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 Additive Manufacturing (AM) is an automated process of fabricating three-dimensional (3D) phys-
ical objects from a 3D-CAD data by adding layers of materials one upon another through a print 
head or nozzle without using any tooling components or machining environments. Due to freedom 
in design, any complex shape can be produced using this process. Fused Deposition Modeling 
(FDM) is one such AM technology that is commonly used for its simplicity, environment friendli-
ness and low requirement for process monitoring. However, this technology is limited only to 
small-scale production due to high cost and high build time. The present work focuses on the de-
velopment of a framework for parametric optimization of the FDM process using multi-objective 
optimization based on ratio analysis (MOORA). A CAD model of the cam follower mechanism has 
been prepared in the Solidworks platform and used in this experiment for optimization of build time 
and cost which have been considered as response variables of the experiment. The experiment has 
been conducted following the full factorial design of experiment (DoE) method. 
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1. Introduction 
 

Additive Manufacturing (AM) technology was first introduced in 1987 and at that time it was called Generative Manufacturing 
or Rapid Prototyping, as it was used for making prototypes and porous structures (Gebhardt, 2005; Nadernezhad et al., 2019). 
With the help of topology optimization to reduce the total weight (which reduces the fuel/energy consumption) of an aircraft, 
designers started using titanium instead of aluminium to make some components. As titanium is an expensive material, there-
fore, to reduce the cost of manufacturing, material wastage must be reduced, which can be implemented only by additive 
manufacturing technology as nearly zero material wastage is associated. It also reduces the lead time to marketing and gives 
design freedom (Orr, 2015). 

This paper mainly considers an extrusion-based AM process known as material extrusion or fused deposition modeling (FDM) 
to make prototypes for product development purposes (Papazetis and Vosniakos, 2019). In this process, materials come in the 
form of wire through a heated chamber or nozzle and are deposited over a build platform (Fig. 1) according to the geometry 
of the model, which was previously prepared through CAD software. Generally, thermoplastic materials are used in this 
process which are deposited in semi-molten form. The products produced using the FDM process can be used as models for 
educational or research purposes. The experiments for this process have been conducted using simulation software named 
IdeaMaker, in which values of the parameters have been varied according to the full factorial design. After collecting the 
responses, the same have been analyzed using the MOORA method for optimization. 

Among all the researchers, Hopkinson and Dickens first reported a cost analysis of AM comparing it with the traditional 
method of injection moulding (IM) (Hopkinson and Phill, 2020). Later, research has been conducted and the process has been 
used in a wide range of applications in aerospace and defense, automotive, biomedical, robotics and automation, architecture 
and construction, rapid prototyping, product design, education and research purposes and in many other industries (Sames et 
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al., 2016). Several techniques of AM technology including the FDM process gained popularity due to their feature of mass 
customization. A lot of research has been carried out to identify critical factors and their levels that affect the performance of 
AM processes. Nancharaiah (2011) used three parameters layer thickness, air, gap and raster angle to conduct designed ex-
periments and found that layer thickness and air gap affect the processing time greatly. Ali et al. (2014) chose Taguchi design 
of experiment (DoE) algorithms and used parameters like Slice height, road width, raster angle, number of contours, air gap, 
STL deviation & angle to determine the signal-to-noise ratio. In their research build time and material consumption was 
considered to lower the better type criteria. Baich et al. (2015) worked on infill patterns using cost sensitivity analysis and 
found that double-dense infill design is the most expensive. Also, they found that sparse build infill consumes the least time 
and low-density infill provided the largest cost savings. Liu et al. (2017) considered deposition orientation, layer thickness, 
deposition style, raster width, and raster gap as critical factors for analysis using the Taguchi method and ANOVA. In their 
research, the mechanical properties of FDM, products were optimized with the selection of best setting parameters. Rathee et 
al. (2017) worked on contour width, slice height, orientation, raster angle, raster width and air gap and used Response Surface 
Methodology (RSM) for analysis. They found that spatial orientation had a large impact on build time. Wu (2018) considered 
four parameters namely layer height, print time, printing supplies and print size accuracy for the study. In their research, the 
shortest print time was achieved at a print height of 0.14 mm fulfilling the print quality. Nandernezhad et al. (2019) chose 
three parameters as layer thickness, infill percentage, and infill pattern and used differential scanning calorimetry to study the 
effect of changing the mesostructure of 3D printed parts on the corresponding mechanical and thermal behavior. Papazetis et 
al. (2019) employed the Taguchi method, ANOVA and artificial neural network for analysis considering factors such as layer 
thickness, flow tweak, printing speed and orientation. In their research factor windows were identified in which material 
deposition stability was retained and defect-free parts were produced. Luca et al. (2020) used a single parameter, build orien-
tation and found the driving factors for build time estimation and total build cost evaluation. Jaiswal et al. (2018) used a novel 
approach to identify optimal build orientation that minimizes both geometric and material composition errors. Fritz and Kim 
(2020) used two factors: surface area and support volume. In their research structural compliance was reduced along with the 
AM cost and time. 

The objective of this paper is to determine the settings of process parameters for optimizing the responses. A multiple-criteria 
decision-making model consisting of a fuzzy analytic hierarchy process (FAHP) and multi-objective optimization based on 
ratio analysis (MOORA) has been chosen for this purpose. The FAHP method has been used to determine subjective weights 
of criteria whereas the MOORA method determines the performance score for each treatment combination of the experiment. 

The paper is organized as follows. Section 2 provides a selection of process parameters and experimental planning. Section 3 
conducts the optimization method using the MOORA method. Section 4 provides the results and discussion. Finally, section 
5 reports the conclusion.   
 
2. Selection of process parameters and experimental planning 

Fig. 1. FDM Process (Source: http://www/peparp.org 

From the previous literature it has been found that the layer height and build orientation have much effect on the print time as 
well as print quality. Also, the previous research indicates that the properties like surface roughness are affected by the travel 
speed of the nozzle. Another factor namely build orientation influences the build time greatly. So, for the present research, 
we have selected three parameters (i) layer height, (ii) print speed and (iii) build orientation to run the experiment. Here, layer 
height represents the distance between the tip of the nozzle and the build platform, over which the material is extruded. It is 
also the thickness between two adjacent layers. Print speed, refers to the velocity of the nozzle during the fabrication of the 
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part over the build platform in the X-Y plane and build orientation, refers to the rotation of the part concerning the Z-axis 
before the starting of printing.  

Three factors each having three levels of values are shown in Table 1. The range and the values are selected from published 
literature and FDM machine specifications provided by the manufacturer and are tabulated in Table 2. The printing operation 
has been conducted as per the design of experiment (DoE) based on full factorial design. Using this technique, experiments 
having more than one input factor or parameter can be manipulated to determine their effects on the desired output or response. 
Full factorial design is a part of DoE, which consists of two or more inputs each having its discrete levels and all their possible 
combinations are considered for optimization. 

For this present work, for each experiment, the following two variables have been chosen as response variables. A CAD model 
of the cam follower mechanism has been developed for experimenting using FDM technology (Di Angelo et al., 2020). 
 
Table 1 
Factors and their levels for the experiment 

Parameter Unit Level 
-1 0 1 

Layer height mm 0.15 0.25 0.35 
Print speed mm/s 30 65 100 
Orientation degree 0 45 90 

 
(i) Total time consumed for each experiment: Here total time includes pre and post-processing time and actual 

building or printing time. The pre-processing time is nearly similar for all the experiments and is approximated 
as 10 minutes. The post-processing time mainly depends upon the size and complexity of the part. Post-pro-
cessing time for the cam-follower mechanism (Dimension: 33.22×110×50.83 mm3) is approximated as 20 
minutes and actual printing time which varies for different parameter settings has been obtained from the exper-
iment.   

(ii) Cost of printing: It has been determined as a product of machine hour rate (expressed in Rupees per hour) and 
actual printing time (expressed in hours). Machine hour rate has been determined by taking the sum of financial 
cost, power cost, tooling cost and labor cost on an hourly basis. For Raise3D make FDM machine the calculated 
machine hour rate becomes Rs. 437.00 per hour. 

 

The number of experiments can be calculated for full factorial design as mn, where m is the number of levels of values and n 
is the number of factors used. Here we are using three factors each having three levels of values. So, twenty-seven numbers 
of experiments were conducted. 

Table 2 
The principal technical specifications of the 3D printing machine 

Item Specification 
Company Raise3D 
Machine Raise3D Pro2 

Maximum dimension 305 × 305 × 300 mm3 
Positioning Resolution 0.78125 micron on the X/Y axis 

Nozzle diameter 0.2, 0.4, 0.6, 0.8 and 1.0 mm 
Filament diameter 1.75 mm 

Supported Materials PLA, ABS, HIPS, PC, TPU, NYLON, PETG, etc. 
Print head Travel Speed 30-150 mm/sec 

 
Another important aspect of the experiment is to select suitable printing material. Polymers are the most popular and widely 
used material for making parts using the FDM process. Due to better mechanical properties and availability, poly lactic acid 
(PLA) material has been used in the simulation of the experiment. For the biodegradable property of PLA, it is also called 
biodegradable plastic. 

3. Research methodology 

The domain of multiple criteria decision making (MCDM) has been enriched by the contribution of many researchers in 
respect of introducing many exotic methods such as AHP, DEMATEL, ISM, ANP, TOPSIS, MOORA, VIKOR, ELECTRE, 
etc. to facilitate decision making over the last fifty years (Roy, 1968; Wang  et al., 2016; Dixit et al., 2020; Mohammadfam 
et al., 2022). Multi-objective optimization based on ratio analysis (MOORA) is selected as the research methodology for the 
optimization of the selected parameters. For optimization of response variables, the Fuzzy AHP method has been used to 
determine subjective weights for total time consumed and printing cost (Chang, 1996). The performance score of experiments 
with various parameter settings has been determined using the MOORA method (Brauers, 2004; Brauers & Zavadskas, 2006). 
This method has been chosen because of its simplicity and robustness of the result. The method works as follows. 
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3.1 MOORA method 
 

The working of the MOORA method can be described in the following steps. 

Step 1. Form decision matrix, D= [Xij]mxn, where Xij becomes the outcome of the experiment for ith alternative against the jth 
criterion. Here, m= number of alternatives and n= number of criteria. 

Step 2. Normalize the decision matrix using the following formula. 
 𝑥௜௝∗ = ௫೔ೕට∑ ௫೔ೕమ೘೔సభ     (for j=1,,2….n)  (1) 

 
Step 3. Determine the performance score (yi) as algebraic sum weighted normalized elements of the decision matrix. Here the 
subjective weights (wj) have been determined using the extent analysis method of fuzzy AHP  as introduced by Chang (1996),  
Asadabadi et al. (2019) and Saaty (1990).   
 𝑦௜ =෍𝑤௝௚

௝ୀଵ 𝑥௜௝∗ − ෍ 𝑤௝௡
௝ୀ௚ାଵ 𝑥௜௝∗  

 
(2) 

 
where, j = 1, 2,…g for the responses to be maximized (higher the better type) and j = g + 1, g + 2,……n for the responses to 
be minimized (lower the better type). 
The alternatives are ranked in descending order of performance score (yj). 

3.2 Model preparation for the experiment 
 
For experimenting a cam follower model (shown in Fig. 2) has been prepared using the Solidworks platform. The model is 
then converted into (.stl) file format, as 3D printing software only supports this file type. Thus, the converted model is trans-
ferred to ideaMaker software for the purpose of slicing followed by the execution of further steps for printing. 
 

 
Fig. 2. Cam follower mechanism 

 
3.3 Application 
 
In this paper, three factors have been used along with three levels of values. So total of twenty-seven (33) experiments have 
been conducted according to full factorial design. Due to the Covid-19 pandemic situation access to the laboratory for doing 
actual experiments became a constraint. Therefore, the experiments were conducted through simulation using ideaMaker 
software. The machining parameters that have been kept fixed throughout the experiment are shown in Table 3. 
 
Table 3 
Slicing parameters set for ideamaker software 

Fixed Parameters Values 
Infill density 30% 
Extrusion width 0.40 mm 
Infill pattern type Grid 
Support printing speed 100 mm/sec 
Platform addition Raft only 
Support infill type Honeycomb 
Heated bed temperature 60°C 
Primary bed temperature 205°C 

 

In the present work on the basis of experimental results, a decision matrix with 27 sets of experiments (m=27) with 2 response 
variables (No. of performance evaluation criteria, n=2) has been formed and shown in Table 4. The performance of each set 
of experiments considered as an alternative has been determined using the Fuzzy AHP-MOORA method. For this purpose, 
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subjective weights of evaluation criteria have been determined following the steps of the extent analysis method of fuzzy AHP 
as introduced by Chang (1996). Thus, the weights for the criteria of printing time and printing cost become (0.637, 0.363).  
 

Table 4 
Decision matrix showing coded parameter values with performance evaluation criteria 

Experimental run order Coded parameter values Performance evaluation criteria 
Layer height Print speed Orientation Printing time (Hr.) Printing cost (Rs.) 

1 -1 -1 -1 6.873 3004 
2 -1 -1 0 8.029 3509 
3 -1 -1 1 7.677 3355 
4 -1 0 -1 4.813 2103 
5 -1 0 0 6.028 2634 
6 -1 0 1 5.624 2458 
7 -1 1 -1 4.274 1868 
8 -1 1 0 5.64 2465 
9 -1 1 1 5.269 2303 
10 0 -1 -1 4.234 1850 
11 0 -1 0 4.928 2154 
12 0 -1 1 4.715 2060 
13 0 0 -1 2.928 1280 
14 0 0 0 3.727 1629 
15 0 0 1 3.486 1523 
16 0 1 -1 2.678 1170 
17 0 1 0 3.494 1527 
18 0 1 1 3.269 1429 
19 1 -1 -1 3.582 1565 
20 1 -1 0 4.15 1814 
21 1 -1 1 3.301 1443 
22 1 0 -1 2.489 1088 
23 1 0 0 3.151 1377 
24 1 0 1 2.952 1290 
25 1 1 -1 2.281 997 
26 1 1 0 2.954 1291 
27 1 1 1 2.769 1210 

 
In the next step, the criteria for all the alternatives are normalized using Eq. (1) and subsequently, the corresponding perfor-
mance score has been determined as a weighted algebraic sum of normalized elements using Eq. (2). As both of the perfor-
mance evaluation criteria are lower the better type, the computed performance scores become negative for all alternatives. 
The same has been presented in Table 5. 
 

Table 5 
Performance score for each parametric combination of the experiment 

Experimental run order Coded parameter values Performance score (yi) Layer height Print speed Orientation 
1 -1 -1 -1 -0.29145 
2 -1 -1 0 -0.34047 
3 -1 -1 1 -0.32554 
4 -1 0 -1 -0.20409 
5 -1 0 0 -0.25562 
6 -1 0 1 -0.23849 
7 -1 1 -1 -0.18124 
8 -1 1 0 -0.23916 
9 -1 1 1 -0.22343 
10 0 -1 -1 -0.17954 
11 0 -1 0 -0.20897 
12 0 -1 1 -0.19994 
13 0 0 -1 -0.12416 
14 0 0 0 -0.15804 
15 0 0 1 -0.14782 
16 0 1 -1 -0.11356 
17 0 1 0 -0.14816 
18 0 1 1 -0.13862 
19 1 -1 -1 -0.15189 
20 1 -1 0 -0.17598 
21 1 -1 1 -0.13998 
22 1 0 -1 -0.10555 
23 1 0 0 -0.13362 
24 1 0 1 -0.12518 
25 1 1 -1 -0.09673 
26 1 1 0 -0.12526 
27 1 1 1 -0.11742 
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4. Results 

The Performance score of every parametric combination based on the MOORA method has been determined and presented 
in Table 6. The Table shows that the largest performance score is associated with experiment number 25 at parameters of 
layer height of 0.35mm (level 1), print speed of 100mm/s (level 1) and orientation of 0° (level -1). 
 
Table 6 
Ranking of parametric combinations based on performance score 

Experimental run order Layer height Print speed Orientation Score Rank 
25 1 1 -1 -0.09673 1 
22 1 0 -1 -0.10555 2 
16 0 1 -1 -0.11356 3 
27 1 1 1 -0.11742 4 
13 0 0 -1 -0.12416 5 
24 1 0 1 -0.12518 6 
26 1 1 0 -0.12526 7 
23 1 0 0 -0.13362 8 
18 0 1 1 -0.13862 9 
21 1 -1 1 -0.13998 10 
15 0 0 1 -0.14782 11 
17 0 1 0 -0.14816 12 
19 1 -1 -1 -0.15189 13 
14 0 0 0 -0.15804 14 
20 1 -1 0 -0.17598 15 
10 0 -1 -1 -0.17954 16 
7 -1 1 -1 -0.18124 17 
12 0 -1 1 -0.19994 18 
4 -1 0 -1 -0.20409 19 
11 0 -1 0 -0.20897 20 
9 -1 1 1 -0.22343 21 
6 -1 0 1 -0.23849 22 
8 -1 1 0 -0.23916 23 
5 -1 0 0 -0.25562 24 
1 -1 -1 -1 -0.29145 25 
3 -1 -1 1 -0.32554 26 
2 -1 -1 0 -0.34047 27 

 
5. Discussion 

From the result, it is observed that, for making a cam follower arrangement using the FDM process with PLA material, 
parametric combinations used in experiment No. 25 are the optimum as it produces the best performance score. The average 
performance score (yi) corresponding to each level of process parameter has been calculated by taking the arithmetic mean of 
all performance scores of that particular level and the same is presented in Table 7. Irrespective of the responses at the indi-
vidual level, a higher performance score indicates better performance at the corresponding parameter setting. It has been 
observed from the values of average yi (Table 7) that the optimal responses obtained are the same as the values obtained 
through the yi values shown in Table 6. The range of average yi of the FDM parameters at different levels has been computed 
and obtained as 0.12532 for layer height, 0.07002 for print speed and 0.03746 for orientation. As it is observed that the highest 
score, i.e., 0.12532 corresponds to layer height, it can be concluded that layer height becomes the most significant controllable 
parameter for this FDM process. The order of significance of controllable parameters based on the difference between the 
maximum and the minimum performance scores is layer height, print speed and orientation. The ranking of the parameter 
combinations based on yi in descending order has been shown in Table 6. It is understood that the optimal setting of process 
parameters yielding optimal responses confirms the parametric combination with the highest performance score. 
 
Table 7 
Response table for performance score at each level 

Process parameter Average performance score (yi) Max-Min Level -1 Level 0 Level 1 
Layer height -0.2555 -0.15765 -0.13018 0.12532 
Print speed -0.22375 -0.16584 -0.15373 0.07002 
Orientation -0.16091 -0.19837 -0.19238 0.03746 

 
5. Conclusion 

Additive manufacturing has the potential to redefine manufacturing in certain areas. This paper uses a methodology based on 
the design of experiments and MOORA to optimize the printing time and cost of the FDM process for making a cam follower 
model. From the result, it is clear that if the layer thickness is increased the print time decreases and with an increase in print 
speed. The build orientation has a significant effect on print time. Keeping all the parameters constant, with the changing of 
orientation, print time also changes. The outcomes of the present work are:  
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(i) A decision-making framework has been developed to optimize FDM process parameters using MOORA. 
(ii) Based on the performance score, the optimum setting of parameters is a layer height of 0.35mm (level 1), print 

speed of 100mm/s (level 1) and orientation of 0° (level -1). The analysis also shows that layer height becomes 
the most significant parameter for the FDM process. 

(iii) The analysis also reveals that the order of significance of controllable parameters based on the difference be-
tween the maximum and minimum performance score is layer height, print speed and orientation. 

 
Therefore, the industry and academia in the domain of additive manufacturing can explore and exploit this parametric opti-
mization model in general and the outcomes of this research in particular to enhance the quality of the manufacturing process. 
 
Acknowledgements 
 
I would like to thank Prof. Bivash Mallick, Prof. Manik Chandra Das and Anjan Choudhury for their encouragement and 
contribution to the work. 
 
Conflict of interest 
 
The author declares no potential conflict of interest concerning the research, authorship, and/or publication of this article. 
 
Submission declaration 
 
The submitted work has not been published previously anywhere in any language. 
 
References 

Ali, F., Chowdary, B. V., & Maharaj, J. (2014, September). Influence of some process parameters on build time, material 
consumption, and surface roughness of FDM processed parts: inferences based on the Taguchi design of experiments. In 
Proceedings of The 2014 IACJ/ISAM Joint International Conference. 

Asadabadi, M. R., Chang, E., & Saberi, M. (2019). Are MCDM methods useful? A critical review of analytic hierarchy 
process (AHP) and analytic network process (ANP). Cogent Engineering, 6(1), 1623153.  

Baich, L., & Manogharan, G. (2015). Study of infill print parameters on mechanical strength and production cost-time of 3D 
printed ABS parts. In 2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin. 

Brauers, W. K. (2004). Multiobjective optimization (MOO) in privatization. Journal of Business Economics and Manage-
ment, 5(2), 59-65.  

Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition econ-
omy. Control and cybernetics, 35(2), 445-469. 

Chang, D. Y. (1996), Applications of the extent analysis method on fuzzy AHP. European journal of operational re-
search, 95(3), 649-655.  

Di Angelo, L., Di Stefano, P., Dolatnezhadsomarin, A., Guardiani, E., & Khorram, E. (2020). A reliable build orientation 
optimization method in additive manufacturing: The application to FDM technology. The International Journal of Ad-
vanced Manufacturing Technology, 108(1), 263-276.  

Dixit, A., Suvadarshini, P., & Pagare, D. V. (2022). Analysis of barriers to organic farming adoption in developing countries: 
a grey-DEMATEL and ISM approach. Journal of Agribusiness in Developing and Emerging Economies, (ahead-of-print).  

Fritz, K., & Kim, I. Y. (2020). Simultaneous topology and build orientation optimization for minimization of additive manu-
facturing cost and time. International Journal for Numerical Methods in Engineering, 121(15), 3442-3481. 

Gebhardt, A. (2011). Understanding additive manufacturing. Carl Hanser Verlag, Munich, Germany. 
Hamurcu, M., & Eren, T. (2022). Applications of the MOORA and TOPSIS methods for decision of electric vehicles in public 

transportation technology. Transport, 37(4), 251-263.  
Hopkinson, N., & Dickens, P. (2000). A comparison between stereolithography and aluminium injection moulding tooling. 

Rapid prototyping journal, 6(4), 253-258. 
Jaiswal, P., Patel, J., & Rai, R. (2018). Build orientation optimization for additive manufacturing of functionally graded ma-

terial objects. The International Journal of Advanced Manufacturing Technology, 96(1), 223-235.  
Liu, X., Zhang, M., Li, S., Si, L., Peng, J., & Hu, Y. (2017). Mechanical property parametric appraisal of fused deposition 

modeling parts based on the gray Taguchi method. The International Journal of Advanced Manufacturing Technology, 
89(5), 2387-2397. 

Mohammadfam, I., Khajevandi, A. A., Dehghani, H., Babamiri, M., & Farhadian, M. (2022). Analysis of Factors Affecting 
Human Reliability in the Mining Process Design Using Fuzzy Delphi and DEMATEL Methods. Sustainability, 14(13), 
8168. 

Nadernezhad, A., Unal, S., Khani, N., & Koc, B. (2019). Material extrusion-based additive manufacturing of structurally 
controlled poly (lactic acid)/carbon nanotube nanocomposites. The International Journal of Advanced Manufacturing 
Technology, 102(5), 2119-2132. 



 188 

Nancharaiah, T. (2011). Optimization of process parameters in FDM process using design of experiments. International Jour-
nal of Emerging Technology, 2(1), 100-102. 

Orr, F. M. (2015, November). 2015 quadrennial technology review. In Proceedings of the International Conference for High 
Performance Computing, Networking, Storage and Analysis. 

Papazetis, G., & Vosniakos, G. C. (2019). Mapping of deposition-stable and defect-free additive manufacturing via material 
extrusion from minimal experiments. The International Journal of Advanced Manufacturing Technology, 100(9), 2207-
2219.  

Rathee, S., Srivastava, M., Maheshwari, S., & Siddiquee, A. N. (2017). Effect of varying spatial orientations on build time 
requirements for FDM process: A case study. Defence technology, 13(2), 92-100. 

Roy, B. (1968). Ranking and choice in the presence of multiple points of view. French Journal of Computer Science and 
Operational Research, 2(8), 57-75. 

Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1), 
9-26. 

Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal 
additive manufacturing. International materials reviews, 61(5), 315-360. 

Wang, P., Zhu, Z., & Wang, Y. (2016). A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based 
on experimental design. Information Sciences, 345, 27-45.  

Wu, J. (2018, July). Study on optimization of 3D printing parameters. In IOP conference series: materials science and engi-
neering (Vol. 392, No. 6, p. 062050). IOP Publishing. 

 
 

          

 

 
© 2024 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


