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 Integrated supply chain includes different components of order, production and distribution and 
it plays an important role on reducing the cost of manufacturing system. In this paper, an 
integrated supply chain in a form of multi-objective decision-making problem is presented. The 
proposed model of this paper considers different parameters with uncertainty using trapezoid 
numbers. We first implement a ranking method to covert the fuzzy model into a crisp one and 
using multi-objective particle swarm optimization, we solve the resulted model. The results are 
compared with the performance of NSGA-II for some randomly generated problems and the 
preliminary results indicate that the proposed model of the paper performs better than the 
alternative method.      
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1. Introduction 
 
During the past few years, there have been significant attempts for providing integrated supply chain 
problems, which includes suppliers, manufacturers, distributors and retailers. The primary objective 
of an integrated supply chain (SC) is to optimize all cost components from converting raw materials 
into final products delivered to end users (Davis, 1993; McDonald & Karimi, 1997; Simchi-Levi et 
al., 2000). Sabri and  Beamon (2000) developed  a comprehensive multi-objective SC to implement 
in simultaneous strategic and operational SC planning. The adapted multi-objective decision analysis 
allows us to use a performance measurement system, which includes cost, customer service levels 
(fill rates), and flexibility.  
 
Syarif et al. (2002) developed a new logistic chain network problem, which is a 0–1 mixed integer 
linear programming model. The design tasks of this problem considered the choice of the facilities to 
be opened and the distribution network design to satisfy the demand with minimum cost. They used 
the spanning tree-based genetic algorithm by implementing Prüfer number representation. The 
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efficiency of the proposed method was examined by comparing its numerical experiment results with 
those of conventional matrix-based genetic algorithm. Zhou et al. (2002) implemented a genetic 
algorithm for a balanced allocation of customers to multiple distribution centers in the supply chain 
network.  
 
Jayaraman and Ross (2003) addressed a system of distribution network design problems 
characterized by multiple product families, a central manufacturing plant site, multiple distribution 
center and cross-docking sites, and retail outlets (customer zones) which demand multiple units of 
various commodities.  
 

Dubois et al. (2003) studied different fuzzy set-based approaches for scheduling which includes 
representing preference profiles and modeling uncertainty distributions. Chen and Chang (2006) 
presented a mathematical programming method for supply chain models with fuzzy parameters. 
Liang (2008) presented an integrated production-transportation planning decision with fuzzy multiple 
objectives in supply chains. Aliev et al. (2007) used fuzzy-genetic approach to aggregate production-
distribution planning in supply chain management. Abido (2007) presented a two-level non-
dominated solutions approach for multi-objective particle swarm optimization. 
 
Liang (2008) presented a fuzzy multi-objective production/distribution planning decisions with multi-
product and multi-time period in a supply chain. Liang extended a fuzzy multi-objective linear 
programming (FMOLP) system with piecewise linear membership function to handle integrated 
multi-product and multi-time period production/distribution planning decisions (PDPD) problems 
where the objectives are formulated in fuzzy form.  
 
The work extends the original multi-objective linear programming to minimize total costs and total 
delivery time associated with inventory levels, available machine capacity and labor levels at each 
source, and predicts demand and available warehouse space at each destination and total budget. The 
proposed FMOLP model presents a systematic framework, which facilitates fuzzy decision-making 
process to adjust the search direction during the solution procedure to obtain a DM’s efficient 
solution. In addition, the DM calculates the value in each cost category by studying the time value of 
money in the proposed model. 
 
Peidro et al. (2009) developed a fuzzy mathematical programming model for supply chain planning, 
which studies supply, demand and process uncertainties. The model was formulated as a fuzzy 
mixed-integer linear programming model, where data were ill-known and modeled by triangular 
fuzzy numbers. Peidro et al. (2010), in another work, studied a fuzzy linear programming based 
method for tactical supply chain planning in an uncertainty environment. Torabi and Hassini (2008) 
presented an interactive possibilistic programming method for multiple objective supply chain master 
planning and their computational results indicated that the proposed fuzzy method relatively 
performed better than other fuzzy techniques.  
 
Bilgen (2010) developed an integration of production and distribution system into a unified model 
and addressed the production and distribution planning problem in a supply chain system, which 
includes the allocation of production volumes among various production lines in the manufacturing 
plants, and the delivery of the goods to the distribution centers. The proposed model was transformed 
into fuzzy models, which considers the fuzziness in the capacity constraints, and the aspiration level 
of costs based on various aggregation operators.  
 
Mula et al. (2010) examined the effectiveness of a fuzzy mathematical programming system for 
supply chain production planning with fuzzy demand. The work incorporated a method of 
possibilistic programming, which makes it possible to model the epistemic uncertainty in demand, 
which could exist in the supply chain production planning problems as triangular fuzzy numbers.   
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Dehbari et al. (2012) presented a supply chain problem where a whole seller/producer distributes 
goods among various retailers. The model was formulated as a more general and realistic form of 
traditional vehicle routing problem (VRP). The problem was solved using a hybrid of particle swarm 
optimization and simulated annealing (PSO-SA) and the results were compared with other hybrid 
method, which was a hybrid of Ant colony and Tabu search. They implemented some well-known 
benchmark problems to compare the results of the proposed model with other method.  
 
Liang and Cheng (2009) applied fuzzy sets for an integrated manufacturing/distribution planning 
decision (MDPD) problems with multi-product and multi-time period in supply chains. The proposed 
model considered time value of money for each of the operating cost categories and using fuzzy 
multi-objective linear programming model (FMOLP) minimizes total costs and total delivery time 
with reference to inventory levels, available machine capacity and other issues, simultaneously. They 
used an industrial case to demonstrate the feasibility of the proposed model for a realistic MDPD 
problem.  
 
In this paper, we present an integrated supply chain in a form of multi-objective decision-making 
problem. The proposed model of this paper considers different parameters with uncertainty using 
trapezoid numbers. We first implement a ranking method to covert the fuzzy model into a crisp one 
and using multi-objective particle swarm optimization, we solve the resulted model. The results are 
compared with the performance of NSGA-II for some benchmark problems and it indicates that the 
proposed model of the paper performs better than the alternative method. The organization of this 
paper first presents the necessary notations and problem formulations in section 2 and the meta-
heuristic method is given in section 3, finally, the paper concludes the results and suggests some 
future works.   

2. Problem statement 
 
2.1. Problem definition 
 
The proposed model of this paper consists of four different stages. In the first stage, the SC considers 
ܵ suppliers providing raw material and work in process for different factories. The second stage 
considers ܲ factories, which produce the final product.  In the third stage, the network includes ܹ 
distribution centers, which are responsible for shipping final products to different locations. Finally, 
the last stage includes ܼ sales zones. The following assumptions hold for the proposed model of this 
paper, 
 

 The supply chain includes suppliers, factories, distributers and sales centers, 
 There are four cost items including purchasing, production, transportation, setup and holding, 
 The input data are inventory capacity, production capacity, consumption rate, demand and 

supply, 
 The outputs are appropriate program for purchasing, production of each factory in each 

period, optimal inventory level in factories and distribution centers, the amount of raw 
material shipped from supplier to factory and from factory to distribution center and from 
distribution center to end customer via sales' centers.  
 

We consider a medium term planning and all parameters are in trapezoid fuzzy numbers. Table 1 
shows the necessary parameters and decision variables, 
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 Table 1 
Necessary notations and decision variables 
Set of indices  
S set of suppliers  (ݏ ൌ 1,2, … , ܵ) 
P set of plants ( ൌ  1,2, … , ܲ) 
W set of distribution centers (DC) (ݓ ൌ 1,2, … , ܹ) 
Z set of customer zones (CZ) (ݖ ൌ 1,2, … , ܼ) 
T set of time periods (ݐ ൌ 1,2, … , ܶ) 
R set of raw materials (ݎ ൌ 1,2, … , ܴ) 
G set of finished products (݃ ൌ 1,2, … , (ܩ
  
Parameters  


rstSC fuzzy purchasing cost of raw material r from supplier s at period t 


gptPC

 

fuzzy variable production cost of finished product g in plant p at period t 

Fgpt
 fixed production cost of finished product g in plant p at period t 

HRrpt
 holding cost of raw material r in plant p at period t 

HGgpt
 holding cost of finished product g in plant p at period t 

TRrspt
 transportation cost of raw material r from supplier s to plant p at period t

 

TGgpwt
 transportation cost of finished product g from plant p to DC w at period t 

TWgwzt
 transportation cost of finished product g from DC w to CZ z at period t 


gztD fuzzy demand of finished product g at CZ z at period t 


gptcap fuzzy production capacity of plant p for finished product g at period t 

βrst maximum supply raw material r by supplier s at period t 


gwtV fuzzy maximum holding capacity for finished product g in DC w at period t 

αrg quantity of raw material r consumed in finished product g 


gwztti  
fuzzy delivery time of one unit finished product from DC to CZ at period t 

   
Decision variables:  
qrst

 quantity of raw material r supplied from supplier s at period t 
xrspt

 quantity of  raw material r shipped from supplier s to plant p at period t 
RIrpt

 inventory level of raw material r in plant p at period t 
ygpt

 quantity of finished product g produced in plant p at period t 
GIgpt

 inventory level of finished product g  in plant p at period t 
WIgwt

 inventory level of finished product g  in DC w  at period t 
mgpwt

 quantity of finished product g shipped form plant p to DC w at period t 
ngwzt

 quantity of finished product g shipped form DC w to CZ z at period t 

1

0gptk


 
  

if finished product g produced in plant p at period t 

Otherwise 

 

2.2 Problems formulation 

The first objective function of the proposed model given in Eq. (1) minimizes total cost of purchasing 
items, setup of each product in each factory, production, inventory cost items including the cost of 
raw material, final product in factory and distribution centers. The objective function of the proposed 
model also minimizes transportation cost of raw material, final product in factory and distribution 
centers. The second objective function given in Eq. (2) minimizes delivery times of products for 
customers.   
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)12(, , , , , ,r s p t g w z  , , , , , , , , 0, {0,1}rst rspt rpt gpt gpt gwt gpwt gwzt gwt gptq x RI y GI WI m n B k   

Constraints (3) ensures that the amount of supplied raw material is, at least, equal to the amount of 
raw material shipped to all factories. Eq. (4) shows that the amount of raw material in each period is 
equal to the amount of inventory in the previous period and the amount of raw material shipped to 
factory in this period minus the consumption in this period. Eq. (5) and Eq. (6) do similarly for 
production and distribution centers. Eq. (7) determines the maximum demand for each distribution 
center. Eq. (8) and Eq. (9) show the maximum production capacity of each production and 
distribution centers, respectively. Eq. (10) determines the maximum supply and Eq. (11) ensures that 
when product is about to be delivered, the production must be setup and accomplished. Finally, Eq. 
(12) ensures the non-negativity of variables.    
 

2.3. Fuzzy model 
 

In this section, we present a fuzzy approach to handle the uncertainty and implement the ranking 
method introduced by Yao and Wu (2000) to defuzzify the fuzzy numbers. The distance for two 
fuzzy numbers  ,D E  is defined as follows,     

 )13(

 

        
1

0

1
, ( ) ,

2 L R L Rd D E D D E E d                                
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where    ,L RD D  are the left and right sides of fuzzy numbers with cut  . A trapezoid number 

  1 2 3 4, , ,A a a a a is defined as follows, 

Let  ,A B be two fuzzy numbers, the ranking is defined as follows,  

     ,0 ,0A B d A d B  
    

 )15(

The mathematical model given in Eq. (1) to Eq. (12) in fuzzy form is as follows, 

 

 

)16(

 1 2 3 4
1

1 2 3 4

1
min  

4

1
            ( )

4

            

 

rst rst rst rst rst
r s t

gpt gpt gpt gpt gpt gpt gpt gpt gpt
g p t

rspt rspt gpwt gpwt gwzt gwzt
r s p t g p w t g w z t

Z SC SC SC SC q

F z PC PC PC PC y HG GI

TR x TG m TW n

   

     
 

  

 





  
           rpt rpt gwt gwt

r p t g w t

HR RI HW WI  

 

)17(

 1 2 3 4
2

1
min 

4 gwzt gwzt gwzt gwzt gwzt
g w z t

Z ti ti ti ti n   

)18(

 

, ,g z t  

subject to 

     
 1 2 3 41

4 gzt gzt gzt gzt gwzt
w

D D D D n   
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 1 2 3 41

4gpt gpt gpt gpt gpt gpty cap cap cap cap k     

)20(, ,g w t  

      
 1 2 3 41

4gpwt gwt gwt gwt gwt
p

m V V V V     

The other equations are the same as the crisp model.  
 
3. Multi objective particle swarm optimization (MOPSO) 
 
Kennedy and Eberhart (1995) are believed the first who introduced particle swarm optimization 
(PSO). The algorithm intuitively uses how fishes and birds behave in practice, which is moving as a 
group in one direction and close to each other. This happens by exchanging information among 
members, it starts with some initial solutions, and the quality of solutions is improved to reach better 
solutions. In this algorithm, pbest is the best local solution and gbest is the global best solution, which 
are chosen from local and global particles. In each iteration, position and speed of each particle are 
calculated as follows, 

           1 1 2 2( 1)v k k v k c r p k x k c r g k x k               , (22)

 )14(         
1

1 2 1 4 4 3 1 2 3 4

0

1 1
,0 α α α .

2 4
d A a a a a a a d a a a a             
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   ( 1) 1x k x k v k    , (23)

where v is the speed of particle, x is the position of each particle, p and g are pbest and gbest, 

respectively,  and   are contraction and inertia weights, respectively, 2 1and c c factors representing 

personal and social characteristics and we normally assign a value 2 for both and 1 2 and r r are random 

numbers in interval of [0,1]. The first multi-objective PSO was proposed by Moore and Chapman 
(1999) and Coello Coello and Lechuga (2002) extended the method by introducing the following,  
 

           1 1 2 2( 1)v k k v k c r p k x k c r rep h x k               . (23)

 

In this method, rep keeps all non-dominated solutions achieved so far.  

3.1 MOPSO implementation 
 
The following summarizes the implementation MOPSO. 
 
Step 1: Set the time counter t = 0 and generate randomly n particles, {݆ܺሺ0ሻ, ݆ ൌ  1, … , ݊}, where 
݆ܺሺ0ሻ  ൌ  ሾ݆ݔ, 1ሺ0ሻ, … , ,݆ݔ ݉ሺ0ሻሿ. ,݆ݔ ݇ሺ0ሻ is generated by randomly choosing a value with uniform 
probability over the thk  best parameter search space min max[ , ],k kx x  Similarly, produce randomly initial 

velocities of all particles, ሼܸ݆ሺ0ሻ, ݆ ൌ  1, … , ݊ሽ, where Vj(0) = [vj,1(0),…, vj,m(0)]. vj,k(0) is produced 
by randomly choosing a value with uniform probability over the thk  dimension min max[ , ]k kv v . Each 

particle in the initial population is updated using the objective problems. For each particle, set Sj*(0) 
= {Xj(0)} and the local best Xj*(0) = Xj(0), j = 1, …, n. Search for the non-dominated solutions and 
form the non-dominated global set S**(0). The nearest member in S**(0) to Xj*(0) is selected as the 
global best Xj**(0) of the thj  particle. Now, set the external set to S**(0) and update the initial value 
of the inertia weight w(0). 
 
Step 2  : Update the time counter t = t+ 1, 
 
Step 3: Update the inertia weight w(t) = αw(t - 1), 
 
Step 4: Using the local best Xj*(t) and the global best Xj**(t) of each particle,  j = 1, …, n, the thj  

particle velocity in the thk  dimension is updated based on Eq. (23), 
 
Step 5: Based on the updated velocities, each particle changes its position according to the Eq. (22), If 
a particle violates its position limits in any dimension, set its position at the proper limit, 
 
Step 6: Update the position of the thj  particle by adding to Sj*(t). Truncate the dominated solutions in 
Sj*(t) and update them, accordingly, If the size of Sj*(t) exceeds a pre-specified value, reduce the size 
to its maximum limit using the hierarchical clustering algorithm, 
 
Step 7: Form the union of all non-dominated local sets and the non-dominated solutions, where the 
union includes members in the non-dominated global set S**(t), Reduce the size by hierarchical 
clustering algorithm if it exceeds a pre-specified value, 
 
Step 8: Update the external Pareto-optimal set as follows, 
(a) Copy the members of S**(t) to the external Pareto set, 
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(b) Search the external Pareto set for the non -dominated individuals and eliminate all dominated 
solutions from the set, 
(c) Reduce the set by means of clustering, if the number of the individuals externally stored in the 
Pareto set exceeds the maximum size, 
 
Step 9: Measure the individual distances between members in Sj*(t), and members in S**(t) in the 
objective space. If Xj*(t) and Xj**(t) are the members of Sj*(t) and S**(t), respectively, which give 
the minimum distance, Select them as the local best and the global best of the thj  particle, 
respectively, 
 
Step 10: Stop, if the number of iterations exceeds the maximum then stop, otherwise go to step 2. 
Fig. 1 shows details of the proposed MPPSO.  
 

1: Initialize population and velocity, 
2: Evaluate the particles, 
3: archive=nondominated solutions, 
4: Determine personal bests of all particles, 
5: for t=1 to max_iter repeat steps 6 to 9, 
6:    Update i’s velocity and position, 
7:      If i moves too slowly, reset its position and velocity, 
8:      Evaluate i, 
9: Update personal best and the archive. 

Fig. 1. Pseudo code for MOPSO 
4. Computational results 

 
We have solved the proposed model of this paper using eight different examples, which are randomly 
generated. The performance of the proposed model has been compared with an alternative method, 
NSGA-II. All codes have been coded on MATLAB on a PC computer with Intel ® Core™ Due CPU 
processor having 2.2 GB RAM. 

 
Table 2 
The values of parameters for sample problems   

Distribution Parameter 
uniform (12,18) rptHR                               

uniform (18,25) gptHG                                  
 

uniform (18,20) gwtHW                             
 

uniform (5,10) rsptTR
 

uniform (5,15) gpwtTG                                  
 

uniform (6,12) gwztTW                                    
 

uniform (750,1500) gptF                                                     
 

uniform (1,3) rg                                      
 

uniform (8,12) 
rstSC

uniform (15,20) 
gptPC

uniform (2,9) 
gwztti  

 
One of the most important issues in evaluating the performance of an algorithm is to have appropriate 
attributes. In this paper, we choose three attributes to compare the performance of the proposed model 
with the performance of the alternative NSGA-II, which are the number of Pareto-optimal solutions 
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(NPS), distance (SM) and the diversity of non-dominated (DM) solutions. The second attributes is 
measured using the following,  

 
1

1

221

1

n

i
iS d d

n 

 
   

  

where id is the distance to thi solution in non-dominated solutions, n is the number of non-dominated 

solutions and d is the average for id and the smaller, the better. Diversity is calculated as follows, 

 
1

' 'max
n

i
i

iD x y


  , 

where ' '
i ix y is the Euclidian norm between non-dominated solution '

ix and '
iy . Table 3 and Table 

4 summarize the near-optimal solutions for the proposed MOPSO and  NSGA-II. 
 
Table 3 
The results of the proposed model 

CPU time DM SM NPS Z W S P Problem 

7.83 0.736 0.022 7 2 2 2 3 1 
9.49 0.667 0.023 5.66 6 4 2 3 2 
10.36 1.058 0.010 6 6 4 3 5 3 
11.86 0.798 0.004 7 8 6 3 5 4 
19.21 0.589 0.005 8.33 8 6 4 10 5 
23.69 0.593 0.085 6.66 10 8 4 10 6 
32.20 0.601 0.004 5 10 8 5 20 7 
37.17 0.685 0.004 7 12 10 5 20 8 

 
Table 4 
The results of NSGA-II 

CPU time DM SM NPS Z W S P Problem 

55.88 1.116 0.006 4.6 2 2 2 3 1 
56.56 0.634 0.020 4.4 6 4 2 3 2 
57.09 0.647 0.003 7 6 4 3 5 3 
58.64 0.622 0.002 5.8 8 6 3 5 4 
62.93 0.667 0.002 4.6 8 6 4 10 5 
64.35 0.496 0.001 4.4 10 8 4 10 6 
69.68 0.405 0.001 5 10 8 5 20 7 
71.12 0.449 0.001 5.4 12 10 5 20 8 

 
Table 5 demonstrates the maximum and the minimum amounts for attributes and Table 6 shows the 
average numbers of solutions found for two methods, which indicates that MOPSO presents better 
performance compared with NSGA-II. It is also clear that the proposed method of the paper needs 
significantly less amount of time than alternative method.  
 
Table 5 
The maximum and minimum numbers for different attributes and CPU time in sec 

CPU time  DM  SM  NPS Method 
Min max  min max  min max  min max 

7.83 59.35  0.589 1.075  0.003 0.085  5 8.33 MOPSO 

55.88 71.49  0.284 1.116  0 0.02  4.4 7.2 NSGA-II 
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Table 6 
The average numbers for two algorithms 
                               NPS                SM                          DM                                  CPU time 
MOPSO                6.77                 0.012                     0.793                                    23.40 
NSGA-II               5.72                 0.002                     0.564                                    62.61 
 

Fig. 2 demonstrates the performance of the proposed model in terms of different attributes. As we can 
observe from the results, the proposed model relatively performs better than the alternative method 
for some test problems.  

  

  

 
 

Fig. 2. The performance of the MOPSO vs. NSGA-II 

5. Conclusion 

In this paper, we have presented an integrated supply chain in a form of multi-objective decision-
making problem. The proposed model of the paper studied different parameters with uncertainty 
using trapezoid numbers. We first implemented a ranking method to covert the fuzzy model into a 
crisp one and using multi-objective particle swarm optimization, the resulted model has been solved. 
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The results have been compared with the performance of NSGA-II for some benchmark problems, 
which was promising in terms of different attributes as well as CPU time. As future study, it would be 
a good idea to compare the performance of the proposed model of this paper with some other 
techniques such as Niched Pareto genetic algorithm (NPGA), strength Pareto evolutionary algorithm 
(SPEA) and multi- objective simulated annealing (MOSA) and we leave it for interested researchers 
for future studies.  
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