y���, a����, b����, c����. 

Step 2: Simplify the objective function and constraints using the values of y���, a����, b����, c����.  

Step 3: Consider the resulting linear program with the variable x��. Solve this problem subject to the 
sequence specified by values of t��� from algorithm 2. 
Step 4: Check the stopping criterion and if confirmed go to step 6. Otherwise go to step 5. 
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Step 5: Generate the next population using crossover and mutation operators and return to step 2. 
Step 6: Stop. 
 
In all algorithms, the stopping criterion is based on improvement in objective function, i.e. if for two 
successive iterations the improvement fall below a predetermined value, the algorithm will be 
terminated. Here, we solve the problem in 3 steps: algorithms 1 and 2 solve the sequencing problem 
and then algorithm 3 finalizes the problem with scheduling information. The three algorithms were 
coded in MATLAB and the solution of the problem is given in Table 3:  
 
Table 3  
Problem Solution  
Job Machine 

1 2 3 4 5 

�� ��(0) ��(1.9) ��(3.2) ��(5.6) ��(7.2) 

�� ��(1.9) ��(3.5) ��(5.5) ��(7.4) ��(10.5) 

�� ��(7.1) ��(8.3) ��(9.5) ��(11.4) ��(12.8) 

�� ��(6.1) ��(7.7) ��(9.3) ��(14.2) ��(15.5) 

�� ��(3.9) ��(4.5) ��(6.7) ��(7.4) ��(8.5) 

�� ��(5.1) ��(6.7) ��(7.9) ��(8.4) ��(10.1) 

�� ��(6.5) ��(8.5) ��(12.2) ��(14.3) ��(15.1) 

�� ��(0) ��(4.5) ��(6.8) ��(9.3) ��(11.2) 

�� ��(0) ��(1) ��(1.35) ��(3.35) ��(3.7) 

���  ��(1) ��(1.4) ��(3.2) ��(4.1) ��(5.5) 

���  ��(4.5) ��(6.7) ��(8.5) ��(10.3) ��(12.4) 

���  ��(0) ��(1) ��(1.5) ��(1.9) ��(2.4) 

 
 
According to the above solution, total makespan is 15.5 minutes, which is the result of a balance 
between makespan and adverse consequences of postponements. More details about GA can be found 
in Gonçalvesa et al. (2005), Pezzellaa et al. (2008), Qing-dao-er-ji & Wang (2012), Yusof et al. 
(2011). 
 
5. Conclusion 
 
This paper proposed EUP as an appropriate modeling approach for SJSSP under certain practical 
assumptions. It was discussed that EUP could take into account consequences of infeasibility of 
decisions which might be revealed after realization of some unknown parameters. Utility theory 
formed the foundation of proposed approach and two numerical examples clarified some features of 
EUP compared to other popular modeling approaches like CCP and EVM. Finally, to show its 
practical meaningfulness, EUP was applied to a real case and the results were presented.   
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