
* Corresponding author.
E-mail address: damla.kizilay@idu.edu.tr (D. Kizilay)

© 2024 by the authors; licensee Growing Science, Canada.
doi: 10.5267/j.jpm.2024.2.002

Journal of Project Management 9 (2024) 85–100

Contents lists available at GrowingScience

Journal of Project Management

homepage: www.GrowingScience.com

Solving blocking flowshop scheduling problem with makespan criterion using q-learning-based
iterated greedy algorithms

M. Fatih Tasgetirena, Damla Kizilayb* and Levent Kandillerc

aDeceased, Dead August 27, 2023
bIndustrial Engineering Department, Izmir Democracy University, Izmir, Turkey
cIndustrial Engineering Department, Yasar University, Izmir, Turkey
C H R O N I C L E A B S T R A C T

Article history:
Received: December 20, 2023
Received in revised format: Janu-
ary 2, 2024
Accepted: February 15, 2024
Available online:
February 15, 2024

 This study proposes Q-learning-based iterated greedy (IGQ) algorithms to solve the blocking
flowshop scheduling problem with the makespan criterion. Q learning is a model-free machine
intelligence technique, which is adapted into the traditional iterated greedy (IG) algorithm to
determine its parameters, mainly, the destruction size and temperature scale factor, adaptively
during the search process. Besides IGQ algorithms, two different mathematical modeling tech-
niques. One of these techniques is the constraint programming (CP) model, which is known to
work well with scheduling problems. The other technique is the mixed integer linear program-
ming (MILP) model, which provides the mathematical definition of the problem. The introduc-
tion of these mathematical models supports the validation of IGQ algorithms and provides a
comparison between different exact solution methodologies. To measure and compare the per-
formance of IGQ algorithms and mathematical models, extensive computational experiments
have been performed on both small and large VRF benchmarks available in the literature. Com-
putational results and statistical analyses indicate that IGQ algorithms generate substantially
better results when compared to non-learning IG algorithms.

© 2024 Growing Science Ltd. All rights reserved.

Keywords:
Q-learning-based iterated greedy
algorithms
Reinforcement learning
Blocking flowshop scheduling
problem

1. Introduction

Johnson (1954) proposed a permutation flowshop scheduling problem (PFSP), which is the simplest version of the flowshop
scheduling problems, for the first time in the literature. In PFSP, each job is processed on several machines. The route of
each job is the same. Also, all the jobs have the same permutation on each machine. PFSP has a variety of applications in
the industry (Blazewicz et al., 2007) and can be applied to sectors such as textile, plastic, chemical, and semiconductor (Pan
& Ruiz, 2012). Also, PFSP has received significant attention from the literature over several years (Fernandez-Viagas et
al., 2016, 2017) and was proved to be NP-hard when the objective is minimizing the makespan (Garey et al., 1976). For the
last fifty years, various mathematical models have been developed for several extensions of the PFSP models to meet the
needs of the industry (Cheng et al., 2019). In addition, a wide range of objective function values were considered for the
PFSP (Birgin et al., 2020; Ramezanian et al., 2019). In PFSP, the buffer spaces between machines are assumed as unlimited.
However, in some production plants, it cannot be possible to have unlimited buffer spaces (Miyata & Nagano, 2019). There-
fore, a blocking permutation flowshop scheduling problem (BFSP) has arisen as a variant of PFSP. In BFSP, there is not
any buffer space between the consecutive machines. Thus, jobs cannot move to the next machine if that machine is not
available. Since there is no buffer area, jobs cannot move anywhere after they complete the process on the current machine,
so have to stay at the current machine without being processed. At that time period, none of the jobs can be processed by
the blocked current machine. When the upstreaming machine becomes available, then the job leaves the current machine

 86

and allows next job to be processed. These blocking situations can occur in several production types, such as robotic cells
(Carlier et al., 2010; Ribas et al., 2015; Ribas & Companys, 2015), and modern industrial production systems (Shao et al.,
2018a). Furthermore, several sectors have blocking constraints and actively apply BFSP, i.e., the chemical and pharmaceu-
tical sectors (Merchan & Maravelias, 2016). In this sector, buffer areas are not allowed in production for health and hygiene
reasons. Waiting in the buffer area causes the structures of chemical products to deteriorate and the effects of the drugs to
disappear. BFSP is also applied in the iron and steel industry (Gong et al., 2010), in which the structure of the products
waiting in the buffer areas is damaged due to oxidation. In addition, BFSP is suitable for the electronic manufacturing shop
(Chen et al., 2014), where in some electronic products, waiting periods between production processes may damage the
product structure.

Several studies provided mixed integer linear programming (MILP) model formulation to obtain optimal solutions for the
BFSP (Ronconi & Armentano, 2001) and several variants of BFSP, such as distributed BFSP (Naderi & Ruiz, 2010) and
mixed BFSP (Trabelsi et al., 2012). The BFSP can be solved optimally if the number of machines equals two (Gilmore et
al., 1984). However, it becomes NP-Hard when the machine numbers are greater than two (Hall & Sriskandarajah, 1996).
The problem's computational complexity causes exact algorithms to fail to handle large and medium-sized instances, so
heuristic and meta-heuristics are generally employed to solve the BFSP and its variants. Besides the heuristics and metaheu-
ristics, several constructive heuristic algorithms were developed by the authors, such as profile fitting (Mccormick et al.,
1989) and NEH (Nawaz et al., 1983) heuristics. Also, many heuristic algorithms are built on profile fitting and NEH algo-
rithms by modifying these algorithms (Ronconi & Armentano, 2001; Débora P Ronconi, 2004). An improving heuristic
(Mccormick et al., 1989) and several NEH-based constructive heuristics were proposed (Newton et al., 2019; Riahi et al.,
2017, 2019). These constructive heuristics provide a good initial solution to the heuristic or meta-heuristic algorithms. These
metaheuristics are, i.e., genetic algorithms (Caraffa et al., 2001), several variants of artificial bee colony algorithms (Han et
al., 2012, 2013, 2015), harmony search (Wang, Pan, & Tasgetiren, 2010), tabu search (Glover, 1990), iterated greedy (Ribas
et al., 2019; Tasgetiren et al., 2017), variable block insertion (Tasgetiren et al., 2016), differential evolution (Wang, Pan,
Suganthan, et al., 2010), particle swarm (Wang & Tang, 2012), fruit fly optimization (Han et al., 2016), water wave opti-
mization (Shao et al., 2018b, 2019) algorithms and so on.

Moreover, some studies address the specific needs of the industry such as sequence-dependent setup times integrated into
the BFSP by Shao, et al. (2020). Also, time constraints for BSFP are considered by Chen et al. (2014). Multi-objective
optimization of energy-efficient BFSP is considered by Kizilay et al. (2019), and very recently, Han et al. (2020) integrated
a setup time to similar considerations. A BFSP group scheduling problem integrated with the transfer times is considered
by Yuan et al. (2020). A hybrid BFSP is handled by the two studies (Aqil & Allali, 2021; Elmi & Topaloglu, 2013), while
parallel BFSP is also considered in the literature (Ribas et al., 2017, 2019). Furthermore, a lot-streaming BFSP is presented
by Gong et al. (2018). In recent years, a distributed BFSP with makespan has been considered by Zhang et al. (2018) and
solved using discrete differential evolution algorithms, while Shao, et al. (2020) consider a fuzzy distributed BFSP. A
detailed review of BFSP literature is provided (Miyata & Nagano, 2019).

Very recently, multiple perturbation operators were incorporated into their iterated greedy (IG) algorithm, denoted as QIG.
They employed the Q-learning approach, one of the machine learning techniques, to select the perturbation strength of the
destruction and construction operator for the PFSP. They show that QIG outperforms even the algorithms that achieve the
best results in the literature for scheduling problems to date. Note that a similar Q-learning is employed to solve the no-idle
PFSP (Öztop et al., 2020; Öztop et al., 2022) as mentioned by Karimi-Mamaghan et al. (2022). In this study, we utilize the
Q-learning approach to solve the BFSP and develop our Q-learning-based IG algorithms, denoted as IGQ1 and IGQ2, to
compare to IG, IGALL, and QIG algorithms. Computational results indicate that IG algorithms with Q-learning, namely,
IGQ1, IGQ2, and QIG, substantially outperform the traditional IG algorithm.

The following is explained in the upcoming sections of the article. In section 2, the CP and MILP mathematical models
proposed for problem-solving are explained and their formulations are given. In section 3, IG and IGALL algorithms, which
are traditional metaheuristic approaches in the literature, are explained. Additionally, the local search (LS) procedure used
in these algorithms is also explained. Sections 4 and 5 summarize reinforcement learning (RL) and Q-learning approaches.
Comparative results and performances of all developed and proposed models and algorithms are explained in section 6. In
the last section, section 7, the results obtained are summarized and information about future studies is given.

2. Mathematical Formulations

BFSP is formulated using MILP and CP models. Both models use the same parameters, which are presented in the follow-
ing. We have several jobs and machines, the process duration time of each job, and a sufficiently big integer used in only
the CP model. We used the MILP model formulation of Ronconi & Armentano (2001) and developed a CP model. Both
models, including their objectives and constraints are explained in the following parts.

Parameters: 𝑁: Job set ሼ1, … ,𝑛ሽ 𝑀: Machine set ሼ1, … ,𝑚ሽ 𝑝𝑡𝑖𝑚𝑒௜,௝: Process duration of job 𝑖 ∈ 𝑁 on machine 𝑗 ∈ 𝑀

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

87𝐷: A sufficiently big integer value

2.1. Mixed-Integer Linear Programming Model

The MILP model is constructed by introducing specific decision variables, an objective function, and various constraints.
The decision variables consist of two types of integers representing the job finish time on individual machines and the
maximum finish time, respectively. Additionally, a binary variable is utilized to denote the positions of the jobs on the
machines, ensuring that job permutations remain consistent across all machines. The model is designed to optimize the job
schedules on the machines, considering the completion times and processing orders, with the ultimate goal of achieving
efficient and effective scheduling outcomes.

Decision variables:

 𝐶௜,௝: The end time of a process of job 𝑖 ∈ 𝑁 on machine 𝑗 ∈ 𝑀 𝑥௜,௝ = ൜1, if job 𝑖 is processed at position 𝑗 on the machines0, otherwise 𝐶𝑚𝑎𝑥: The maximum of the process end time of the jobs

Objective Function
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥 (1)

Constraints
 𝐶𝑚𝑎𝑥 ≥ 𝐶௜,௠ ∀𝑖 ∈ 𝑁 (2) 𝐶௜,ଵ ≥෍൫𝑥௜,௝ ∗ 𝑝𝑡𝑖𝑚𝑒௜,ଵ൯௜∈ே ∀𝑗 ∈ 𝑁 (3)

𝐶௝,௞ ≥ 𝐶௝,௞ିଵ + ෍൫𝑥௜,௝ ∗ 𝑝𝑡𝑖𝑚𝑒௜,௞൯௜∈ே ∀𝑗 ∈ 𝑁,𝑘 ∈ 𝑀|𝑘 ≥ 2 (4)

𝐶௝,௞ ≥ 𝐶௝ିଵ,௞ + ෍൫𝑥௜,௝ ∗ 𝑝𝑡𝑖𝑚𝑒௜,௞൯௜∈ே ∀𝑗 ∈ 𝑁|𝑗 ≥ 2, 𝑘 ∈ 𝑀 (5) 𝐶௝,௞ ≥ 𝐶௝ିଵ,௞ାଵ ∀𝑗 ∈ 𝑁|𝑗 ≥ 2, 𝑘 ∈ 𝑀|𝑘 ≤ 𝑚 − 1 (6) ෍𝑥௜,௝௜∈ே = 1 ∀𝑗 ∈ 𝑁 (7) ∑ 𝑥௜,௝௝∈ே = 1 ∀𝑖 ∈ 𝑁 (8)

This study's objective (1) is to achieve the lowest makespan value, which can be calculated as the last processed job’s
production end time on the last machine, as stated in constraint (2). Constraints (3-5) calculate the jobs' completion time
regarding the problem's blocking variant. Constraint (6) states that a job is processed through a series of machines. Assign-
ment constraints (7-8) provide that each job is fixed in a single position in the sequence and each position has a job at each
machine.

2.2. Constraint Programming Model

The CP model incorporates both interval and sequence variables, which are the expressions that make it easier to build
scheduling models. Interval variables represent the start time of the process, duration of the process, and end time of each
job's process on the machines. Specifically, we define interval variables for each job and machine to track the temporal
characteristics of their processing. On the other hand, sequence variables are established for each machine, detailing the set
of interval variables associated with the respective machines. This approach allows us to model and optimize the sequencing
of jobs on the machines effectively, considering both their temporal properties and the overall operations on each machine.

Decision variables

 𝑦௜,௞: Interval variable denotes processing of job 𝑖 ∈ 𝑁 on machine 𝑘 ∈ 𝑀 with a duration between 𝑝𝑡𝑖𝑚𝑒௜,௝ and 𝐷. 𝑧௞: Sequence variable of machine 𝑘 defined over interval variables 𝑦௜,௞.

Objective Function 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 max௜∈ே 𝑒𝑛𝑑𝑂𝑓൫𝑦௜,௠൯ (9)

 88

Constraints
 𝑒𝑛𝑑𝐴𝑡𝑆𝑡𝑎𝑟𝑡൫𝑦௜,௞ ,𝑦௜,௞ାଵ൯ ∀𝑖 ∈ 𝑁,𝑘 ∈ 𝑀|𝑘 ≤ 𝑚 − 1 (10) 𝑛𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝ሺ𝑧௞ሻ ∀𝑘 ∈ 𝑀 (11) 𝑠𝑎𝑚𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒ሺ𝑧ଵ, 𝑧௞ሻ ∀𝑘 ∈ 𝑀|𝑘 > 1 (12)

As seen from the equations the CP model is compact when compared to the MILP model. Since the CP has interval and
sequence variables, the formulation of the scheduling problems is very easy and understandable. The objective function
aims to obtain the minimum makespan value, which is achieved from the interval variable. Since it can be reached the end
time point of an interval variable, minimizing the maximum end time of each job only for the last machine, provides the
objective value (9). To enforce the blocking constraints that each job should start its processing on a machine immediately
after it has completed processing on the previous machine, equation (10) is introduced. To ensure proper blocking between
machines, an interval variable y is defined between the job processing times and a suitably large constant D. Constraint (11)
states that an engine can operate only one job in the same period of time. This constraint is written with the help of the
glocal constraint of noOverlap. The noOverlap constraint prevents interval variables from starting and ending within the
same time period, ensuring that jobs on a machine are not executed at the same time. Furthermore, constraint (12) again
uses the global constraint, which ensures that all jobs are operated in the same rank on all machines, in short, it is the
constraint that ensures the permutation is the same.

3. Iterated Greedy Algorithms

In this section, the traditional IG algorithm first presented by Ruiz and Stützle (2007b) is explained. There are four important
parts at the core of the IG algorithm. These parts are the initial solution, destruct-construct procedure, LS, and acceptance
criteria. How these four parts are addressed is important. In this article, the NEH algorithm (Nawaz et al., 1983), which is
a well-known algorithm in the literature is used for the initial solution. After obtaining the initial solution, the destruction
part randomly removes 𝑑𝑆 number of jobs from the job list 𝜋 obtained from the initial solution. Then, these removed, and
the leftover jobs are kept in separate lists, 𝜋ௗ and 𝜋௥, respectively. The order of the remaining jobs constitutes the partial
solution. LS has been applied to this partial solution. In the traditional IG structure, applying LS in this section is not
mandatory, it is optional (Dubois-Lacoste et al., 2017). During the construction phase, previously extracted jobs were added
to the job list obtained because of LS, one by one, in random positions in the order in which they were removed. After all
the extracted jobs are added, the job list is completed, and the complete solution is obtained. Then, LS was applied again to
the obtained solution. The applied LS procedure is explained in Algorithm 1. In this procedure, the insertion LS with speed-
up technique, previously presented by Tasgetiren et al. (2017), and inspired by the speed-up techniques developed by
Taillard (1990), was used. The purpose of applying this LS procedure is to quickly upgrade the solution quality by getting
benefits from the speed-up techniques. If the current solution improves, the LS continues to be applied over the improved
solution, otherwise, over the current solution. After the LS phase is completed, if the solution obtained is better than the in-
process solution, it is saved as the new current solution; if not, it can be saved by checking it according to the (SA) ac-
ceptance criteria. At this point, a probability value for the acceptance rate is calculated respecting the objective function
value and the temperature value 𝑇 (Osman & N. Potts, 1989): 𝑇 = ∑ ∑ ௣௧௜௠௘೔ೕ೘ೕసభ೙೔సభ ଵ଴௡௠ × 𝜏𝑃 (13)

where 𝜏𝑃 is a parameter to be determined. Finally, Algorithm 2 shows the pseudocode of the traditional IG algorithm
implemented in this work.

Algorithm 1. LocalSearch൫π1൯
for j=1 to n do
 πk≔ Randomly choose a job from π1
 π2≔ Insert Job πk in the best position of π1
 if ቀf൫π2൯<f൫ π1൯ቁ then do
 π1:=π2
 endif
endfor
return π1 and f൫π1൯

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

89

Algorithm 2. Traditional IG algorithms

π≔NEH
π≔InsertionLocalSearchሺπሻ
 πbest≔π
while ሺNotTerminationሻ do
 πd,πr≔Destructionሺπ,dSሻ
 πr≔InsertionLocalSearchሺπrሻ //IGALL algorithm, optional
 π1≔Constructionሺπd,πrሻ
 π2≔InsertionLocalSearchሺπ1ሻ
 if ሺfሺπ2ሻ<fሺπሻ ሻ then do
 π≔π2
 if ቀfሺπ2ሻ<fሺπbestሻቁ then do
 πbest≔π2
 endif
 else if ൫rand()<exp൛-൫fሺπ2ሻ-fሺπሻ൯/Tൟ൯ then do
 π≔π2
 endif
end while
return πbest and fሺπbestሻ
4. Reinforcement Learning and Q-learning

RL technique is based on machine learning and its basis is to reward good behavior and punish bad behavior. An RL agent
can perceive and interpret its environment, take action, and learn through trial and error to achieve a specific goal (Kaelbling
et al., 1996; Sutton & Barto, 2018). The aim here is to enable learning by trial-and-error method by creating interaction with
the environment. As the environment is learned, the reward obtained will also reach its maximum level. Most known RL
methods require a model that includes all possible states, actions available for each state, transition probabilities between
states, and expected rewards. However, often a complete model may not be available, or it may take a long time to obtain
the complete model. For such situations, a model-independent RL algorithm called Q-learning has been developed
(Watkins, 1989). The developed Q-learning algorithm is based on gradual differences. In this algorithm, there is the state
space (𝑆), the action space (𝐴), the state-action pair (s, a) and the expected gain score 𝑄(𝑠, 𝑎) obtained as a result of the
action chosen for each situation. 𝑄(𝑠,𝑎) is calculated as follows:

Q(s, a)=Q(s, a)+α[r+γmax
a'

Q(s',a') -Q(s,a)] (14)

In this equation, 𝑠 indicates the current state and 𝑎 indicates the action applied in state 𝑠. Additionally, the next situation
(𝑠′) and the action to be applied in the next situation (𝑎′) are also included in the equation. While the resulting score is
updated, a section multiplied by the learning rate 𝛼 (0 < α ≤ 1), is added to the existing score. In this section, the difference
between the maximum of future scores and the current score is multiplied by the discount factor 𝛾 (0 < γ ≤ 1), and the reward
(𝑟) for choosing action 𝑎 is added.

In choosing an action for the current situation, both exploration and exploitation actions are important. At this point, while
the Q-learning technique provides a balance between them, it also allows using state-action pairs that have never been
discovered before. The ϵ-greedy strategy defined below is implemented using certain probability values (Sutton & Barto,
2018).

a= ൜ argmaxa∈AQ(s, a) having 1- ϵ prob. value
any action with equal choice in A and chosen at random having ϵ prob. value

5. IGQ Algorithms with Q-learning

In this article, the Q-learning algorithm and the IG algorithm explained in the previous sections are used together in the IGQ
algorithms. The learning mechanism in the RL and Q-learning algorithms was used to determine the parameter values of the
IG algorithm self-adaptively in the IGQ algorithm. The Q value in the Q-learning function is calculated for each parameter-
action pair in the IGQ algorithm. In this case, Eq. (15) was created by using the parameter (𝑝) value instead of the state (𝑠)
value in equation 14. Ee define 𝑄(𝑝, 𝑎), a function that determines both the temperature scale factor (τP) and the destruction
size (𝑑𝑆) for the IGQ algorithms as follows:

Q(p, a)=Q(p, a)+α[r+γmax
a'

Q(p', a') -Q(p, a)] (15)

In the IGQ algorithm used, the parameter set includes temperature scale factor and destruction size values. The reward (𝑟) is
defined as 1/𝐶௠௔௫ since the objective function of the problem try to obtain the minimum 𝐶௠௔௫ value and a smaller 𝐶௠௔௫
value should lead to larger reward values. Moreover, if the target value of the obtained solution becomes worse than the
current value during the iterations, it is still accepted with the SA-type acceptance criterion. At this point, a lower reward

 90

should be achieved for the action performed, because a higher 𝐶௠௔௫ value than the current value has been achieved. In the
IGQ algorithm, clusters with different values for τP and dS were determined as 𝐴ୢୗ and 𝐴த୔. A set is defined as 𝐴த୔ ∈ሼ0.1, 0.2, 0.3,0.4,0.5,0.6,0.7, 0.8, 0.9ሽ and 𝐴ୢୗ ∈ ሼ1, 2, 3ሽ. It is important to bear in mind that in the IGQ1 algorithm, we
employ the 𝐴ୢୗ ∈ ሼ2, 3, 4,5,6,7ሽ, whereas the 𝐴ୢୗ ∈ ሼ1, 2, 3ሽ is taken as an action list in the IGQ2 algorithm. In both algo-
rithms, 𝐴த୔ is taken as 𝐴த୔ ∈ ሼ0.1, 0.2, 0.3,0.4,0.5,0.6,0.7, 0.8, 0.9ሽ. Other parameters are taken as ϵ ≔ 0.8, β: = 0.996, 𝛼: = 0.6,𝑎𝑛𝑑 𝛾: = 0.8, which are experimentally determined by Karimi-Mamaghan et al. (2022) and we barrow those val-
ues for our IGQ algorithms.

The proposed IGQ algorithms are almost the same as the traditional IG algorithm. However, we determine parameter set 𝑝 ∈ (τP, dS) by using Q-learning algorithms at each iteration. In addition, we employ the referenced local search (RLS)
(M. Fatih Tasgetiren et al., 2009), given in Algorithm 3, with the speed-up methods by Tasgetiren et al. (M. Fatih Tasgetiren
et al., 2017) in Q-learning-based IGQ and QIG algorithms. Finally, we can outline IGQ algorithms in Algorithm 4. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 𝐑𝐋𝐒(𝛑,𝛑𝐛𝐞𝐬𝐭) Cnt ∶= 1, pos ∶= 1 π୰ୣ୤ ≔ πୠୣୱ୲ 𝐰𝐡𝐢𝐥𝐞(Cnt ≤ n) 𝐝𝐨
 k ← 1
 𝐰𝐡𝐢𝐥𝐞 ൫π୩ ≠ π୮୭ୱ୰ୣ୤ ൯ k ∶= k + 1;𝐛𝐫𝐞𝐚𝐤 //Find job π୩ from referenced permutation π୮୭ୱ୰ୣ୤
 pos ∶= (pos + 1) % n // Repeat it until π୩ is found
 π୮ ∶= remove π୩ from π
 π∗ ∶= Place the job π୩ to the best − performing place in the sequence of π୮
 𝐢𝐟 ൫f(π∗) < f(π)൯ 𝐭𝐡𝐞𝐧 𝐝𝐨
 π ∶= π∗
 Cnt ≔ 1
 𝐞𝐥𝐬𝐞
 Cnt ≔ Cnt + 1
 𝐞𝐧𝐝𝐢𝐟 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞 𝐫𝐞𝐭𝐮𝐫𝐧 𝛑 𝐚𝐧𝐝 𝐟(𝛑)
 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟒. IGQ algorithms π ∶= NEH π ≔ InsertionLocalSearch(π) πୠୣୱ୲ ≔ π ϵ ≔ 0.8; β: = 0.996, 𝛼 = 0.6,𝑎𝑛𝑑 𝛾 = 0.8 τP =: RandomChoice(𝐴த୔) dS ∶= RandomChoice(𝐴ௗௌ) 𝐰𝐡𝐢𝐥𝐞 (NotTermination) 𝐝𝐨
 πୢ,π୰ ≔ Destruction(π, dS)
 π୰ ≔ InsertionLocalSearch(π୰) //IGALL algorithm, optional
 πଵ ≔ Construction(πୢ,π୰)
 πଶ ≔ RLS(πଵ)
 𝐢𝐟 ൫f(πଶ) < f(π)൯ 𝐭𝐡𝐞𝐧 𝐝𝐨
 r ≔ 1.0 f(πଶ)⁄
 π ≔ πଶ
 𝑄(𝑝,𝑎) = 𝑄(𝑝, 𝑎) + 𝛼[𝑟 + 𝛾 𝑚𝑎𝑥௔ᇱ 𝑄(𝑝′, 𝑎′) − 𝑄(𝑝, 𝑎)]
 𝐢𝐟 ቀf(πଶ) < f൫πୠୣୱ୲൯ቁ 𝐭𝐡𝐞𝐧 𝐝𝐨
 πୠୣୱ୲ ≔ πଶ
 𝐞𝐧𝐝𝐢𝐟
 𝐞𝐥𝐬𝐞 𝐢𝐟

 T: = ∑ ∑ ୮୲୧୫ୣ౟ౠౠౣసభ౤౟సభଵ଴. ୬. ୫ × τP 𝐢𝐟 ൫rand() < exp൛−൫f(πଶ) − f(π)൯/Tൟ൯ 𝐭𝐡𝐞𝐧 𝐝𝐨
 π ∶= πଶ

 𝑄(𝑝, 𝑎) = 𝑄(𝑝, 𝑎) + 𝛼[𝑟 + 𝛾 𝑚𝑎𝑥௔ᇱ 𝑄(𝑝′, 𝑎′) − 𝑄(𝑝, 𝑎)]
 𝐞𝐧𝐝𝐢𝐟
 𝐞𝐧𝐝𝐢𝐟 ϵ: = ϵ.β
 𝐢𝐟 (rand ≥ ϵ) 𝐭𝐡𝐞𝐧 𝐝𝐨
 τP ∶= argmax Q(pத୔ᇱᇱ , Aத୔ᇱᇱ) //Next action is determined from Q-Table dS ∶= argmax Q(pୢୗᇱᇱ , Aୢୗᇱᇱ) //Next action is determined from Q-Table
 𝐞𝐥𝐬𝐞 τP ∶= RandomChoice(Aத୔ᇱᇱ) //Next action is determined randomly
 dS ∶= RandomChoice(Aୢୗᇱᇱ) //Next action is determined randomly

 𝐞𝐧𝐝𝐢𝐟 𝐞𝐧𝐝𝐰𝐡𝐢𝐥𝐞 𝐫𝐞𝐭𝐮𝐫𝐧 𝛑𝐛𝐞𝐬𝐭 𝐚𝐧𝐝 𝐟(𝛑𝐛𝐞𝐬𝐭)

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

91

6. Computational Results

This study handles the BFSP problem and presents the mathematical formulation of the BFSP by using the MILP and CP
models. In addition, several heuristic algorithms were developed to acquire good and qualified solutions in a short compu-
tational time. All the models and the heuristics were performed on small VRF instances, which are well-known benchmarks,
proposed by Vallada et al. (2015). Both MILP and CP models were coded on OPL CPLEX Studio IDE 12.10 and given a
1-hour time limit to solve them to optimality or an upper bound with a GAP from optimality. Once we obtained results both
from the MILP and CP, we chose the better ones amongst them as lower bounds for the small-sized VRF instances. Mi-
crosoft Visual Studio platform and C++ coding language were used to acquire the solutions for the developed metaheuristic
algorithms. The results of all heuristic algorithms used were obtained by running these algorithms for 25*n*m milliseconds
with five replications. The results of the mathematical model and heuristic algorithms were obtained using an Intel (R) Core
(TM) i7-2600 desktop with a 3.40 GHz CPU and 8GB RAM. All the best-known solutions (BKS) for both small and large-
size VRF instances (ins.) are given in Appendix A1 and Appendix A2.

6.1. Comparisons on the Small VRF Instances

 In this section, the results of the CP model MILP model, and the proposed and developed heuristic algorithms (IG, IGALL,
IGQ1, IGQ2, and QIG) are compared considering the relative deviations from the obtained results for the small VRF
examples. The average relative percent deviations (ARPD) of the mathematical models are calculated by the following
equation:
 𝑅𝑃𝐷 = ௙(௫)ି௙(௕௘௦௧)௙(௕௘௦௧) ∗ 100 (16)

In Eq.16, f(x) is the obtained solution from the models, and f(best) is the optimal or the best solution of the models, MILP
and CP. Therefore, relative percent deviations (RPD) of the algorithms from the best or optimal results obtained from the
models are calculated. Regarding the metaheuristics, we also provide the relative percent improvements as:
 𝑅𝑃𝐼 = 𝑓(𝑏𝑒𝑠𝑡) − 𝑈𝐵𝑈𝐵 ∗ 100 (17)

In Eq. (17), upper bounds (UB) are taken either from MILP or CP results, and f(best) is the obtained solution of IG, IGALL,
IGQ1, QIG, and IGQ2 algorithms. In VRF small instances, there are six different job sizes (10, 20, 30, 40, 50, 60) and four
different machine numbers (5, 10, 15, 20). There exist ten instances for each 𝑗𝑜𝑏 × 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 combination. The calculated
RPD and RPI values of the instances are gathered, and the average for each 𝑗𝑜𝑏 × 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 combination (average of ten
instances) is calculated as the average relative percent deviation (ARPD) and average relative percent improvement (ARPI).
Results of the heuristics were obtained by running them for 25×𝑛×𝑚 milliseconds with five replications for each combina-
tion. For each 𝑛 × 𝑚 combination, Table 1 presents the ARPI values of the average solutions of these five replications, as
well as the ARPD values of MILP and CP models.

Table 1
ARPD of the results for small VRF instances

 MILP CP ARPI
n m ARPD CPU GAP ARPD CPU GAP IG IGALL IGQ1 QIG IGQ2
10 5 0 0.57 0 0 20.11 0 0.02 0 0 0 0.01
10 10 0 1.01 0 0 138.21 0 0 0 0 0 0
10 15 0 3.71 0 0 331.84 0 0 0 0 0 0
10 20 0 7.11 0 0 663.51 0 0 0 0 0 0
20 5 0.08 3600 0.06 0.40 3600 0.12 -0.58 -0.61 -0.61 -0.61 -0.61
20 10 0.30 3600 0.10 0.48 3600 0.18 -0.35 -0.35 -0.36 -0.36 -0.36
20 15 0.79 3600 0.12 0.04 3600 0.20 -0.50 -0.51 -0.51 -0.51 -0.51
20 20 0.57 3600 0.16 0.11 3600 0.22 -0.50 -0.51 -0.51 -0.51 -0.51
30 5 0.95 3600 0.11 0.05 3600 0.12 -1.36 -1.45 -1.42 -1.46 -1.47
30 10 1.85 3600 0.19 0.01 3600 0.20 -1.59 -1.70 -1.67 -1.71 -1.71
30 15 2.35 3600 0.21 0.00 3600 0.21 -1.46 -1.62 -1.59 -1.61 -1.62
30 20 2.70 3600 0.23 0.00 3600 0.23 -1.79 -1.85 -1.82 -1.84 -1.84
40 5 1.97 3600 0.14 0.02 3600 0.13 -1.98 -2.22 -2.12 -2.19 -2.28
40 10 4.47 3600 0.24 0.00 3600 0.21 -2.05 -2.30 -2.20 -2.30 -2.33
40 15 4.19 3600 0.25 0.00 3600 0.22 -2.49 -2.69 -2.62 -2.68 -2.69
40 20 5.21 3600 0.27 0.00 3600 0.24 -2.16 -2.60 -2.52 -2.58 -2.60
50 5 3.07 3600 0.14 0.00 3600 0.12 -2.17 -2.35 -2.30 -2.31 -2.40
50 10 5.61 3600 0.24 0.00 3600 0.19 -2.12 -2.51 -2.36 -2.46 -2.52
50 15 4.43 3600 0.28 0.00 3600 0.24 -3.46 -3.87 -3.71 -3.84 -3.88
50 20 6.05 3600 0.29 0.00 3600 0.25 -2.35 -2.70 -2.54 -2.67 -2.68
60 5 4.20 3600 0.16 0.00 3600 0.13 -2.05 -2.30 -2.17 -2.27 -2.39
60 10 5.16 3600 0.25 0.00 3600 0.21 -3.00 -3.38 -3.16 -3.32 -3.41
60 15 6.10 3600 0.29 0.00 3600 0.24 -2.90 -3.47 -3.20 -3.43 -3.48
60 20 14.52 3600 0.34 0.00 3600 0.25 -3.33 -3.66 -3.49 -3.61 -3.64

Avg 3.11 3000.52 0.17 0.05 3048.07 0.16 -1.59 -1.78 -1.70 -1.76 -1.79

 92

The overall average values are written in bold. The CPU represents the average computation time of the mathematical
models, i.e., MILP and CP, respectively. The GAP value represents the difference between the lower and upper limits
obtained because of solving the MILP and CP models within a limited time. The solution value obtained for the minimiza-
tion problem is the upper limit value. The GAP value is obtained by finding the difference between this value and the lower
limit and dividing it by the upper limit value. The GAP values written in the table were calculated by the solver. If the
results are optimal, then the GAP values will be zero. Table 1 displays that, as the job size increases, the ARPD% values
also increase for the models and the heuristics. However, the same comment cannot be made about the number of machines.
The ARPD% values do not follow a smooth pattern. Regarding the overall average values, the best-performing algorithm
is the IGQ2 with -1.79 ARPD%. Then IGALL and QIG follow with very small differences in their ARPD% values. All the
heuristics have relatively small differences in their ARPD% values, but it is obvious that the performances of the models
are worse. When the models were compared, the CP model generated better results than the MILP model respecting the
solution quality. Although the models were given 3600 seconds, they could not find good results due to the computational
complexity of the problem, especially for the MILP model. Thus, the MILP model is not employed for large-size instances.
To see all the numbers, Table 2 summarizes the results of all models and algorithms, indicating the number of optimal
solutions, best solutions, ARPD/ARPI, and average CPU times. The best solutions for each instance obtained by the models
or the algorithms are recorded. Table 2 shows which model and algorithm found the best solution in how many of the 240
instances were presented as "# of best".

Table 2
Summary of the results for small VRF instances

 # of proven optimal # of best ARPD/ARPI Avg. CPU (s)
MILP 40 41 3.11 3000.52
CP 40 43 0.05 3048.07
IG 39 80 -1.59 10.94
IGALL 40 149 -1.78 10.94
IGQ1 40 97 -1.70 10.94
QIG 40 127 -1.76 10.94
IGQ2 39 171 -1.79 10.94

Both MILP and CP models obtained the optimal solutions for all replications of the ten job instance sets. It corresponds to
40 instances out of 240 instances. However, if the job size reaches 20, models cannot find the optimal results within 3600
seconds and provide sub-optimal solutions. When the results for the ten jobs were investigated, it was seen that all the
heuristic algorithms could find all the optimal results except for the IGQ2 and IG algorithms. However, these two algorithms
cannot find optimal solutions only for one instance, and there is a very small difference. Most of the best results are found
by the IGQ2 algorithm. Then the IGALL and QIG algorithms follow. However, the ARPI values of all the algorithms are
very close to each other, so an interval plot is provided in Fig. 1 to show whether these algorithms’ results are statistically
different from each other. Fig. 1 compares the mean of the ARPI values of the algorithms under a 95% confidence interval.

IGQ2QIGIGQ1IGALLIG

-1.5

-1.6

-1.7

-1.8

-1.9

RP
I

95% CI for the Mean
Interval Plot of IG, IGALL, IGQ1, QIG, IGQ2 Algorithms

Fig. 1. Interval plot of IG, IGALL, IGQ1, QIG, and IGQ2 algorithms for small VRF instances

 As seen from Fig. 1, all the algorithms, except IG, intersect each other, so they are not statistically different from each
other. The IG algorithm does not intersect with the IGALL, QIG, and IGQ2 algorithms, so it is statistically significant that
the results of the IG are worse than these algorithms. However, the IG and IGQ1 results are not significantly different.

6.2. Comparisons on the Large VRF Instances

 This section provides a comparison between different algorithms on the same instance sets. Large-size VRF instances were
used for the comparison. IG, IGALL, IGQ1, QIG, and IGQ2 algorithms were compared to each other. VRF large instances

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

93

include eight different job sizes (100, 200, 300, 400, 500, 600, 700, 800) and three different machine numbers (20, 40, 60).
Each job and machine combination includes ten different instances. CP model was run for 1 hour to solve large data sets.
Since the CP cannot provide good solutions under the given time limit, the results of the model are accepted as upper bound
(UB). The deviations of the results of all algorithms from the CP model’s results (upper bound) were calculated. Each
algorithm was run in five iterations for each 𝑗𝑜𝑏 𝑥 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 combination. Table 3 shows the ARPI of the average of these
replications of all algorithms.

Table 3
ARPI of the results for large VRF instances

n m IG IGALL IGQ1 QIG IGQ2
100 20 -3.49 -3.90 -4.10 -4.12 -4.18
100 40 -3.53 -3.71 -3.99 -4.09 -4.03
100 60 -3.58 -3.72 -3.93 -4.01 -4.03
200 20 -5.41 -6.04 -6.29 -6.39 -6.39
200 40 -5.49 -6.01 -6.12 -6.29 -6.31
200 60 -6.25 -6.67 -6.79 -6.88 -6.87
300 20 -6.58 -7.42 -7.65 -7.82 -7.78
300 40 -6.99 -7.59 -7.72 -7.80 -7.84
300 60 -7.61 -8.03 -8.12 -8.22 -8.23
400 20 -7.80 -8.67 -8.86 -8.97 -9.02
400 40 -7.91 -8.54 -8.65 -8.78 -8.78
400 60 -8.01 -8.51 -8.60 -8.73 -8.71
500 20 -8.82 -9.70 -9.94 -10.08 -10.06
500 40 -8.39 -9.00 -9.16 -9.29 -9.32
500 60 -8.14 -8.66 -8.78 -8.86 -8.85
600 20 -9.94 -10.91 -11.04 -11.27 -11.25
600 40 -8.81 -9.45 -9.57 -9.70 -9.76
600 60 -8.21 -8.76 -8.85 -8.98 -8.96
700 20 -10.66 -11.57 -11.72 -11.96 -11.89
700 40 -8.72 -9.38 -9.52 -9.75 -9.68
700 60 -8.41 -8.94 -9.04 -9.21 -9.12
800 20 -10.73 -11.68 -11.82 -12.07 -12.04
800 40 -8.91 -9.58 -9.71 -9.89 -9.84
800 60 -8.48 -9.02 -9.07 -9.25 -9.25

Avg. -7.54 -8.15 -8.29 -8.43 -8.42

 As seen in Table 3, all five algorithms provide similar results with small differences in their overall ARPI values. The best-
performing algorithms are the QIG and IGQ2 algorithms, with -8.43 and -8.42 ARPI values, respectively. As the number
of jobs increases, the improvement performance of algorithms increases. This is because the CP model achieves worse
results within 1 hour as the number of jobs increases. While the number of jobs is 500 and greater than 500, the improvement
percentages of the algorithms decrease as the number of machines increases. However, the same trend is not valid for the
number of jobs less than 500; no significant decrease or increase was observed in these data sets according to the number
of machines. On the other hand, it is obvious that learning-based algorithms perform the best.

Fig. 2. Interval plot for 100 jobs and 20, 40, and 60 machines Fig. 3. Interval plot for 200 jobs and 20, 40, and 60 machines

Fig. 2 plots the range graph of the meta-heuristic algorithms for 20, 40, and 60 machines and 100 jobs. A 95% confidence
interval is assumed in this graph. According to the graph, the differences in RPIs become statistically significant as long as
the confidence intervals of the two selected algorithms do not overlap. For each machine size, all metaheuristics follow a
similar pattern for 20, 40, and 60 machines, as seen in Fig. 2. For 20 machines, the confidence intervals of IGQ1, QIG, and
IGQ2 algorithms do not intersect with the IG algorithm’s confidence intervals, and they have a small intersection with the
IGALL algorithm; hence, their differences are statistically significant when compared to the traditional IG algorithm as
well as the IGALL. Even the IGALL algorithm is statistically significant to the traditional IG algorithm. For 40 machines,

 94

the results from IGQ1, QIG, and IGQ2 algorithms are statistically significant when compared to the IG and IGALL algo-
rithms since their confidence intervals do not coincide. Similarly, for 60 machines, a similar pattern can be observed. Ulti-
mately, it can be concluded that the proposed IG algorithms with Q-Learning outperform the traditional IG algorithm.

Fig. 3 presents the interval plot of metaheuristic algorithms for the 200 jobs having 20, 40, and 60 machines under the 95%
confidence interval. For each machine size, all metaheuristics follow a similar pattern for 20, 40, and 60 machines, as seen
in Fig. 2, too. For each machine combination, the confidence intervals of IGALL, IGQ1, QIG, and IGQ2 algorithms do not
intersect with the IG algorithm’s confidence intervals, so their differences are statistically significant compared to the tra-
ditional IG. Since the IG algorithms with QL generate better results than IGALL algorithms, they have a small intersection
between their confidence intervals. Ultimately, it can be concluded that the proposed IG algorithms with QL outperform
the traditional IG algorithm.

Fig. 4. Interval plot for 300 jobs and 20, 40, and 60 machines Fig. 5. Interval plot for 400 jobs and 20, 40, and 60 machines

Fig. 4 and 5 present the interval plot of metaheuristic algorithms for the 300 and 400 jobs, respectively, with 20, 40, and 60
machines under the 95% confidence interval. For each job and machine size, all metaheuristics follow a similar pattern.
Still, the differences between the confidence intervals of QL algorithms and traditional IG, IGALL increases as the job size
increases. For 20 machines, it is obvious that the confidence intervals of the IGQ1, QIG, and IGQ2 algorithms do not
intersect with the IG and IGALL algorithms’ confidence intervals. Thus, QL algorithms statistically outperform the tradi-
tional IG and IGALL algorithms. Even the results of the IGALL algorithm are statistically significant to the traditional IG
algorithm. For 40 and 60 machines, the results of the IGQ1, QIG, and IGQ2 algorithms are only meaningful when compared
to the IG algorithm.

Fig. 6. Interval plot for 500 jobs and 20, 40, and 60 machines Fig. 7. Interval plot for 600 jobs and 20, 40, and 60 machines

Fig. 6 and 7 present the interval plot of metaheuristic algorithms for the 500 and 600 jobs, respectively, with 20, 40, and 60
machines under the 95% confidence interval. These two figures follow the same pattern. The traditional IG algorithms
perform statistically worse than the other algorithms for all machine sizes. Also, the QIG and IGQ2 algorithms’ confidence
intervals do not intersect with the IGALL algorithm’s, in all machine combinations, providing that their results are statisti-
cally better than the IGALL algorithm. Since the IGQ1 and IGALL algorithms have small intersections in all combinations,
we cannot comment that their solutions are statistically different from each other. Fig. 8 and 9 present the interval plot of
metaheuristic algorithms for the 700 and 800 jobs, respectively, with 20, 40, and 60 machines under the 95% confidence
interval. These two figures also follow a similar pattern to the previous figures. Different than the previous figures, the QIG
algorithm’s confidence interval does not intersect with the other algorithms’ except for the IGQ2 algorithm. These results

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

95

indicate that the best-performing algorithms are the QIG and the IGQ2 for the 700 and 800 jobs. The most significant
difference generated by the traditional IG algorithm indicates that it is the worst-performing among all algorithms.

Fig. 8. Interval plot for 700 jobs and 20, 40, and 60 machines Fig. 9. Interval plot for 800 jobs and 20, 40, and 60 machines

From the above figures, when IG is compared to the IGALL algorithm, IGALL statistically performs better. Generally, we
can claim that Q-learning-based algorithms generate the best results with respect to the traditional IG and IGALL algo-
rithms. However, the results of the IGQ1, QIG, and IGQ2 algorithms are statistically not different than each other in many
job and machine combinations. Last of all, it can be concluded that the proposed IG algorithms with Q-learning outperform
the traditional IG algorithms and generate the best results.

7. Conclusion and future research

This study considers the BFSP to minimize makespan. Two types of mathematical models, such as MILP and CP, were
developed to solve the problem and verify the results of the metaheuristic algorithms over the optimal solutions. Sets con-
taining parameter values frequently used in the literature were created so that the parameter values of IG algorithms can be
learned on their own while the algorithm is running. Then, by using the Q learning algorithm, a mechanism was developed
to learn the parameter meter that is most suitable for the problem among the values in this set. Thus, besides the traditional
IG and IGALL algorithms, IGQ1, QIG, and IGQ2 algorithms were developed. The performances of all models and me-
taheuristics were analyzed and compared using small and large-size VRF instances, and the best-known solutions were
reported. In the analysis of the mathematical models, when the job size is 10, both models can find all the solutions opti-
mally, but the CPU time of the MILP model is reasonably less than the CP model. However, as the job size increases from
20 to 60, both CP and MILP models have difficulty achieving optimal solutions within a 1-hour time limit. The CP model
starts to perform better than the MILP model considering solution quality for larger job sizes. Thus, for the large-size VRF
instances, only the results of the CP model were obtained to get comparisons with the metaheuristics. When the metaheu-
ristic algorithms are compared over small VRF instances, all the algorithms perform similarly except the traditional IG
algorithm, which is the statistically worst-performing algorithm of the other algorithms. Similar results were obtained for
the large-size VRF instances. These results indicate that Q-learning-based IG algorithms are not statistically different than
each other, but they perform better than the traditional IG and IGALL algorithms.

This study proves the robust performance of Q-learning-based IG algorithms on BFSP. In future studies, these algorithms
can contribute to obtaining better results by applying them to different scheduling problems. In addition, Q-learning-based
different metaheuristic algorithms can be developed, such as Q-learning-based iterated local search, variable neighborhood
search, and so on. Self-adaptive learning of the parameter values of the algorithms will perform successfully on scheduling
problems. Apart from the makespan objective function, its effect should be investigated by testing it on varied objective
functions, i.e., total flow time or tardiness minimization. There are gaps in literature in this area, and we believe the literature
will move in this direction in the future.

References

Aqil, S., & Allali, K. (2021). Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing
problem. Engineering Applications of Artificial Intelligence, 100, 104196.
https://doi.org/10.1016/j.engappai.2021.104196

Birgin, E. G., Ferreira, J. E., & Ronconi, D. P. (2020). A filtered beam search method for the m-machine permutation
flowshop scheduling problem minimizing the earliness and tardiness penalties and the waiting time of the jobs.
Computers and Operations Research, 114, 104824. https://doi.org/10.1016/j.cor.2019.104824

Blazewicz, J., H. Ecker, K., Pesch, E., Schmidt, G., & Wȩglarz, J. (2007). Handbook on scheduling. From theory to
applications. International Handbook on Information Systems. https://doi.org/10.1007/978-3-540-32220-7

Caraffa, V., Ianes, S., P. Bagchi, T., & Sriskandarajah, C. (2001). Minimizing makespan in a blocking flowshop using

 96

genetic algorithms. International Journal of Production Economics, 70(2), 101–115. https://doi.org/10.1016/S0925-
5273(99)00104-8

Carlier, J., Haouari, M., Kharbeche, M., & Moukrim, A. (2010). An optimization-based heuristic for the robotic cell
problem. European Journal of Operational Research, 202(3), 636–645. https://doi.org/10.1016/j.ejor.2009.06.035

Chen, H., Zhou, S., Li, X., & Xu, R. (2014). A hybrid differential evolution algorithm for a two-stage flow shop on batch
processing machines with arbitrary release times and blocking. International Journal of Production Research, 52(19),
5714–5734. https://doi.org/10.1080/00207543.2014.910625

Cheng, C.-Y., Ying, K.-C., Chen, H.-H., & Lu, H.-S. (2019). Minimising makespan in distributed mixed no-idle flowshops.
International Journal of Production Research, 57(1), 48–60. https://doi.org/10.1080/00207543.2018.1457812

Dubois-Lacoste, J., Pagnozzi, F., & Stützle, T. (2017). An iterated greedy algorithm with optimization of partial solutions
for the makespan permutation flowshop problem. Computers & Operations Research, 81, 160–166.
https://doi.org/10.1016/J.COR.2016.12.021

Elmi, A., & Topaloglu, S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots.
Computers and Operations Research, 40(10), 2543–2555. https://doi.org/10.1016/j.cor.2013.01.024

Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate methods for the permutation
flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational
Research, 257(3), 707–721. https://doi.org/10.1016/J.EJOR.2016.09.055

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res.,
1(2), 117–129. https://doi.org/10.1287/moor.1.2.117

Gilmore, P. C., Lawler, E. L., & Shmoys, D. B. (1984). Well-solved Special Cases of the Traveling Salesman Problem.
University of California at Berkeley.

Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2, 4–32. https://doi.org/10.1287/ijoc.2.1.4
Gong, D., Han, Y., & Sun, J. (2018). A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-

streaming flow shop scheduling problems. Knowledge-Based Systems, 148, 115–130.
https://doi.org/10.1016/j.knosys.2018.02.029

Gong, H., Tang, L., & Duin, C. W. (2010). A two-stage flow shop scheduling problem on a batching machine and a discrete
machine with blocking and shared setup times. Computers and Operations Research, 37(5), 960–969.
https://doi.org/10.1016/j.cor.2009.08.001

Hall, N. G., & Sriskandarajah, C. (1996). A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process.
Oper. Res., 44(3), 510–525. https://doi.org/10.1287/opre.44.3.510

Han, Y.-Y., Gong, D., & Sun, X. (2015). A discrete artificial bee colony algorithm incorporating differential evolution for
the flow-shop scheduling problem with blocking. Engineering Optimization, 47(7), 927–946.
https://doi.org/10.1080/0305215X.2014.928817

Han, Y.-Y., Liang, J. J., Pan, Q.-K., Li, J.-Q., Sang, H.-Y., & Cao, N. N. (2013). Effective hybrid discrete artificial bee
colony algorithms for the total flowtime minimization in the blocking flowshop problem. The International Journal
of Advanced Manufacturing Technology, 67(1), 397–414. https://doi.org/10.1007/s00170-012-4493-5

Han, Y.-Y., Pan, Q.-K., Li, J.-Q., & Sang, H. (2012). An improved artificial bee colony algorithm for the blocking flowshop
scheduling problem. The International Journal of Advanced Manufacturing Technology, 60(9), 1149–1159.
https://doi.org/10.1007/s00170-011-3680-0

Han, Y., Gong, D., Li, J., & Zhang, Y. (2016). Solving the blocking flow shop scheduling problem with makespan using a
modified fruit fly optimisation algorithm. International Journal of Production Research, 54(22), 6782–6797.
https://doi.org/10.1080/00207543.2016.1177671

Han, Y., Li, J., Sang, H., Liu, Y., Gao, K., & Pan, Q. (2020). Discrete evolutionary multi-objective optimization for energy-
efficient blocking flow shop scheduling with setup time. Applied Soft Computing Journal, 93, 106343.
https://doi.org/10.1016/j.asoc.2020.106343

Johnson, S. M. (1954). Optimal Two and Three Stage Production Schedules With Set-Up Time Included. Naval Research
Logistics Quarterly, 1, 61–68. https://doi.org/10.1002/nav.3800010110

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey. J. Artif. Int. Res., 4(1), 237–
285.

Karimi-Mamaghan, M., Mohammadi, M., Pasdeloup, B., & Meyer, P. (2022). Learning to select operators in meta-
heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling
problem. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2022.03.054

Kizilay, D., Tasgetiren, M. F., Pan, Q. K., & Gao, L. (2019). A variable block insertion heuristic for solving permutation
flow shop scheduling problem with makespan criterion. Algorithms, 12(5). https://doi.org/10.3390/a12050100

Mccormick, S., Pinedo, M., J. Shenker, S., & Wolf, B. (1989). Sequencing in an Assembly Line With Blocking to Minimize
Cycle Time. Operations Research, 37, 925–935. https://doi.org/10.1287/opre.37.6.925

Merchan, A. F., & Maravelias, C. T. (2016). Preprocessing and tightening methods for time-indexed MIP chemical
production scheduling models. Computers and Chemical Engineering, 84, 516–535.
https://doi.org/10.1016/j.compchemeng.2015.10.003

Miyata, H. H., & Nagano, M. S. (2019). The blocking flow shop scheduling problem: A comprehensive and conceptual
review. In Expert Systems with Applications (Vol. 137, pp. 130–156). Elsevier Ltd.
https://doi.org/10.1016/j.eswa.2019.06.069

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

97

Naderi, B., & Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Computers & Operations
Research, 37(4), 754–768. https://doi.org/10.1016/J.COR.2009.06.019

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega, 11(1), 91–95. https://doi.org/10.1016/0305-0483(83)90088-9

Newton, M. A. H., Riahi, V., Su, K., & Sattar, A. (2019). Scheduling blocking flowshops with setup times via constraint
guided and accelerated local search. Computers & Operations Research, 109, 64–76.
https://doi.org/10.1016/J.COR.2019.04.024

Osman, I., & N. Potts, C. (1989). Simulated Annealing for Permutation Flow-Shop Scheduling. Omega, 17, 551–557.
https://doi.org/10.1016/0305-0483(89)90059-5

Öztop, H, Tasgetiren, M. F., Kandiller, L., & Pan, Q.-K. (2020). A Novel General Variable Neighborhood Search through
Q-Learning for No-Idle Flowshop Scheduling. 2020 IEEE Congress on Evolutionary Computation (CEC), 1–8.
https://doi.org/10.1109/CEC48606.2020.9185556

Öztop, Hande, Tasgetiren, M. F., Kandiller, L., & Pan, Q.-K. (2022). Metaheuristics with restart and learning mechanisms
for the no-idle flowshop scheduling problem with makespan criterion. Computers & Operations Research, 138,
105616. https://doi.org/https://doi.org/10.1016/j.cor.2021.105616

Pan, Q.-K., & Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup
times. Omega, 40(2), 166–180. https://doi.org/10.1016/J.OMEGA.2011.05.002

Ramezanian, R., Vali-Siar, M. M., & Jalalian, M. (2019). Green permutation flowshop scheduling problem with sequence-
dependent setup times: a case study. International Journal of Production Research, 57(10), 3311–3333.
https://doi.org/10.1080/00207543.2019.1581955

Riahi, V., Newton, M. A. H., Su, K., & Sattar, A. (2019). Constraint guided accelerated search for mixed blocking
permutation flowshop scheduling. Computers & Operations Research, 102, 102–120.
https://doi.org/10.1016/J.COR.2018.10.003

Ribas, I., & Companys, R. (2015). Efficient heuristic algorithms for the blocking flow shop scheduling problem with total
flow time minimization. Computers & Industrial Engineering, 87, 30–39.
https://doi.org/https://doi.org/10.1016/j.cie.2015.04.013

Ribas, I., Companys, R., & Tort-Martorell, X. (2015). An efficient Discrete Artificial Bee Colony algorithm for the blocking
flow shop problem with total flowtime minimization. Expert Systems with Applications, 42(15), 6155–6167.
https://doi.org/https://doi.org/10.1016/j.eswa.2015.03.026

Ribas, I., Companys, R., & Tort-Martorell, X. (2017). Efficient heuristics for the parallel blocking flow shop scheduling
problem. Expert Systems with Applications, 74, 41–54. https://doi.org/10.1016/j.eswa.2017.01.006

Ribas, I., Companys, R., & Tort-Martorell, X. (2019). An iterated greedy algorithm for solving the total tardiness parallel
blocking flow shop scheduling problem. Expert Systems with Applications, 121, 347–361.
https://doi.org/10.1016/j.eswa.2018.12.039

Ronconi, D P, & Armentano, V. A. (2001). Lower bounding schemes for flowshops with blocking in-process. Journal of
the Operational Research Society, 52(11), 1289–1297. https://doi.org/10.1057/palgrave.jors.2601220

Ronconi, Débora P. (2004). A note on constructive heuristics for the flowshop problem with blocking. International Journal
of Production Economics, 87(1), 39–48. https://doi.org/10.1016/S0925-5273(03)00065-3

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling
problem. European Journal of Operational Research, 177(3), 2033–2049.
https://doi.org/https://doi.org/10.1016/j.ejor.2005.12.009

Shao, Z., Pi, D., & Shao, W. (2018a). Estimation of distribution algorithm with path relinking for the blocking flow-shop
scheduling problem. Engineering Optimization, 50(5), 894–916. https://doi.org/10.1080/0305215X.2017.1353090

Shao, Z., Pi, D., & Shao, W. (2018b). A novel discrete water wave optimization algorithm for blocking flow-shop
scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation, 40, 53–75.
https://doi.org/10.1016/j.swevo.2017.12.005

Shao, Z., Pi, D., & Shao, W. (2020). Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking
flow-shop in distributed environment. Expert Systems with Applications, 145, 113147.
https://doi.org/https://doi.org/10.1016/j.eswa.2019.113147

Shao, Z., Pi, D., Shao, W., & Yuan, P. (2019). An efficient discrete invasive weed optimization for blocking flow-shop
scheduling problem. Engineering Applications of Artificial Intelligence, 78, 124–141.
https://doi.org/10.1016/j.engappai.2018.11.005

Shao, Z., Shao, W., & Pi, D. (2020). Effective heuristics and metaheuristics for the distributed fuzzy blocking flow-shop
scheduling problem. Swarm and Evolutionary Computation, 59, 100747.
https://doi.org/10.1016/j.swevo.2020.100747

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (Second Edi). The MIT Press.
Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European Journal of

Operational Research, 47(1), 65–74. https://doi.org/10.1016/0377-2217(90)90090-X
Tasgetiren, M. Fatih, Kizilay, D., Pan, Q. K., & Suganthan, P. N. (2017). Iterated greedy algorithms for the blocking

flowshop scheduling problem with makespan criterion. Computers and Operations Research, 77.
https://doi.org/10.1016/j.cor.2016.07.002

Tasgetiren, M. Fatih, Pan, Q.-K., & Liang, Y.-C. (2009). A discrete differential evolution algorithm for the single machine

 98

total weighted tardiness problem with sequence dependent setup times. Computers & Operations Research, 36(6),
1900–1915. https://doi.org/https://doi.org/10.1016/j.cor.2008.06.007

Tasgetiren, M.F., Pan, Q.-K., Kizilay, D., & Gao, K. (2016). A Variable Block Insertion Heuristic for the Blocking
Flowshop Scheduling Problem with Total Flowtime Criterion. Algorithms, 9(4). https://doi.org/10.3390/a9040071

Trabelsi, W., Sauvey, C., & Sauer, N. (2012). Heuristics and metaheuristics for mixed blocking constraints flowshop
scheduling problems. Computers & Operations Research, 39(11), 2520–2527.
https://doi.org/https://doi.org/10.1016/j.cor.2011.12.022

Vallada, E., Ruiz, R., & Framinan, J. M. (2015). New hard benchmark for flowshop scheduling problems minimising
makespan. European Journal of Operational Research, 240(3), 666–677.
https://doi.org/https://doi.org/10.1016/j.ejor.2014.07.033

Wang, L., Pan, Q.-K., & Fatih Tasgetiren, M. (2010). Minimizing the total flow time in a flow shop with blocking by using
hybrid harmony search algorithms. Expert Systems with Applications, 37(12), 7929–7936.
https://doi.org/10.1016/J.ESWA.2010.04.042

Wang, L., Pan, Q.-K., Suganthan, P. N., Wang, W.-H., & Wang, Y.-M. (2010). A novel hybrid discrete differential evolution
algorithm for blocking flow shop scheduling problems. Computers & Operations Research, 37(3), 509–520.
https://doi.org/10.1016/J.COR.2008.12.004

Wang, X., & Tang, L. (2012). A discrete particle swarm optimization algorithm with self-adaptive diversity control for the
permutation flowshop problem with blocking. Applied Soft Computing Journal, 12(2), 652–662.
https://doi.org/10.1016/j.asoc.2011.09.021

Watkins, C. (1989). Learning From Delayed Rewards [King’s College]. http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
Yuan, S., Li, T., & Wang, B. (2020). A co-evolutionary genetic algorithm for the two-machine flow shop group scheduling

problem with job-related blocking and transportation times. Expert Systems with Applications, 152, 113360.
https://doi.org/10.1016/j.eswa.2020.113360

Zhang, G., Xing, K., & Cao, F. (2018). Discrete differential evolution algorithm for distributed blocking flowshop
scheduling with makespan criterion. Engineering Applications of Artificial Intelligence, 76, 96–107.
https://doi.org/10.1016/J.ENGAPPAI.2018.09.005

M. F. Tasgetiren et al. / Journal of Project Management 9 (2024)

99

Appendix

A1. Best Results for the BFSP on Small VRF Benchmark

Table A1
Best BFSP Results for Small VRF Benchmark
Ins. BKS Ins. BKS Ins. BKS Ins. BKS Ins. BKS Ins. BKS
10_5_1 716 20_5_1 1300 30_5_1 1976 40_5_1 2630 50_5_1 3344 60_5_1 3668
10_5_2 739 20_5_2 1377 30_5_2 1780 40_5_2 2649 50_5_2 3044 60_5_2 3501
10_5_3 770 20_5_3 1451 30_5_3 1894 40_5_3 2413 50_5_3 3104 60_5_3 3652
10_5_4 742 20_5_4 1270 30_5_4 1947 40_5_4 2430 50_5_4 3159 60_5_4 3674
10_5_5 783 20_5_5 1434 30_5_5 1844 40_5_5 2567 50_5_5 3144 60_5_5 3620
10_5_6 779 20_5_6 1237 30_5_6 1960 40_5_6 2403 50_5_6 3058 60_5_6 3526
10_5_7 784 20_5_7 1288 30_5_7 1856 40_5_7 2496 50_5_7 2859 60_5_7 3701
10_5_8 722 20_5_8 1235 30_5_8 1962 40_5_8 2622 50_5_8 2989 60_5_8 3830
10_5_9 798 20_5_9 1389 30_5_9 1926 40_5_9 2563 50_5_9 2946 60_5_9 3547
10_5_10 691 20_5_10 1415 30_5_10 1890 40_5_10 2577 50_5_10 3127 60_5_10 3776
10_10_1 1173 20_10_1 1699 30_10_1 2233 40_10_1 2934 50_10_1 3525 60_10_1 4202
10_10_2 1178 20_10_2 1692 30_10_2 2384 40_10_2 2886 50_10_2 3502 60_10_2 4295
10_10_3 1146 20_10_3 1769 30_10_3 2367 40_10_3 2869 50_10_3 3570 60_10_3 4143
10_10_4 1081 20_10_4 1620 30_10_4 2275 40_10_4 2986 50_10_4 3615 60_10_4 4200
10_10_5 1132 20_10_5 1767 30_10_5 2337 40_10_5 2919 50_10_5 3713 60_10_5 4318
10_10_6 1108 20_10_6 1765 30_10_6 2362 40_10_6 2974 50_10_6 3536 60_10_6 4314
10_10_7 1164 20_10_7 1734 30_10_7 2283 40_10_7 2928 50_10_7 3455 60_10_7 4353
10_10_8 1149 20_10_8 1724 30_10_8 2181 40_10_8 2901 50_10_8 3690 60_10_8 4163
10_10_9 1088 20_10_9 1697 30_10_9 2197 40_10_9 2871 50_10_9 3548 60_10_9 4231
10_10_10 1180 20_10_10 1679 30_10_10 2256 40_10_10 2933 50_10_10 3573 60_10_10 4295
10_15_1 1337 20_15_1 2078 30_15_1 2669 40_15_1 3427 50_15_1 3909 60_15_1 4680
10_15_2 1421 20_15_2 2071 30_15_2 2596 40_15_2 3285 50_15_2 3945 60_15_2 4647
10_15_3 1481 20_15_3 1957 30_15_3 2582 40_15_3 3347 50_15_3 3983 60_15_3 4682
10_15_4 1508 20_15_4 1999 30_15_4 2703 40_15_4 3329 50_15_4 4134 60_15_4 4480
10_15_5 1425 20_15_5 2007 30_15_5 2739 40_15_5 3372 50_15_5 3983 60_15_5 4640
10_15_6 1379 20_15_6 2145 30_15_6 2628 40_15_6 3202 50_15_6 4001 60_15_6 4776
10_15_7 1461 20_15_7 2176 30_15_7 2604 40_15_7 3330 50_15_7 4157 60_15_7 4612
10_15_8 1514 20_15_8 1982 30_15_8 2694 40_15_8 3402 50_15_8 4050 60_15_8 4586
10_15_9 1533 20_15_9 2057 30_15_9 2492 40_15_9 3203 50_15_9 3866 60_15_9 4542
10_15_10 1496 20_15_10 2037 30_15_10 2694 40_15_10 3349 50_15_10 4049 60_15_10 4717
10_20_1 1697 20_20_1 2463 30_20_1 2941 40_20_1 3691 50_20_1 4331 60_20_1 4998
10_20_2 1800 20_20_2 2339 30_20_2 3139 40_20_2 3680 50_20_2 4317 60_20_2 5020
10_20_3 1779 20_20_3 2416 30_20_3 3088 40_20_3 3658 50_20_3 4421 60_20_3 5131
10_20_4 1719 20_20_4 2305 30_20_4 2970 40_20_4 3684 50_20_4 4354 60_20_4 5002
10_20_5 1733 20_20_5 2360 30_20_5 2981 40_20_5 3520 50_20_5 4248 60_20_5 4944
10_20_6 1927 20_20_6 2445 30_20_6 3019 40_20_6 3603 50_20_6 4387 60_20_6 4979
10_20_7 1728 20_20_7 2449 30_20_7 3034 40_20_7 3673 50_20_7 4297 60_20_7 5038
10_20_8 1707 20_20_8 2322 30_20_8 3079 40_20_8 3664 50_20_8 4376 60_20_8 4978
10_20_9 1740 20_20_9 2525 30_20_9 3090 40_20_9 3748 50_20_9 4418 60_20_9 4975
10_20_10 1693 20_20_10 2337 30_20_10 3108 40_20_10 3553 50_20_10 4389 60_20_10 4936

 100

A2. Best Results for the BFSP on Large VRF Benchmark

Table A2
Best BFSP Results for Large VRF Benchmark

Ins. BKS Ins. BKS Ins. BKS Ins. BKS Ins. BKS Ins. BKS Ins. BKS Ins. BKS
100_20_1 7755 200_20_1 14782 300_20_1 21748 400_20_1 28755 500_20_1 36114 600_20_1 43228 700_20_1 50239 800_20_1 57563
100_20_2 7832 200_20_2 14784 300_20_2 21894 400_20_2 29152 500_20_2 36404 600_20_2 43070 700_20_2 50178 800_20_2 57412
100_20_3 7733 200_20_3 14923 300_20_3 21716 400_20_3 29050 500_20_3 36147 600_20_3 43368 700_20_3 50138 800_20_3 57423
100_20_4 7774 200_20_4 14699 300_20_4 21757 400_20_4 28808 500_20_4 35817 600_20_4 43104 700_20_4 50136 800_20_4 57437
100_20_5 7803 200_20_5 14651 300_20_5 21911 400_20_5 28955 500_20_5 36239 600_20_5 43106 700_20_5 50475 800_20_5 57498
100_20_6 7831 200_20_6 14914 300_20_6 21770 400_20_6 29006 500_20_6 35905 600_20_6 43319 700_20_6 50434 800_20_6 57790
100_20_7 7948 200_20_7 14797 300_20_7 21700 400_20_7 29094 500_20_7 36092 600_20_7 42905 700_20_7 50504 800_20_7 57130
100_20_8 7681 200_20_8 14671 300_20_8 21925 400_20_8 28866 500_20_8 36167 600_20_8 43261 700_20_8 50322 800_20_8 57282
100_20_9 7837 200_20_9 14640 300_20_9 21772 400_20_9 28764 500_20_9 36120 600_20_9 43317 700_20_9 50162 800_20_9 57256
100_20_10 7684 200_20_10 14824 300_20_10 22114 400_20_10 28980 500_20_10 35768 600_20_10 42861 700_20_10 49982 800_20_10 57374
100_40_1 9193 200_40_1 16614 300_40_1 24111 400_40_1 31632 500_40_1 39112 600_40_1 46790 700_40_1 54437 800_40_1 61964
100_40_2 9395 200_40_2 16637 300_40_2 24244 400_40_2 31630 500_40_2 39348 600_40_2 46650 700_40_2 54371 800_40_2 61761
100_40_3 9300 200_40_3 16746 300_40_3 24226 400_40_3 31779 500_40_3 39216 600_40_3 46903 700_40_3 54320 800_40_3 61972
100_40_4 9221 200_40_4 16708 300_40_4 24071 400_40_4 31724 500_40_4 39261 600_40_4 46806 700_40_4 54571 800_40_4 61891
100_40_5 9387 200_40_5 16619 300_40_5 24270 400_40_5 31550 500_40_5 39355 600_40_5 46715 700_40_5 54278 800_40_5 62030
100_40_6 9351 200_40_6 16645 300_40_6 24210 400_40_6 31699 500_40_6 39121 600_40_6 46847 700_40_6 54228 800_40_6 61832
100_40_7 9342 200_40_7 16690 300_40_7 24152 400_40_7 31727 500_40_7 39277 600_40_7 46895 700_40_7 54265 800_40_7 61667
100_40_8 9321 200_40_8 16629 300_40_8 24178 400_40_8 31637 500_40_8 39315 600_40_8 46606 700_40_8 54564 800_40_8 62000
100_40_9 9279 200_40_9 16562 300_40_9 24079 400_40_9 31833 500_40_9 39516 600_40_9 46886 700_40_9 54425 800_40_9 62008
100_40_10 9256 200_40_10 16726 300_40_10 24119 400_40_10 31745 500_40_10 39434 600_40_10 46844 700_40_10 54361 800_40_10 61903
100_60_1 1055 200_60_1 18282 300_60_1 25895 400_60_1 33549 500_60_1 41320 600_60_1 49047 700_60_1 56906 800_60_1 64568
100_60_2 10795 200_60_2 18228 300_60_2 25831 400_60_2 33578 500_60_2 41111 600_60_2 49017 700_60_2 56655 800_60_2 64455
100_60_3 10491 200_60_3 18369 300_60_3 25877 400_60_3 33702 500_60_3 41326 600_60_3 49043 700_60_3 56654 800_60_3 64491
100_60_4 10574 200_60_4 18078 300_60_4 25874 400_60_4 33683 500_60_4 41378 600_60_4 49025 700_60_4 56786 800_60_4 64413
100_60_5 10607 200_60_5 18186 300_60_5 25781 400_60_5 33539 500_60_5 41334 600_60_5 49087 700_60_5 56810 800_60_5 64374
100_60_6 10843 200_60_6 18286 300_60_6 25770 400_60_6 33462 500_60_6 41311 600_60_6 48992 700_60_6 56714 800_60_6 64704
100_60_7 10554 200_60_7 18264 300_60_7 26019 400_60_7 33537 500_60_7 41266 600_60_7 48962 700_60_7 56362 800_60_7 64438
100_60_8 10754 200_60_8 18200 300_60_8 25866 400_60_8 33565 500_60_8 41445 600_60_8 49091 700_60_8 56740 800_60_8 64505
100_60_9 10687 200_60_9 18139 300_60_9 25991 400_60_9 33768 500_60_9 41246 600_60_9 49168 700_60_9 56596 800_60_9 64607
100_60_10 10715 200_60_10 18121 300_60_10 25988 400_60_10 33608 500_60_10 41360 600_60_10 49010 700_60_10 57033 800_60_10 64320

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

