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 Hub networks play a crucial role in optimizing transportation costs in air and road systems. Their 
main objective is to strategically locate hubs and allocate non-hub nodes within the network. 
The modular hub location problem is a specific area of hub network design that focuses on 
accurately calculating transportation costs, considering factors like trip numbers and capacity 
constraints in network routes. This study proposes a mixed-integer programming model to ad-
dress the modular hub location problem with multiple allocations. It considers dependent and 
independent costs associated with vehicles per trip between hub network routes, considering 
specific vehicle capacities. Two datasets are utilized for validation: the CAB dataset represent-
ing 25 nodes of US airports and the TR dataset representing the Turkish transportation system 
with 81 nodes. To tackle the NP-hard nature of hub location models and the computational com-
plexity of the proposed model, two solutions are developed. Firstly, a novel LP relaxation-based 
method using GAMS software provides near-optimal solutions for medium-sized instances. Ad-
ditionally, a Genetic Algorithm (GA) implemented in MATLAB handles larger instances. The 
GA's efficiency is enhanced by tuning its parameters using the Taguchi method. Results analysis 
shows that both proposed algorithms yield high-quality solutions within significantly reduced 
timeframes compared to the CPLEX solver in GAMS software. The LP relaxation-based method 
performs well for medium-sized instances, while the GA approach is efficient for larger in-
stances after parameter tuning with the Taguchi method. 
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1. Introduction 
 
 
Hub location problems (HLPs) play a significant role in both air and road transportation systems. In traditional transporta-
tion networks, the flow of goods or passengers is typically directed straight from the source node to the destination node. 
However, due to resource limitations, it may not always be possible to establish direct transport routes between all nodes in 
the network. As a result, HLPs aim to optimize network transportation costs by selecting a subset of nodes called hubs. 
These hubs act as consolidation and redistribution points, facilitating indirect flow routing strategies (Alumur et al., 2016). 
The main objective of HLPs is to strategically choose the hub nodes, allocate non-hub nodes to the hubs, and determine the 
most efficient routes for transmitting flow between origin and destination nodes within the network. HLPs encompass var-
ious types, including hub location, p-hub median, hub covering, and p-hub center problems. These types can be extended 
based on factors such as non-hub node allocation patterns to hubs. This allocation can be approached through two primary 
methods: single-allocation and multiple-allocation. In the single-allocation approach, each non-hub node is assigned to a 
single hub, while in the multiple-allocation approach, non-hub nodes can be allocated to multiple hubs. These allocation 
strategies have significant implications for the efficiency and performance of the hub network (Alumur et al. 2016). The 
other important factor in the classification of HLP is the consideration of capacity constraints in hubs. This factor distin-
guishes HLP types into capacitated and uncapacitated forms.  
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Additionally, Farahani et al. (2013) introduced five additional scenarios for the HLP classification based on the objective 
function and allocation strategy. Based on Farahani et al., the HLP can have the following characteristics: 

• Problem Domain: The problem domain in hub location studies can be classified into three types: network-based, 
discrete, and continuous. In the network-based domain, all nodes in the network have the potential to serve as hub 
locations. In the discrete domain, there is a predefined and specific set of nodes that are designated as hubs. The 
main focus of this problem is to determine the optimal locations for these hubs within the network. On the other 
hand, in the continuous domain, the problem allows for hubs to be located at any point in a two-dimensional plane 
or three-dimensional space. This means that the hub locations are not limited to specific predefined nodes, and the 
problem involves finding the optimal locations for the hubs within the continuous space. 

• Objective Function: In HLP, there are three types of objective functions commonly used: minimum-maximum, 
minimum-sum, and maximum-sum. 

A. The minimum-maximum objective function minimizes the highest transportation costs within the network, reduc-
ing the impact of expensive routes. 

B. The minimum-sum objective function minimizes the overall total transportation costs, considering the collective 
sum of costs across the network. 

C. The maximum-sum objective function maximizes the total flow covered by selected hub locations, optimizing 
flow capacity utilization. 

• Determining the Number of Hubs: In HLP, the approaches can be categorized as exogenous or endogenous. 
A. Exogenous approach: The number of hubs is predetermined or predefined before solving the problem. The specific 

number of hubs to be included in the network is already known or set. 
B. Endogenous approach: The number of hubs is not predefined. Instead, it is determined as part of the problem-

solving process. The optimization algorithm or model itself determines the suitable number of hubs based on given 
constraints and objectives. 

• Hub Capacities: Hubs can have either limited capacities or unlimited capacities in the network. 
• Allocation of Non-Hub Nodes to Hubs: There are two types of allocation strategies for hub networks: single-

allocation and multiple-allocation. Single-allocation assigns each non-hub node to a single hub, while multiple-
allocation allows non-hub nodes to be assigned to multiple hubs. 

These characteristics define different variations and configurations of the HLP, allowing for various modeling and solution 
approaches. The HLP assumes that flows in the network are transported between origins and destinations through a set of 
hubs. The network includes connections between non-hubs to hubs, hubs to hubs, and hubs to non-hubs. In traditional HLP 
studies, transportation costs on hub-to-hub paths are often assumed to have a fixed percentage discount, regardless of the 
flow volume. However, this assumption can lead to inaccurate overall transportation cost calculations and suboptimal hub 
locations. To address these issues, researchers have introduced flow-dependent cost-based networks called the Modular 
Hub Location Problem (MHLP), where transportation costs are modularly dependent on flow volumes (Farahani et al., 
2013; Hosseini, 2013). Modular transportation costs are highly relevant in various domains, such as freight transportation 
networks. In the MHLP, transportation involves a fixed number of vehicles with specific capacities matching the required 
capacity for each path in the hub network. Accurate estimation of transportation costs in modular hub networks considers 
factors like the number of vehicles, their capacities, and the distances covered. This precise estimation enhances decision-
making in hub network design, leading to more effective outcomes. The MHLP aims to minimize the overall cost of the 
network, considering various components such as hub installation, transportation, and vehicle costs. It incorporates capacity 
factors into the network routes. Research by Tanash et al. (2017) supports the practicality and accuracy of the MHLP model, 
highlighting its superiority over classical HLP models in capacity-constrained scenarios. The objective of the present study 
is to propose a novel mixed-integer programming (MIP) model for the MHLP with multiple allocations. This model con-
siders optimal fixed capacities for each vehicle on each route in the network, depending on the vehicle type. For example, 
smaller- capacity airplanes or trucks may be assigned to routes between non-hub-to-hub nodes and hub-to-non-hub nodes, 
while larger capacity airplanes or trucks may be used for routes between two hubs. In multiple allocation, there may exist 
multiple routes between a source and destination node, and the flow is distributed among these routes due to limited transport 
vehicle capacity and cost reduction in the network. The research introduces a continuous variable for multiple allocations, 
representing the flow percentage sent through each route. This approach improves flow distribution and network perfor-
mance. The proposed MIP model optimizes flow distribution, considering cost and capacity limitations, resulting in bal-
anced and efficient flow management within the network. In addition, the present study considers the cost of using trans-
portation vehicles (such as airplanes or trucks) for each trip in the objective function to calculate the overall network cost. 
This approach leads to a more accurate determination of the number of flights or trucks required, depending on whether air 
or road transportation is being used, with the objective of minimizing the overall cost.  
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The proposed model does not consider a discount coefficient for goods between hubs and also coefficient factors for col-
lecting and distributing goods within the hub network because the entire cost of using a transportation vehicle is incurred 
regardless of whether the vehicle is operating at its maximum capacity or not. Flow transmission costs in the network are 
considered dependent (distance-related) and independent (fixed) costs, including fuel consumption, wages, maintenance, 
and repair expenses for each trip. Finally, the proposed model will be solved using the CPLEX solver embedded in GAMS 
software, and due to the complexity of the solution space of the model to achieve the best possible solution, an innovative 
approach based on linear relaxation of integer variables in GAMS and a metaheuristic algorithm based on a genetic algo-
rithm (GA) will be employed in MATLAB software. To enhance the efficiency of the proposed algorithm, the GA param-
eters will be tuned using the Taguchi method. The main objectives of the presented study can be summarized as follows: 

• Present a novel model for the modular hub location problem with multiple allocations. 
• Calculate the precise transportation cost in the hub network. 
• Utilize the capacity of vehicles instead of discount factors. 
• Determine the capacity of the vehicle in the hub network. 
• Determine the number of flights or trucks transported on each path in the hub network. 
• Employ a continuous variable between zero and one instead of a binary variable to allocate non-hub nodes to hubs, 

enabling the calculation of the percentage of flow that can be sent through each path in the network. 
• Develop a new LP relaxation-based method to reduce runtime for medium-sized samples. 
• Devise a GA to solve the presented problem for large-sized samples. 
• Enhancing the efficiency of the GA through the tuning of GA parameters.   

The rest of the paper is structured as follows: 

Section 2 provides a literature review; Section 3 describes the problem and formulates a mathematical model; Section 4 
presents solution algorithms; Section 5 showcases results and examples; and Section 6 summarizes the main conclusions. 

2. Literature review  
 

2.1.  Classical Hub Location Problem 
 

The field of HLP has received significant attention from researchers, leading to a substantial body of literature over the 
years. Several comprehensive review papers have been published in this field. Some noteworthy references include Alumur 
and Kara (2008), Campbell and O'Kelly (2012), Zanjirani Farahani et al. (2013), Contreras and O'Kelly (2019), and Alumur 
et al. (2020). These papers provide valuable insights into the HLP literature and serve as important resources for under-
standing the advancements in this area. The HLP was formulated by O'Kelly (1987) for the first time. The formulation 
presented by O'Kelly is a non-linear type of model. Campbell (1994) presented the integer linear programming models for 
this type of problem. Ernst and Krishnamoorthy (1996, 1999) developed practical models using flow-based network mod-
eling. This network-based modeling approach, compared to the model proposed by Skorin-Kapov et al. (1996), has the 
advantage of fewer variables. The first concept of modular capacity in HLP was introduced by Jaillet et al. (1996), but they 
did not directly refer to the means of modularity in their study. Their study was in the air transportation system and designed 
flow-based models for capacitated networks and routing policies, which means the concept of modular. Subsequently, the 
superiority of flow-based models over path-based models was demonstrated by O'Kelly (1998) and Bryan & O'Kelly (1999). 
Furthermore, the first series of these models were studied by O'Kelly & Herner (2001), where a non-linear cost function 
based on the connectivity performance function was considered, and all links were economically connected to each other. 
The papers with flow-based models pointed out that the discount factor that has been considered between hub nodes should 
be regarded as a function of the flow volume. Carello et al. (2004) extended the hub location problem with capacity for 
selecting hub nodes in a telecommunications network using a local search algorithm. The HLP is widely recognized as an 
NP-hard problem, primarily due to its computational complexity, which persists even for small problem sizes. As the size 
of the problem increases, the computational time required to solve it grows significantly. This complexity stems from the 
combinatorial nature of the problem, where the number of possible solutions increases exponentially with the size of the 
problem. Consequently, finding an optimal or near-optimal solution for the HLP can be time-consuming, posing a challenge 
even for small instances of the problem. As a result, researchers have focused on proposing new models to address specific 
variations of the HLP and have presented solution methods to effectively solve their proposed models. To investigate the 
various models presented for HLPs and methods proposed for solving HLPs, researchers have conducted extensive review 
studies on HLP. 

2.2.  Modular Hub Location Problem 

The concept of modularity in the Hub Location Problem (HLP), which refers to the capacity and packing of flow between 
network links, was initially introduced by Yaman (2005). This type of model is typically categorized as a flow-based model 
due to its emphasis on optimizing flow allocation and management within the network. The concept was further expanded 
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upon by Yaman and Carlo (2005), who formulated the problem as a quadratic mixed-integer programming problem. In their 
formulation, the cost functions for network links were made dependent on the flow. Yaman (2008) addressed the HLP with 
modular arc capacity, proposing two formulations and a heuristic algorithm based on Lagrangian relaxation and local search. 
The study aimed to minimize link installation costs by selecting P hubs from a given set of nodes, with each non-hub node 
connected to one hub and each hub connected to a central hub. Mirzaghafour (2013) introduced the main type of modular 
hub location problem, known as the MHLP model, which uses the number of facilities on paths of the network instead of 
the cost per unit flow. The study incorporated the concept of modular capacity for vehicles used in the hub network and 
presented a new formulation. Alumur et al. (2016) tackled the HLP with capacity constraints, specifically focusing on the 
single assignment version. It introduces a realistic variant where edge capacities between hubs are increased modularly. The 
study proposed efficient heuristic methods that outperform previous approaches, utilize memory structures to enhance 
search algorithms, and are compared with previous heuristics using benchmark instances and incorporating frequency in-
formation in the constructive method. Corberán et al. (2016) addressed the capacitated single-assignment HLP with modular 
link capacities. They developed a metaheuristic algorithm based on strategic oscillation, originally used in tabu search. The 
algorithm incorporated constructive and destructive algorithms, along with local search procedures, to balance diversifica-
tion and intensification for efficient search. Computational results on a large set of instances demonstrate that the proposed 
metaheuristic finds high-quality solutions quickly, outperforming previous tabu search implementations. Tanash et al. 
(2017) conducted a study on the MHLP in hub-and-spoke networks. Their research aimed to reduce transportation costs by 
consolidating flows at hub facilities. To address this problem, they proposed a branch-and-bound algorithm that utilized a 
Lagrangean relaxation technique to obtain both lower and upper bounds. The study also presented numerical results for 
benchmark instances featuring up to 75 nodes. Hoff et al. (2017) addressed the HLP, minimizing transportation costs while 
meeting capacity constraints. They proposed efficient heuristic methods that outperformed previous approaches, integrating 
modular capacity increases and incorporating frequency information for traffic routing. Bashiri et al. (2018a) investigated 
the integration of manufacturing processes with transportation, emphasizing the utilization of manufacturing hubs to de-
crease transportation and manufacturing costs. The study focused on manufacturing hubs equipped with automation mod-
ules, where the hub capacity depended on the allocated modules. To accommodate changing demands, the paper proposed 
transferring movable automation modules among hubs. A mathematical model was developed to optimize hub locations, 
automation module allocations, and module transfers across different time periods. Correia et al. (2018) presented multi-
period stochastic capacitated multiple allocation hub location problems that assume uncertain demand with modular capac-
ities in hubs. Karimi and Bashiri (2019) examined the MHLP, considering concepts such as commodity split, multimodal 
transportation systems, and capacity modulation. Their study specifically focused on the added complexity arising from 
flow division. 

Mikic´ et al. (2019) presented the capacitated modular hub location problem (CMHLP) with single allocation conditions. 
They considered capacity on hubs and paths of the network and presented a general variable neighborhood search to solve 
their proposed model. Keshvari Fard and Alfandari (2019) focused on the MHLP, where transportation costs are modeled 
as a stepwise function rather than linear. The study explored formulations solved by exact methods and proposed a specific 
generalized linear cost function that closely approximates the stepwise cost function. Additionally, the paper examined the 
cost savings associated with direct shipments in hub and spoke networks, leveraging the stepwise cost function's ability to 
incorporate direct transportation. Momayezi et al. (2021) developed a MILP model for designing modular hub networks 
under disruptive conditions, utilizing an adaptive large neighborhood search algorithm for solving problems of larger size. 
Wu et al. (2023) addressed the CMHLP in the design of telecommunications networks. They proposed a parallel adaptive 
memory algorithm that stores solution blocks and complete solutions in a shared memory for creating offspring. The algo-
rithm incorporates recombination and mutation operators for search diversification, a tabu search procedure for search in-
tensification, and parallel computing for global optimization. Computational results on benchmark instances showed that 
their algorithm outperformed existing heuristics, achieving improved best-known solutions in over 67% of the cases. AL 
Athamneh et al. (2023) addressed the Incomplete Hub Location Problem with Modular Capacity and Direct Connections 
(MHLPDC) in distribution systems. The MHLPDC aims to minimize network costs by locating hub facilities, connecting 
non-hub nodes to hubs, and activating various links. The study presents a mixed-integer mathematical programming for-
mulation and a heuristic algorithm based on a greedy randomized adaptive search and variable neighborhood search ap-
proach. Computational experiments on benchmark instances, ranging up to 40 nodes, demonstrate the algorithm's capability 
to generate high-quality solutions. Additionally, a sensitivity analysis of the optimal network structure reveals the impact 
of varying hub and access arc capacities, variable costs, and the discount factor on hub establishment and direct shipments. 
Khaleghi and Eydi (2023) presented a bi-objective, nonlinear mathematical model for designing a multi-period hub network. 
They considered the capacity of the hub in their proposed model to be modular. Each module corresponds to a number of 
servers at hubs. 

2.3. The Genetic Algorithms for Solving Various Hub Location Problems 

The HLP is a known NP-hard problem, and the Genetic Algorithm (GA) has emerged as one of the most effective methods 
for addressing this challenge. Notably, Abdinnour-Helm and Venkataramanan (1998) were the pioneers in applying the GA 
to solve the HLP, paving the way for its utilization in this domain. Building upon this foundation, Topcuoglu (2005) ex-
tended the application of GA to solve the uncapacitated HLP by incorporating Tabu Search, a complementary metaheuristic 
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technique. This combination of GA and Tabu Search demonstrated promising results in tackling the uncapacitated HLP. 
These studies underscore the practicality and efficacy of employing the GA as a valuable approach to solving the HLP and 
its variations. Damgacioglu (2015) presented GA to solve an uncapacitated single allocation planar hub location problem 
(PHLP), which is a type of HLP. Peker et al. (2016) explored the impact of delivery service requirements on transportation 
system configuration using a bi-objective single allocation p-hub center-median problem (BSpHCMP) and proposed an 
evolutionary algorithm that outperforms the non-dominated sorting genetic algorithm (NSGA-II) and PAES algorithms in 
solving the problem, with experimental results validating the proposed model and solution approaches. Majima et al. (2017) 
addressed determining the optimal location for hub stations in scheduled transportation services across various modes of 
transportation. The proposed method combines a growing network model for public transit network generation with a GA 
and cuckoo search algorithm for the HLP. The paper presented a comparison of the GA and cuckoo search algorithms for 
the HLP within this framework. Bashiri et al. (2018b) used GA, along with tuned parameters and a simulated annealing 
algorithm, to solve the mobile p-hub location problem in a dynamic environment. Rashidi Kahag et al. (2019) addressed a 
multi-objective intermodal hub-location-allocation problem using a GA. The problem involved minimizing total costs and 
system time, considering queuing systems at origin and destination hubs. A validated constrained bi-objective optimization 
model was developed, and the proposed GA outperforms other algorithms, as demonstrated by multi-objective metrics and 
the entropy-TOPSIS method. Basirati et al. (2020) addressed a many-to-many hub location-routing problem using a multi-
objective imperialist competitive algorithm (MOICA). The proposed model minimizes total costs and achieves superior 
performance compared to NSGA-II, particularly for large-scale instances. 

Rabbani et al. (2021) used a hybrid of k-means and genetic algorithms (KGA) to solve the p-Hub location-allocation prob-
lem and compared it to constraint programming (CP) methods. The CP model is better for memory usage but slower, while 
the KGA is faster but requires more memory. KGA also uses a new adaptive crossover operator for better solutions. In the 
study conducted by Mrabtiv (2022), a genetic algorithm was proposed and utilized in mathematical models to compare the 
performance of collaborative distribution hub network design scenarios. These scenarios were assessed based on sustaina-
bility indicators. The genetic algorithm was employed for both small and large instances, providing an effective approach 
for optimizing the network design. In the study conducted by Bhattacharjee and Mukhopadhyay (2023), two meta-heuristic 
algorithms, GA and its refined version, were proposed and compared for the Hierarchical Single-Allocation Hub Median 
Facility Location Problem (SA-H-MP). The performances of these algorithms were evaluated against CPLEX (exact 
method), simulated annealing (SA), and iterated local search (ILS). The refined GA demonstrated superior results compared 
to other meta-heuristics in more than 88% of the cases when validated on the CAB benchmark dataset. De Freitas et al. 
(2023) presented a solution for the two-level hub location routing problem with directed tours using the biased random-key 
genetic algorithm (BRKGA) metaheuristic. The BRKGA, calibrated with machine learning techniques, demonstrates supe-
rior performance compared to existing literature, producing high-quality solutions for instances with unknown optimal val-
ues. Wang et al. (2023) investigate a hub location-routing problem with third-party logistics (3PL) and propose a two-stage 
MIP model. They address uncertainty using an adaptive, distributionally robust model and apply a GA with local search for 
large-scale problem solving.  

Based on the analysis of studies conducted in the field of the Modular Hub Location Problem, it is evident that all proposed 
models require a significant amount of time for problem-solving. As a result, multiple solutions have been introduced in 
these studies to address this issue. These advancements in algorithmic approaches make substantial contributions to the 
field of MHLP, providing more effective and efficient solutions for large-scale samples. 

This study presents a novel MHLP model that aims to calculate network costs based on real constraints and costs, such as 
transportation costs and the cost of using vehicles per trip. Previous studies have primarily focused on either a developed 
exact method or a metaheuristic method to solve their presented model. However, to address the time complexity, we inte-
grate both an exact method, the LP relaxation-based method, and a metaheuristic method, GA, into our proposed framework. 
It is worth highlighting that while various types of genetic algorithms have been developed for different HLPs, their appli-
cation specifically for solving MHLPs has been largely unexplored. Therefore, this study not only introduces GA as a 
solution approach for MHLP but also investigates its effectiveness and efficiency in comparison to other methods. Addi-
tionally, we incorporate a tuning parameter for GA using the Taguchi method, a novel approach that has not been previously 
explored in the context of MHLP. By comparing the solutions obtained from both the LP relaxation-based method and GA, 
we evaluate their performance and provide insights into the applicability of these approaches for solving the presented 
MHLP model. 

3. Problem Definition and Formulation 

3.1. Problem Definition 

One of the critical challenges faced by companies whose core business involves collection, distribution, and transportation, 
such as postal services, is the reduction of transportation costs, which constitute a significant portion of their overall ex-
penses. Consequently, optimizing the calculation of trip quantities on each route within a mathematical model, employing 
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a minimization objective function, proves invaluable for logistics firms in making informed decisions about procuring or 
leasing the appropriate number of vehicles with specific capacities. This research endeavors to reevaluate the computations 
of the HLP by focusing on the calculation of vehicle trip quantities. By conducting sensitivity analyses on vehicle capacities, 
it becomes possible to make well-informed decisions regarding the implementation of hub-based transportation networks. 
Since the flows are wrapped within the vehicles, their capacity serves as the determining factor for transportation. This 
research considers the capacity of vehicles between hub-to-hub transportation to be larger than that of vehicles between 
non-hub-to-hub and hub-to-non-hub transportation. Fig. 1 and Fig. 2 depict a network where the circles represent the origins 
and destinations, and the squares represent the hubs of the network in air and road transportation. 

 
Fig. 1. Part of air transportation in a hub network with airplanes following designated paths 

 

 

Fig. 2. Part of road transportation in hub network with trucks following designated paths        

The hub network concept considers an aggregation factor for gathering flows from origin to hub, a discount factor α to 
account for flows between hubs, and a distribution factor for flows that are transmitted from hub to destination in the 
network. However, in the presented model, the vehicle capacity is utilized instead of these factors. Fig. 3 demonstrates the 
coefficient factors in the paths of the hub network.    

 
Fig. 3. Coefficient factors in the hub network 

The datasets mentioned in the literature demonstrate variations in the values of χ, α, and δ. In particular, when considering 
the CAB dataset, both χ and δ are assigned a value of 1. Additionally, the value of α within this dataset ranges between 0 
and 1, indicating a proportion of the volume of flows transmitted between hubs. It's worth noting that for the other datasets, 
although the values of χ and δ are greater than 1, the value of α still follows the same range of 0 to 1, similar to the CAB 
dataset. In practical scenarios, flows are transmitted using vehicles within the network, and each vehicle has a limited 
capacity. Increasing the volume of commodities and passengers sent will result in a higher discount, but both commodities 
and passengers are constrained by the vehicle capacity and cannot exceed it. If a vehicle's capacity is fully utilized and there 
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is still additional flow to be sent along the path, another vehicle will be dispatched on that route. In such cases, the cost of 
both vehicle transmissions will be incurred, even if the capacity of the second vehicle is not fully utilized. Therefore, the 
coefficient of gathering and distribution factors of the flow will be calculated automatically between hub-to-non-hub and 
non-hub-to-hub routes. 

The hub network operates by consolidating flows at hubs and distributing them to other hubs. To facilitate this process, 
larger-capacity vehicles are utilized, exceeding the capacity of vehicles used for transportation between other nodes and 
hubs. Notably, the cost per unit of goods or passengers transported by larger-capacity vehicles is lower compared to smaller 
ones, considering the proportional utilization of their capacity. As a result, an automatic discount factor coefficient is applied 
to appropriately adjust for this cost disparity during the optimization process. In the present research, the focus is on con-
sidering the number of vehicles with the specific capacity rather than incorporating coefficient factors between network 
paths. The proposed model adopts a multiple-allocation approach. The aim of implementing multiple allocations is to en-
hance reliability and achieve a balanced distribution across the network by utilizing multiple routes between origins and 
destinations. This approach allows for the existence of more than one route through hubs when transporting goods from a 
source to a destination. In this study, continuous variables are employed instead of binary variables for allocation within the 
proposed model. The utilization of continuous variables, ranging between zero and one, facilitates the calculation of the 
proportion of flow allocated to each route within the hub network. Furthermore, in the presented model, the number of 
flights of airplanes for air transportation or trips of trucks for road transportation is also calculated for each link within the 
hub network. This information provides insight into the frequency of transportation operations occurring along each specific 
link. To formally define the problem, consider a network G=(N, E), where N represents the set of nodes as demand points 
and potential hub locations, and E represents the set of links in the network connecting the nodes to each other. The symbols, 
parameters, and variables used in modeling the problem are presented in the table below: 

 

Sets 

Set of nodes  N 

Set of edges  E 

Indices  

Origin and Destination nodes indices   i, j  
Hub nodes indices  k, m  

Parameters 

Fixed cost of hub installation at node k kf  
Fixed cost per trip of vehicle (airplane/truck) with large capacity from hub to hub FCR 

Fixed cost per trip of vehicle (airplane/truck) with small capacity from non-hub to hub  FCQ  
Fixed cost per trip of vehicle (airplane/truck) with small capacity from hub to non-hub  FCP  

Distance between node i and node j  ijd 

Flow between node i and j ijw  

Capacity of small vehicle (airplane/truck) smallCap  

Capacity of large vehicle (airplane/truck)  largeCap  

Decision Variables 

If node k is selected as a hub  

Zk=

1

0







 

Otherwise 

 mand  kvia hubs j to node  isent from node  ijwPortion of flow   =ijkmX  
Number of small capacity vehicle (airplane/truck) used between node i and hub k =ikP 

Number of large capacity vehicle (airplane/truck) used between hubs m and k  =kmR  
Number of small capacity vehicle (airplane/truck) used between node j and hub m =mjQ  
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Fig. 4 shows the use of Pik, Rkm, and Qmj variables with their capacity in the routing of the hub network instead of using 
Xijkm in the whole of the network calculation.  

 
Fig. 4. Application of Pik, Rkm, and Qmj with their capacity in the rout of the hub network 

Furthermore, in the presented model, the capacity of each hub route in the network can be calculated as follows: 

• For non-hub-to-hub routes, the capacity is determined by multiplying the number of vehicles (Pik) with the ca-
pacity of smaller vehicles (Capsmall). 

• For routes between hubs, the capacity is calculated by multiplying the number of vehicles (Rkm) with the capacity 
of larger vehicles (Caplarg). 

• For hub-to-non-hub routes, the capacity is determined by multiplying the number of vehicles (Qmj) with the ca-
pacity of smaller vehicles (Capsmall). 

This approach allows for the determination of the required capacity for different types of routes within the hub network. 

In the literature, the cost of flow transmission between nodes (Cij) in the network is typically associated with the distance 
between nodes (dij) due to the dependence on fuel consumption. However, in this study, the cost of flow is further divided 
into two distinct components. The first component is the dependent cost, which remains consistent with the previous re-
search and is directly proportional to the distance between nodes (dij). This component captures the fuel consumption and 
associated costs incurred during the transportation process. 

The second component is the independent cost or fixed cost (FCP and FCQ for vehicles with small capacity and FCR for 
vehicles with larger capacity). This cost includes the maintenance cost of the vehicle and the wages of the vehicle crew per 
trip. Unlike the dependent cost, which varies with the distance between nodes, the independent cost remains relatively 
constant irrespective of the distance traveled. 

3.2. Mathematical Model 

A mixed-integer linear programming model is presented modular hub location problem with for  multiple allocation as 
follow. 

min . . .k k ik ik km km mj mj ik km mj
k N i N k N k N m N m N j N i N k N k N m N m N j N

k i m k j m
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∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
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small
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Expression (1) represents the objective function of the problem, which aims to minimize the overall cost. The first part of 
this objective function pertains to the cost of establishing hubs. The second part calculates the cost of sending flow between 
node i and hub k using vehicles (airplanes in air transportation or trucks in cargo) with small capacity, essentially capturing 
the transportation cost between origins and hubs. The third part considers the transportation cost between hubs with the 
large capacity of the vehicle (nodes m and k). The fourth part of the objective function calculates the cost of transportation 
from hub to non-hub (nodes k and j). The second to fourth parts of the objective function calculate the dependent cost of 
transportation. Each part is determined by multiplying the number of vehicles by the distance of the route. The fifth to 
seventh parts of the objective function calculate the independent cost of transportation. This cost is determined by consid-
ering the usage of vehicles with specific capacity for transporting flow between different points in the network. 

The fifth part focuses on the fixed cost of using vehicles with a small capacity to transport flow from origins to hubs 
(between nodes i and k). This component captures the expenses associated with utilizing vehicles with small capacity for 
transporting flow from the starting points to the designated hubs. The sixth part calculates the independent cost of transpor-
tation for hub-to-hub routes (between nodes m and k). This component accounts for the costs incurred when using vehicles 
with large capacity to transport flow between different hubs within the network. The seventh part addresses the fixed cost 
of using vehicles with a small capacity to transport flow from hubs to destinations (between nodes m and j). This component 
captures the expenses involved in utilizing vehicles with small capacity for transporting flow from the hubs to the final 
destinations. 

Constraint (2) ensures that the flow between source i and destination j is routed through hubs k and m. Constraint (3) states 
that if node i is assigned to hub k, then the flow from node i to node j is transferred through hub m. Constraint (4) ensures 
that the total flow sent from source i to hub k is less than or equal to the number of flights/trips conducted from node i to 
hub k (Pik) multiplied by the vehicle capacity. Similarly, constraint (5) indicates that the total flow sent from hub k to hub 
m is less than or equal to the number of flights/trips conducted from hub k to hub m (Rkm) multiplied by the vehicle capacity. 
Likewise, constraint (6) states that the total flow sent from hub m to destination node j is less than or equal to the number 
of flights/trips conducted from hub m to node j (Qmj) multiplied by the vehicle capacity. Constraints (7) to (9) define the 
decision variable types in the model. 

4. Solution algorithm 

The purpose of conducting computational experiments is to evaluate the performance of the proposed model. The presented 
model is solved using three methods. Firstly, the model is solved in the GAMS software, version 25.1.2, which is imple-
mented using the CPLEX optimization engine. It was executed on a computer with the following specifications: 16.00 GB 
of RAM and an Intel Core i7 CPU (2.8 GHz). However, since the presented model is time-consuming and requires a sig-
nificant amount of time to obtain the best-known solution, even for small-sized datasets, two additional algorithms have 
been developed to address this issue in the GAMS software. 

The second approach involves an exact solution based on the LP relaxation method, which is specifically designed to solve 
medium-sized problems more efficiently. This method is implemented within the GAMS software itself. The third approach 
utilizes GA, which has been developed in the MATLAB software and is specifically tailored to handle larger problem sizes. 
By utilizing these GA, it is possible to find solutions to larger instances of the problem within a reasonable time frame. By 
comparing and evaluating the performance of these different solving methods, it is possible to determine the strengths of 
the strengths of the proposed algorithms in terms of efficiency and solution quality. 
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4.1. LP Relaxation Base Method Algorithm 

Given the computational challenges inherent in the proposed model involving 10, 15, 20, and 25 nodes in the CAB dataset, 
it has been observed that using the CPLEX solver in the GAMS software can be excessively time-consuming. Consequently, 
a novel linear relaxation approach has been devised to enhance the efficiency of the solution process. This approach involves 
the transformation of the integer variables Pik, Rkm, and Qmj into continuous variables, thereby yielding considerable reduc-
tions in computation time.  Since the linearized objective function value is generally lower than the integer objective func-
tion value in minimization models ( min minLP IP≤ ), the solution obtained from the linear relaxation approach serves as 
a lower bound for the proposed model. However, there is a significant gap between the optimal solution obtained from the 
linear relaxation approach and the optimal solution obtained from the CPLEX solver in the GAMS software in the integer 
state of the variables Pik, Rkm, and Qmj.  As a result, a linear relaxation approach has been employed to effectively reduce the 
problem solution space. The procedure begins with solving the problem using the linear relaxation approach. Subsequently, 
the hubs identified through the linear relaxation approach are fixed within the proposed mixed-integer mathematical model. 
This approach plays a crucial role in determining specific nodes as hubs within the network in a shorter time frame. In 
essence, the linear relaxation approach significantly contributes to minimizing the solution space and expediting the prob-
lem-solving process.  The subsequent step involves solving the mathematical model in the integer state of Pik, Rkm, and Qmj 
variables by fixing certain nodes identified as hubs through the linear relaxation approach while leaving the remaining 
network nodes unconstrained. This is accomplished by executing the model again using the CPLEX solver in the GAMS 
software. The step-by-step execution of the proposed approach is illustrated in Fig. 5, outlining the process of fixing selected 
nodes obtained from the linear relaxation approach as hubs and leaving the other network nodes free. 

 

 

 

 
 

Fig. 5. The sequence of steps in performing the proposed linear relaxation algorithm. 

4.2. Designing a Genetic Algorithm for Solving Large-Scale Problems 

The Genetic Algorithm (GA) is a powerful search algorithm that is widely employed in various fields to find near-optimal 
solutions within large solution spaces. It draws inspiration from the principles of population genetics and was first intro-
duced by Holland (1975). Since then, the GA has gained significant popularity and has been extensively applied to solve a 
diverse range of complex problems documented in literature. For detailed information and a comprehensive understanding 
of the GA, two highly recommended sources are the books authored by Mitchell (1998) and Haddow and Tufte (2010). 
These authoritative references provide in-depth explanations of the theory and practical applications of the GA. They serve 
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as valuable resources for researchers and practitioners seeking to explore and leverage the potential of the GA in optimizing 
different types of problems.  

In this section, a detailed description of the proposed algorithm is provided, starting with the generation of chromosomes 
based on the input data. The algorithm follows a structured process of genetic evolution, resulting in the generation of 
solutions for the problem. The fitness function is employed to evaluate the suitability of candidate solutions, and specific 
operators are used for selection and modification within the algorithm. The algorithm incorporates an exit condition that 
determines when the problem has been adequately addressed. Specifically, the algorithm terminates after a fixed number of 
iterations, which is set to 100 in this case. During the chromosome generation stage, a population is formed by selecting 
hub and non-hub nodes based on the distance matrix and node weights. The nodes are sorted in descending order of their 
weights, and nodes with high weights are chosen as hubs, while the remaining nodes are designated as non-hubs. To repre-
sent the problem, the algorithm utilizes two types of solutions. Separate operators for crossover and mutation are employed 
to manipulate these solutions during the evolutionary process. 

 The GA used in the proposed model can be defined as follows: 

4.2.1. Initial Population Generation 

The generation of the initial population involves creating a set of individuals that serve as the starting point for the GA. This 
process is crucial in establishing the diversity and exploration capabilities of the algorithm. To generate the initial popula-
tion, the size of the population, denoted as npop, is determined based on the dimensions of the N node matrix (d, w). The 
population is generated randomly, considering the selection of solution matrices. In this context, two populations are created 
to match the dimensions of the network node matrix. The generation process entails randomly assigning nodes as hubs or 
non-hubs, forming a matrix that represents the initial population. The number of individuals in the initial population can 
vary depending on the specific problem and desired algorithm performance. For instance, in this case, a population size of 
1000 has been considered. As the algorithm progresses through iterations, additional optimal solutions are generated using 
combination and mutation operators. These new solutions replace the existing population, ensuring that the algorithm ex-
plores different potential solutions at each iteration. The process involves preserving a set of 1000 optimal solutions in each 
iteration while discarding the remaining solutions. 

By generating an initial population that encompasses diverse solutions, the GA can effectively commence the evolutionary 
process, facilitating the search for better solutions to the problem at hand. 

4.2.1 Fitness Function 

The fitness function is designed to optimize the computational efficiency of the algorithm by considering two flow path 
scenarios for the embedded problem. In one scenario, where the hubs are represented by binary values (0 and 1), the model 
operates based on the discrete conditions of data transfer between nodes. In the other scenario, where the nodes can take 
values between 0 and 1, the population can select values above 0.5 as hubs, while the remaining nodes are considered non-
hubs. 

To address the importance of the fitness function in evaluating solution quality, a sub-problem is formulated within the 
main problem. This involves considering two flow path configurations, each corresponding to the variable X(i, j, k, m). By 
representing the flow path as X(i, j, k, m) and its complement (1-X(i, j, k, m)), the goal is to achieve accurate results in 
minimal time while ensuring a suitable balance between discrete and continuous flow along the edges. This approach is 
facilitated by forming a population with a matrix that aligns with the network node structure. 

The model comprises four components: the first component represents the cost of hub construction, the second component 
represents the cost of small aircraft flights from non-hub nodes to hubs, the third component represents the cost of large 
aircraft flights between hub nodes, and the fourth component represents the cost of small aircraft flights from hubs to non-
hub nodes. Additionally, constraints related to flow paths are incorporated as constraints 4, 5, and 6 in the original problem, 
denoted as P, Q, and R, respectively. These constraints are added to the objective function to guide the optimization process 
effectively. In the proposed algorithm, two hubs, k1 and m1, are assigned to the population P1. This assignment is made 
considering the variable number of flights in the objective function, where the limit for the number of flights from non-hub 
node i to hub k1 is defined as constraint 4 in the model. 

In the main problem, this constraint is calculated as follows and represented by the Pik variable in the main objective func-
tion. 
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Similarly, utilizing constraints 5 and 6, the variables Rkm (flights from hub k1 to hub m1) and Qmj (flights from hub m1 to 
non-hub j) are calculated according to relations 11 and 12, respectively. 
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In this sub-problem, two additional hubs, K2 and m2, are introduced as a separate path in the population P2. Their purpose 
is to calculate the variable number of flights/transports from the non-hub node i to the hub node k2 in the objective function.  
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Consequently, to calculate the variables Rkm (flights from hub k2 to hub m2) and Qmj (flights/transports from hub m2 to 
non-hub j) in the objective function, the following procedure is followed: 
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In this research, the fitness value of the population, which is represented as a matrix derived from the chromosomes, was 
examined as the negative value of the objective function of the problem. Constraint violations were penalized based on a 
relative infeasibility degree. If a solution falls outside the constraints, a relatively large penalty value is added to the objec-
tive function to ensure that the final solution is penalized for such violations. By incorporating this penalty mechanism, the 
optimization process aims to prioritize feasible solutions that satisfy the problem's constraints. The higher penalty value for 
constraint violations discourages the algorithm from converging towards infeasible solutions and encourages exploration of 
feasible regions in the solution space. 

4.2.2 Combination and Crossover Operator 

The crossover operator plays a crucial role in GA by facilitating the recombination of genetic material from two parent 
chromosomes to produce offspring chromosomes. This process aims to generate improved chromosomes and enhance the 
overall quality of the population. During the crossover operation, the genetic information of two selected parent chromo-
somes is combined to create new chromosomes for the current generation. This recombination process involves merging 
the genes from the parent chromosomes, resulting in the creation of novel chromosomes within the current population. The 
crossover process is iteratively performed across all generations of the GA. Typically, chromosomes with higher fitness are 
favored, and a greater number of offspring copies are produced from these chromosomes. Consequently, a mating pool is 
formed at the end of the reproduction process, housing all the newly generated offspring chromosomes. The parent chro-
mosomes participating in the crossover operation are chosen based on their fitness, often employing selection mechanisms 
such as fitness-proportionate selection or tournament selection. The offspring chromosomes produced through crossover 
are considered the next generation's potential solutions. In GA, the crossover probability parameter, denoted as Pc, deter-
mines the percentage of the population subjected to the crossover operator. The remaining percentage, (1-Pc), retains the 
unchanged chromosomes in their original form within the current generation. In this specific GA employed in the study, 
parent chromosomes are selected based on their fitness performance. The crossover operator is executed with a predefined 
rate of 0.25, indicating that a quarter of the population undergoes crossover to generate new solutions. Given an initial 
population size of 1000, this results in the creation of 250 fresh offspring solutions through the crossover operation. In this 
study, to promote diversity and exploration within the population, three different crossover operators are employed: one-
point crossover, two-point crossover, and uniform crossover. These operators offer distinct strategies for combining genetic 
information between parent chromosomes. 
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• In the one-point crossover operator, a random point is selected within the solution structure matrix of the parent 
chromosomes. The genes beyond this point are swapped between the parents, creating offspring chromosomes 
with a combination of genetic material from both parents. 

• In the two-point crossover operator, two random points are chosen within the solution structure matrix of the parent 
chromosomes. The genes located between these points are exchanged between the parents, resulting in offspring 
chromosomes that possess a mix of genetic information from both parents. 

• The uniform crossover operator, with a probability of 0.5, exchanges all related genes between the parent chromo-
somes. This operator offers a more comprehensive mixing of genetic material, leading to offspring chromosomes 
that inherit a diverse combination of genes from the parents. 

According to Fig. 6, the developed algorithm for the proposed model uses two operators: the one-point crossover operator 
and the two-point crossover operator. In the one-point crossover operator, a random point is selected within the solution 
structure matrix from the two parents among the origin or destination nodes of the network. This random point is selected 
to introduce more diversity in the solutions, with a 50% probability of being chosen among the origin nodes and a 50% 
probability of being chosen among the destination nodes. All values after this point are replaced with the corresponding 
values from the other parent. In the two-point crossover operator, two random points are chosen within the solution structure 
matrix from the two parents among the origin or destination network nodes. The related genes between these points are 
exchanged in the parents. In the uniform crossover operator, with a probability of 0.5, all the related genes of each solution 
in the parents are exchanged. 
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Fig. 6. One-point combination operator 

4.2.3. Mutation Operator 

In this mutation operator, new information is randomly incorporated into the search process of the GA. This crucial feature 
assists the GA in escaping local optima and increasing diversity in the population of chromosomes or candidate solutions. 
It results in significant alterations in the offspring chromosomes, causing them to have entirely different genes compared to 
their parent chromosomes. Essentially, when genes are copied from the current chromosome to the new chromosome, there 
is a probability for each gene to undergo a mutation. This probability, commonly referred to as the mutation probability 
(Pm), is usually a very small value. In this study, the mutation operator is defined with a predetermined rate of 0.15. For the 
purposes of this research, a random mutation is employed, executed by randomly selecting parents, which leads to the 
swapping of node positions. This, in turn, induces a probabilistic change in the location of the hub nodes in the network. 
Throughout this process, the gene values for these chromosomes are altered with a probability of 0.2, as illustrated in Fig. 
7. 
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Fig. 7. Random Mutation Operator 
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4.2.4. Selection Operator 

The crossover and mutation operators are responsible for propagating one generation to the next in a GA. In order to ac-
complish this, the best solutions of npop from the previous generation and the newly generated offspring are retained based 
on their fitness functions using a roulette wheel selection mechanism. This ensures that the next generation takes shape by 
incorporating superior individuals from both the parent generation and the offspring. 

4.2.5. The Termination Condition 

The termination condition of the designed GA mandates that after a predefined number of iterations, the algorithm reaches 
its conclusion. In this case, the algorithm is set to terminate after 100 iterations, ensuring that an adequate number of gen-
erations are processed to potentially yield desirable solutions. The flowchart of the GA is shown in Fig. 8.  
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Fig. 8. Flowchart of The Proposed Genetic Algorithm 
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The pseudo-code of the proposed GA is presented in figure 9 as below:  

Initialization: 
Set GA Parameters: Crossover Probability (𝑝௖௥); Mutation Probability (𝑝௠௨); Population Size (P); and Maxi-
mum Iteration (Iter) 

Iter ← 0 
Generate Initial Population (Randomly): P (Iter) 
Evaluate the Initial Population to Calculate Costs of All Nodes (For The 
Hub Selection Problem): P (Iter) 

Do while (till Iter = Maximum Iteration) 
Iter ←Iter+1 
Choose Two Parents Randomly from P (Iter-1) 
Generate A Random Number (R1) Between 0 And 1 

   If R1 < 𝑝௖௥ Then 
Perform Crossover (Recombine Method) 
Perform Mutation (Randomly Mehthod) 
Evaluate Offsprings: O (Iter) 

    If Offspring's Costs Objective Is Improved Upon Mutation Then 
        Add the Mutated Offspring to The New Population 

Else 
Add the Crossovered Offspring to The New Population 

End If 
Else if 

Select One Of The Two Parents Randomly 
Generate A Random Number (R2) 
If R2 < 𝑝௠௨ Then 

Perform Mutation 
If Chromosome's or Parents Costs Objective Is Improved Upon Mutation Then 
Add the Mutated Offspring to The New Population 

             End If 
Else 

Add the Parent to The Population 
End If 

Else 
Add the Selected Parent to The New Population 

End If 
Rank the Parents in Population P (Iter). 
Rank the Offspring Population O (Iter). 
Insert the Superior Members of P (Iter) And O (Iter) Into P (Iter+1). 
Evaluate P (Iter+1) 
Loop Till 
Iter ← Maximum Iter 
End while 

 
Fig. 9. pseudo-code of Genetic Algorithm 

4.3. Taguchi Method for Tuning Genetic Algorithm Parameters 

This section outlines the methodology employed for effectively tuning the parameters of a genetic algorithm using the 
Taguchi Method. The goal is to achieve optimal parameter values that enhance the algorithm's performance and efficiency. 
The approach involves three key steps: orthogonal array (OA) design, scenario generation and repetition, and evaluation 
metrics. 

4.3.1. Methodology 

• Orthogonal Array (OA) Design: We construct a matrix of factors representing different levels of the algorithm 
parameters. This matrix is carefully designed according to the principles of the Taguchi Method. By utilizing 
orthogonal arrays, we ensure a balanced and efficient exploration of parameter combinations. 

• Scenario Generation and Repetition: In order to comprehensively evaluate the impact of different parameter set-
tings, nine distinct scenarios are defined. Each scenario undergoes five repetitions, allowing us to obtain reliable 
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and statistically significant results. This step is crucial for capturing the variability and robustness of the algorithm's 
performance across different parameter values. 

• Evaluation Metric: The algorithm's performance under each parameter setting is measured using the signal-to-
noise ratio (S/N). The S/N ratio, as described in equation 16, quantifies the average desired response value relative 
to the standard deviation of the undesired value. By maximizing the calculated S/N, we aim to identify the param-
eter configuration that achieves the optimal trade-off between the desired response and variability. 

2

1010log
ijZ
n

S

 
 
 
 = −  

for i, j (16) 

The values considered for the parameters in GA are shown in Table 1: 

Table 1  
The value of the parameters 

 1 2 3 
Crossover Percentage 0.25  0.5 0.95 
Mutation Percentage 0.15  0.05 0.01 

Population Size 10  50 100 
Number of Iterations 50  100 200 

Mutation Rate 0.2  0.5 0.8 
Selection Pressure Rate 0.001  0.0001 0.00001 

Table 2 represents the nine different scenarios considered to examine each parameter level: 
 
Table 2  
The nine different scenarios to examine each parameter level 

Scenarios  
1 1 1 1 1 1 
1 2 3 2 2 2 
1 3 2 3 3 3 
2 1 3 3 3 3 
2 2 2 1 1 1 
2 3 1 2 2 2 
3 1 3 2 2  
3 2 1 3 3  
3 3 3 1 1  

The pseudo-code for the proposed Taguchi method used for tuning the parameters of the proposed genetic algorithm is as 
Fig. 10: 

Producer:  Taguchi design for GA parameters                 
Input:  P cross, P Mutation, Pop Size, Max Iteration, Mu 
Output: optimum level of parameter                                  
Begin                                                                       
     Select L9 (34) as the suitable OA                                
     Apply GA on each scheme of L9 (34)                         
     Obtain fitness for each scheme                                 
         For i 1 to 4 do                                                 
              For j 1 to 3 do                                   
                  Calculate S/N ratio, make span, PRD                      
              End                                                          
         End                                          
Determine optimum level of parameters                                                      
End                                                                                      

Fig. 10. pseudo-code of Taguchi Method for Genetic Algorithm 
5.  Results  
 
5.1. Dataset Definition 
 

The selected dataset for evaluating the performance of the modeling model consists of two datasets: the dataset of passenger 
aircraft in the United States and the cargo dataset in Turkey. The dataset of passenger aircraft in the United States is based 
on information regarding the distance and passenger flow of airlines in 25 major cities in the United States in the year 1970. 
This dataset was initially used in O'Kelly's studies.  The TR dataset, on the other hand, contains data on the 81-node Turkish 
network. It provides information about various aspects of the Turkish transportation network. Both datasets are utilized in 
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this study to assess and analyze the performance of the modeling model. In this section, the value of the fixed cost parameter 
is obtained from previous research for both datasets, while other necessary data are derived from an analysis of Tables 1 to 
4 for the CAB dataset.  Five different values for the fixed hub construction cost have been considered.  

fk = {50, 100, 150, 200, 250} 

The cost of utilizing large aircraft between hubs for each flight (FCR), as well as the cost of utilizing small aircraft between 
non-hub origins and hubs (FCP) and hubs and non-hub destinations for each flight (FCQ), have been factored in based on 
the values presented in the following table. These costs are taken into consideration relative to the cost ratio of establishing 
hubs, given that the cost of establishing hubs is several times greater than the fixed transportation cost.  

   { }, ,FCP FCR FCQ = {10, 20, 10} 

In the proposed model, the aircraft capacity for passenger transportation from non-hub nodes to hubs and from hubs to non-
hub nodes is considered Capsmall, while the aircraft capacity for passenger transportation between hubs is considered Caplarge. 
If the aircraft capacities are treated as variables, the mathematical model would become nonlinear, as the right-hand side of 
constraints (4), (5), and (6) would involve the product of the variable quantities of transportation vehicles and the variable 
capacity of the vehicles. Therefore, to prevent the problem from becoming nonlinear, the optimal capacities of the transpor-
tation vehicles are parametrically considered by performing calculations based on the table below. 

Table 3  
Determining the Capacity of Transportation Vehicles between Hubs and between Non-Hub to Hubs (n=10)  

fk=200, FCP=10, FCQ =10, FCR=20 fk=50, FCP=10, FCQ =10, FCR=20 Capsmall, Caplarge Objective function value  Hubs  Objective function value  Hubs 
2500.970 4,5,6,7,9,10  1484.668 1,2,3,4,5,6,7,8,9,10 500, 1000  
984.257 4,9 563.113 3,4,7,9 1500, 3000  
710.518 7,9 387.463  4,6,7 2500, 5000 
640.059 7,9  340.059  7,9 3000, 6000 

 
Table 4  
Determining the Capacity of Transportation Vehicles between Hubs and between Non-Hub to Hubs (n=15) 

fk=200, FCP=10, FCQ =10, FCR=20 fk=50, FCP=10, FCQ =10, FCR=20 Capsmall, Caplarge Objective function value  Hubs  Objective function value  Hubs 
2443.030  5, 7, 9, 11 1522.423 1, 3, 4, 7, 8, 9, 12, 14, 15 1500, 3000  
1617.960 4, 6, 7 986.580  3, 4, 7, 8, 9, 12, 14 2500, 5000 
1380.210 5, 11  846.018 4, 6, 7, 12, 14  3000, 6000 
1103.850 4, 7 689.079 4, 6, 7, 12, 14  4000, 8000 

 
 

Table 5  
Determining the Capacity of Transportation Vehicles between Hubs and between Non-Hub to Hubs (n=20) 

fk=200, FCP=10, FCQ =10, FCR=20 fk=50, FCP=10, FCQ =10, FCR=20 Capsmall, Caplarge Objective function value  Hubs  Objective function value   Hubs 
2833.182  4, 6, 7, 12, 17, 18 1752.558 1, 3, 4, 6, 7, 8, 12, 14, 17, 18 3000, 6000  
2203.680 4, 6, 12, 17 1341.132  4, 6, 7, 12, 14,17, 18 4000, 8000 
1826.336 6, 12, 13, 17  1107.772 4, 7, 12, 14, 17, 20 5000, 10000 
1556.752 6, 7, 17 991.953 4, 7, 12, 14, 17, 20 6000, 12000 

 
Table 6  
Determining the Capacity of Transportation Vehicles between Hubs and between Non-Hub to Hubs (n=25) 

fk=200, FCP=10, FCQ =10, FCR=20 fk=50, FCP=10, FCQ =10, FCR=20 Capsmall, Caplarge Objective function value  Hubs  Objective function value   Hubs 
3113. 096  6, 12, 17, 21, 25 2005.304 1, 4, 7, 8, 9, 12, 14, 17, 18, 22, 25 4000, 8000  
2547.590 6, 12, 18, 21, 24 1639.052  4, 7, 9 12, 14, 17, 22, 25 5000, 10000 
2173.419 12, 17, 20, 21  1412.582 4, 6, 7, 12, 14, 17, 22, 25 6000, 12000 
1840.067 12, 17, 20, 21 1116.512 4, 7, 12, 14, 17, 25 7500, 15000 

The analysis of vehicle capacity for the CAB dataset is based on the data extracted from Table 3. The optimal configuration 
for the CAB dataset with 10 nodes entails a meticulous evaluation of the fixed costs associated with hub establishment. 
With fixed costs set at 50 and 200, the proposed model favors a small aircraft capacity of 1500 and a large aircraft capacity 
of 3000. This capacity allocation strikes a balance by generating a more suitable number of hubs compared to alternative 
capacity options for efficient transportation. Drawing from the insights provided in Table 4, the CAB dataset with 15 nodes 
requires a comprehensive analysis of fixed costs for hub creation. Setting the fixed costs at 50 and 200, the model recom-
mends a small aircraft capacity of 2500 and a large aircraft capacity of 5000. This configuration optimizes hub distribution, 
resulting in a more desirable number of hubs when compared to other capacity options for efficient transportation. Further-
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more, referencing Table 5, the CAB dataset with 20 nodes demands a thorough examination of fixed costs for hub estab-
lishment. With fixed costs set at 50 and 200, the proposed model advocates for a small aircraft capacity of 5000, while the 
capacity of the large aircraft remains unspecified. This strategic allocation of resources leads to the creation of a more 
favorable number of hubs, surpassing the performance of alternative capacity options. Table 6, which pertains to calculating 
the aircraft capacity for a dataset of 25 nodes in the CAB data, reveals insightful results. The obtained data demonstrates 
that utilizing fixed costs of 50 and 200 for hub creation yields a capacity of 75000 for the smaller aircraft and a capacity of 
15000 for the larger aircraft. These values correspond to a reasonable number of hubs within the network. The calculations 
presented in the tables illustrate a notable trend: as the number of network nodes increases, the vehicle capacity required to 
establish a suitable number of hubs also rises. Additionally, it is evident that increasing the vehicle capacity (in this case, 
aircraft) reduces the number of hubs created within the network. Moreover, the location of hubs may vary under specific 
circumstances. This highlights the influential role of vehicle capacity in determining both the number and placement of 
hubs. In conclusion, these analyses emphasize the importance of considering vehicle capacity when determining the optimal 
number and locations of hubs within the network. 
 

5.2 Results of Computational Calculations 
 
Table 7 showcases the results of solving a model with 10 nodes from the CAB dataset, utilizing the CPLEX solver integrated 
into the GAMS software. It is evident that achieving the optimal solution for this specific node size required a considerable 
amount of time. Extrapolating this to larger node sizes implies that resolving the problem would demand a substantial time 
investment. However, an intriguing finding emerges from Table 7. By incorporating a 1% gap in the CPLEX solver, the 
time required to solve the problem is significantly reduced. Furthermore, the solutions obtained from the software with the 
1% gap closely mirror those obtained without considering the gap. Remarkably, the disparity between the two solution sets 

is practically negligible, with the resulting hub locations being identical in both cases. 

The parameters obtained using the Taguchi method for the calculations in Tables are as follows: beta = 0.001, Mu = 0.2, P 
Crossover = 0.95, P mutation = 0.01, Pop Size = 100, Iteration = 50. These parameter values for 10, 15, and 20 Nodes with 
different fixed cost and flight capacity are illustrated in Figure 11 to 16. 

 
 

Fig. 11. Parameter Optimization for 10 Nodes with a Fixed 
Cost of 50 and Flight Capacity of 1500 and 3000. 

Fig. 12. Parameter Optimization for 10 Nodes with a Fixed 
Cost of 100 and Flight Capacity of 1500 and 3000. 

  
Fig. 13. Parameter Optimization for 10 Nodes with a Fixed 

Cost of 100 and Flight Capacity of 2500 and 5000. 
Fig. 14. Parameter Optimization for 10 Nodes with a Fixed 

Cost of 150 and Flight Capacity of 2500 and 5000. 

Table 7  
Results of CAB dataset in (n=10, CAP Small= 1500, CAP Large=3000, FCP, FCQ =10, FCR=20) 

Gap (%)  
Best Known Solution by GAMS with 1% GAP form 

Optimality Optimal solution by GAMS 

Time(S)  OPT  Hubs  Time(S) OPT Hubs kf  
0.1  31  563.71  3,4,7,9  5418  563.11  3,4,7,9  50  
0.07  3  727.42  4,7,9  429  726.90  4,7,9  100  
0.11  4  877.51  4,6,7  1437  876.53  4,6,7  150  
0.005  4  984.30  4,9  4288 984.25 4,9  200  
0.04  2  1084.70  4,9 4142  1084.25  4,9 250  
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Fig. 15. Parameter Optimization for 20 Nodes with a Fixed 

Cost of 200 and Flight Capacity of 5000 and 10000. 
Fig. 16. Parameter Optimization for 20 Nodes with a Fixed 

Cost of 250 and Flight Capacity of 5000 and 10000. 
 
Table 8  
Results of CAB dataset in (n=10, CAP Small= 1500, CAP Large=3000, FCP, FCQ =10, FCR=20) 

Gap 
(%) 

GA Vs. 
GAMS 

Obtained Solution by GA parameters 
Tuned by Taguchi  

Gap (%) 
Between 

LP 
Relaxation 

and 
GAMS  

Obtained Solution by LP Relaxation 
Based Method Best Known Solution by GAMS fk 

Time(S)  OPT  Hubs  Time(S)  OPT  Hubs  Time(S) OPT Hubs 
2.8  30.364  579.798  4,6,7,8  0.5  14  566.14  3,4,6,7  31  563.11  3,4,7,9  50  
0  30.449  727.90  4,7,8  0  22  726.90  4,7,9  3  726.90  4,7,9  100  
0  30.082  876.53  4,6,7  0.04  5  876.95  4,6,7  4  876.53  4,6,7  150  
0  29.463  984.25  4,9  0  31  984.25  4,9  4 984.25 4,9  200  

1. 2  27.452  1174.45  4,9  0  8  1084.25  4,9 2  1084.25  4,9 250  
 
Table 9  
Results of CAB dataset in (n=15, CAP Small= 2500, CAP Large=5000, FCP, FCQ =10, FCR=20) 

Gap 
(%) 
GA 
Vs. 

GAMS 

Obtained Solution by GA 
parameters Tuned by Taguchi  

Gap (%) 
Between 

LP 
Relaxation 

and 
GAMS  

Obtained Solution by LP 
Relaxation Based Method Best Known Solution by GAMS fk 

Time(S)  OPT  Hubs  Time(S)  OPT  Hubs  Time(S) OPT Hubs 
1  56.73  996.80  1,4,6,7,8,12  0.03  60  986.89  4,6,7,8,12,14  195  986.58  3,4,7,9,12,14  50  

1.1  55.91  1254.25  1,4,6,7,12  0.03  51  1240.16  4,7,9,12,14  36  1240.45  4,7,9,12,14  100  
1.8  54.12  1482.48  1,4,7,12  0.17  55  1452.54  4,7,9,12  201  1455.01  4,7,9,12  150  
1.1  53.90  1636.04  1,4,7,12  0.15  70  1620.40  4,12,13  143 1617.96 4,6,7  200  
3.7  54.01  1835.34  1,4,7,12  0.3  125  1761.47  4,7,9 144  1766.76  9,12,13 250  

 
Table 10 
Results of CAB dataset in (n=20, CAP Small= 5000, CAP Large=10000, FCP, FCQ =10, FCR=20) 

 Gap 
(%) 

Vs. GA 
and 

GAMS 

Obtained Solution by GA parameters 
Tuned by Taguchi  

Gap (%) 
Between 

LP 
Relaxation 

and 
GAMS  

Obtained Solution by LP Relaxation 
Based Method Best Known Solution by GAMS fk 

Time(S)  OPT  Hubs  Time(S)  OPT  Hubs  Time(S) OPT Hubs 
0.3  99.656  1112.10  4,6,7,12,14,17  0.11  488  1107.86  4,6,7,12,17,18  528  1107.77  4,7,12,14,17,20  50  
2.7  96.104  1446.14  1,4,7,12,17  0.02  657  1406.56  4,7,12,17,20  664  1406.96  4,7,12,17,20  100  
3.7  96.707  1695.44  1,4,7,12,17  0.14  411  1630.18  4,12,17,20  661  1632.55  9,12,13,17  150  
2.1  96.424  1868.64  1,4,17,19  0.08  965  1829.36  4,12,17,20  2442 1827.75 6,12,13,17  200  
3.7  97.484  2069.19  1,4,17,19  1.8  1029  2029.28  4,12,17,20 2185  1991.77  6,7,18 250  

 
Table 11  
Results of CAB dataset in (n=25, CAP Small= 7500, CAP Large=15000, FCP, FCQ =10, FCR=20) 

Gap 
(%) 

Vs. 
GA 
and 

GAMS 

Obtained Solution by GA 
parameters Tuned by Taguchi  

Gap (%) 

Between 
LP 

Relaxation 
and 

GAMS  

Obtained Solution by LP Relaxation 
Based Method Best Known Solution by GAMS 

fk 
Time(S)  OPT  Hubs  Time(S)  OPT  Hubs  Time(S) OPT Hubs 

4.4  150.80  1217.44  4,6,7,12,14,17  0.05  4354  1162.91  4,7,12,14,17,25  4461  1163.51  4,7,12,14,17,25  50  
0.3  151.70  1444.66  1,4,12,17  0.5  5312  1447.17  1,4,12,17  9960  1439.87  12,17,20,21  100  

0.07  143.42  1642.12  1,4,12,17  0.37  7014  1647.26  4,12,17,25  8728  1641.01  6,12,17,21  150  
0.4  144.07  1847.72  1,4,12,17  0.4  13326  1847.71  1,4,12,17  20320 1840.06 12,17,20,21  200  
0.7  147.83  2013.83  2,6,12  0.95  12829  2019.01  5,12,20 18029  1999.70  2,5,12 250  
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5.3 Analysis of the results 
 
As the number of variables in a problem increases, the solution space expands correspondingly. Consequently, solving the 
problem becomes more time-consuming, especially for larger sizes. The results of solving the problem for sizes 15, 20, and 
25 using the GAMS software are presented in Tables 8, 9, 10, and 11, respectively. To address the time-consuming chal-
lenge, the proposed model employed two approaches. Firstly, an exact method called the LP relaxation-based method was 
utilized. Additionally, meta-heuristic algorithms, specifically the GA, were implemented. These algorithms were employed 
to explore various solution paths and optimize the results. The solutions obtained from the LP relaxation-based method and 
the meta-heuristic algorithm were compared with results obtained from the CPLEX solver in GAMS to evaluate their ef-
fectiveness and determine the most promising solution. Tables 5 to 9 demonstrate that the percentage difference between 
the LP relaxation-based method’s results and those obtained from the GAMS software is consistently below one percent, 
approaching zero in most cases. In only one case, the GAP is 1.8 percent. Some of the results obtained from the LP relaxa-
tion-based method show only slight enhancements compared to the results obtained from GAMS. It is important to note 
that if the 1% difference criterion was not applied in the software, due to the substantial time required to run the model, all 
results obtained by GAMS would either be equal to or better than the LP relaxation-based method’s results. However, the 
tables clearly show that the proposed method significantly reduces the computational time compared to the software solu-
tion. In some cases, the proposed method achieves a 50% reduction in computational time for networks with 20 and 25 
nodes, which is a significant advantage of the proposed approach. Although the LP-based relaxation method proves effective 
for medium-sized problems, it may not be well-suited for larger-scale problems. As the problem size increases, the method 
becomes increasingly time-consuming and may struggle to solve excessively large problems. Consequently, a GA has been 
developed specifically for addressing the challenges posed by large-sized instances of the proposed model. The results 
presented in Tables 5–9 demonstrate that the GA is capable of finding solutions within a significantly reduced timeframe 
and exhibits minimal discrepancy when compared to the results obtained from GAMS with a below-4.5% gap with the 
GAMS solution. Therefore, the developed GA is employed to handle the TR datasets, which consist of 81 nodes. Tables 12 
and 13 showcase the results obtained for the TR datasets using the GA. 
 

Table 12  
Results of Genetic Algorithm for vehicle capacity of 6000 and 12000 on TR dataset (n=81) 

Times(S) OPT Hubs fk 
752.248 6851.378 1,6,7,21,26,25,20,34,45,44,53,54,60,68,80 50 

1380.902 7582.671 1,3,6,21,27,34,41,55,45,69,58,81 100 
1367.975 8298.722 6,15,23,34,60,28,54,45,80 150 
1342.594 8726.745 6,25,23,34,52,64,54,80 200 
1323.612 9143.963 6,23,34,64,60,80 250 

 

Table 13  
Results of Genetic Algorithm for vehicle capacity of 10000 and 20000 on TR dataset (n=81) 

Times(S) OPT Hubs fk 
1391.133 4447.08 1,15,6,21,16,25,34,46,35,38,42,52,55,66,81 50 
1347.265 5090.439 3,6,23,16,42,35,34,52,66,80 100 
1328.071 5516.337 6,16,23,52,34,35,42,80 150 
1323.592 5864.336 6,23,34,43,60,45,80 200 
1276.448 6124.553 6,12,41,60,64,80 250 

The results obtained from the tables reveal that as the cost of establishing a hub increases from 50 to 250, the number of 
hubs gradually decreases. This observation aligns with previous research on hub location issues and validates the model. 
With higher fixed costs for hub establishment, the model aims to minimize the total cost of the network by reducing the 
number of hubs. This reduction encompasses both the cost of hub creation and the cost of network transportation. Fig. 11 
illustrates the hub locations and the allocation of other nodes to those hubs in a sample network comprising 25 nodes. The 
cost associated with creating a hub is set at 200 in this scenario. 

 

Fig. 17. Hub locations and non-hub nodes allocation in CAB (n=25) with a hub creation cost of 200 
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The proposed model involves multiple allocations of modular hub locations. In this mathematical model, the variable Xijkm 
represents the flow route from a source node i to a destination node j through hubs k and m. After solving the problem, this 
variable takes continuous values between zero and one. A value of zero for Xijkm indicates that the source node i is not 
connected to hub k. On the other hand, a value of one represents 100% of the flow from source node i to hub k,m. If the 
value is between zero and one, it means that a portion of the flow sent from source node i to destination node j goes through 
hubs k and m,  and another portion goes through other hubs. To gain a better understanding of the concept, consider Figure 
17 as an example. Suppose the objective is to route flow from node 1, which represents the city of Atlanta, to node 2, 
representing the city of Baltimore, using node 20 (the city of Pittsburgh) as a hub. If the value of X1,2,20,20 is 1, it means that 
all the flow (100% of the flow) from node 1 to node 2 is routed through hub 20. However, node 1 is assigned to two hubs, 
numbered 20 and 21. When sending flow from node 1 to node 6, a portion of the flow goes through hub 20 and another 
portion goes through hub 21. As calculated, the values for X1,6,20 and X1,6,21 are 0.821 and 0.179, respectively. This implies 
that 82.1% of the flow from node 1 to node 6 is routed through hub 20, while 17.9% of the flow is routed through hub 21. 

Tables 14 to 16 provide calculations related to the number of flights in the network as follows: 

Table 14  
Number of flights from non-hub nodes to hubs (value of Pik) in CAB with n=20 and fk=200 

 Hubs 
Nodes 12 17 20 21 

1   18 23 
2  16 8  
3  87   
4   43 100 
5   21 2 
6   43  
7 7   37 
8 11   24 
9   55 6 
10 5   30 
`11    29 
13    17 
14  22 52 5 
15    36 
16    27 
18  51   
19 22    
22 73    
23 25   3 
24   18 9 
25  62 20  

 
Table 15  
Number of flights between hubs (value of Rkm) in CAB with n=20 and fk=200 

Hubs 12 17 20 21 
12  8 9 48 
17 6  55 8 
20 8 44  57 
21 48 8 6  

Table 16. Number of flights from to hubs non-hub (value of Qmj) in CAB with n=20 and fk=200 
 Non-hubs 

Hubs 1 2 3 4 5 6 7 8 9 10 11 12 13 
12       6 11  5    
17  17 87           
20 22 7  43 21 43   56  1   
21 19   100 2  38 24 5 30 28 5 17 
 Non-hubs 

Hubs 14 15 16 17 18 19 20 21 22 23 24 25 14 
12      22   73 24   
17 2    51     4 6 62 
20 73          21 20 
21 4 36 27 42         

Tables 14 to 16 display the number of flights between nodes in the network. Despite the symmetrical nature of the wij 
network flow data matrix, as evident from Tables 14 to 16, the number of flights between nodes is not symmetrical. Instead, 
it is evenly distributed based on the distance between the nodes within the flight network.  As mentioned before, the allo-
cation variable Xijk is treated as a continuous variable, indicating that a portion of the flow between an origin and destination 
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occurs through hubs k and m, while another portion passes through different hubs. This approach ensures a balanced distri-
bution of traffic among the network hubs to calculate the minimum value of the objective.  

6. Conclusion 

This paper introduces a novel model for tackling the multiple-allocation modular hub location problem, taking into consid-
eration the capacity of transportation vehicles. A key characteristic of this model is its effectiveness in meeting demands by 
strategically utilizing selected hubs within the network. To evaluate the performance of the computational model, the CAB 
and TR datasets were utilized, facilitating a comprehensive analysis of the problem. The proposed model accurately calcu-
lates the number of trips within the network by considering the capacity of the vehicles transported between routes. Fur-
thermore, it clearly demonstrates the direct relationship between vehicle capacity and the number of hubs in the network. 
This is since vehicle capacity directly influences the overall number of network trips. 

Recognizing the NP-hard nature of HLPs, this study proposes a fresh approach to handling the complexity of the solution 
space. This involved the development of a new method that leverages linear relaxation of integer variables, resulting in 
faster computation times compared to the GAMS software, particularly for medium-sized problems. By utilizing the initial 
solution, the linear relaxation method aims to refine and enhance the results in a more efficient manner. Since the LP 
relaxation-based method encounters challenges in handling large-sized instances of the proposed models, an additional 
solution approach was introduced to further enhance the analysis. In this study, a genetic algorithm was developed and 
integrated into the analysis, and the parameters in GA were tuned by the Taguchi method. The effectiveness of the GA 
tuned with the Taguchi method was demonstrated through its ability to produce satisfactory results within a short timeframe, 
even for large-scale problems. Notably, the GA tuned with the Taguchi method achieved a solution gap of less than 4%, 
indicating its efficacy in finding close-to-optimal solutions for the given problem instances. The results analysis clearly 
demonstrates that both proposed algorithms provide high-quality solutions while significantly reducing the time required 
compared to the results obtained from the CPLEX solver in GAMS software. 
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