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 To better meet the qualitative and quantitative requirements of customers or relevant sector 
managers, workshop environments are implementing increasingly complex task management 
systems. The job shop scheduling problem (JSSP) involves assigning each task to a single ma-
chine while scheduling many tasks on different machines. Finding the best scheduling for ma-
chines is one of the challenging optimizations of difficult non-deterministic polynomial (NP) 
time problems. The fundamental goal of optimization is to shorten the makespan (total execution 
time of all tasks). This paper is interested in the joint resolution of scheduling and transport 
problems and more particularly the Job-shop problem with Routing (JSSPR) as opposed to the 
Job-shop problem with Transport (JSSPT). These two problems are modeled in the form of a 
disjunctive graph. For the JSSPT, the solution to the transport problem is not linked to any qual-
ity of service (QoS) criterion and the solution is therefore often semi-active. The Job-shop with 
Routing explicitly considers transport operations and uses algorithms from the transport com-
munity to solve the transport problem. It is shown that the routing part of the JSSPR is a problem 
of the vehicle routing family and of the Pickup and Delivery Problem family. QoS in the JSSPR 
is defined by the duration of tours, the duration of transport of parts and the waiting time for 
them. A new evaluation function – named Time-Lag Insertion Heuristic (TLH) – is proposed to 
evaluate a disjunctive graph by simultaneously minimizing the makespan and maximizing the 
quality of service. Thus, the solution obtained is not semi-active, but a compromise between the 
different criteria. This evaluation function is included in a metaheuristic. Our numerical evalu-
ations demonstrate that, on the one hand, the TLH evaluation can find almost optimal solutions 
regarding the QoS criterion; and on the other hand, the TLH evaluation is not very sensitive to 
the order of insertion of the maximum time-lags during the different minimization steps. 

© 2024 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 
Most of the problems in planning and organizing tasks are, or boil down to, optimization problems. For the resolution of 
these problems, it is advisable to appeal to the construction of models. This is a very relevant solution, as long as it is carried 
out within a methodological framework. In most of the research dedicated to this type of problem, the authors assume that 
there is no downtime between two consecutive tasks, (Yang et al., 2021). Production planning and scheduling is usually a 
topic interesting for companies that seek to offer a quality service. The minimization delay in the manufacture and delivery 
of products may result in significant gains, especially in sectors where competition is difficult. Decision-making at the 
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operational level, related to minimizing costs and increasing production are two notable aspects that commonly attract the 
attention of complex industrial sites, Ojstersek et al. (2020). The difficulty of solving these scheduling problems comes 
from a large number of entities to manage and the need to construct a schedule comprising a large number of stains together 
with the exigence of many constraints such as constraints of precedence, transport, date, deadlines, and/or resource availa-
bility, Bueno et al. (2020). Research work on scheduling mobilizes a large number of researchers. This strong emulation is 
mainly due to the wide panorama of scheduling issues. Among them, we can mention the multi-path workshop problem, 
commonly called “Job Shop”, which holds a particularly prominent place so this problem is encountered in the industrial 
environment, Haifei, et al. (2021). Numerous research subjects have emerged from this problem. As the scheduling prob-
lems are diversified, we have dealt with a particular case of a workshop which is the Job-Shop or the walk-through workshop 
multiples which relate to the discontinuous production is us when dealing with relatively small quantities of varied products. 
The sequence of operations or jobs on resources in the operating plan may differ from one product to another (all products 
do not necessarily pass on all resources) (Hegen et al., 2022). 
 
Among the most difficult scheduling problems are those relating to classic job-shop-type workshops. Their optimal resolu-
tion turns out, in most cases, to be very difficult because of their strongly combinatorial character, Lee and Loong (2019). 
Complexity theory classifies problems into two classes:  P and NP, Dean (2015). Class P gathers the problems solvable by 
polynomial algorithms. An algorithm is said to be polynomial when its running time is bounded by O (p(x)), where p is a 
polynomial and x is the input length of an instance of the problem. Algorithms whose complexity cannot be polynomially 
bounded are called exponential and correspond to the class NP. NP-complete or NP-hard problems represent a large class 
among the NP class. The job shop problem belongs to this class. For a given computation time, it is possible to optimally 
solve small problems, while it becomes difficult to find a good admissible solution for a large problem, Pappas et al. (2017). 
The JSSP can be solved by addressing two sub-problems: the machine allocation problem which implies choosing an ap-
propriate machine from among the alternate machines defined to handle each operation, and the issue by designating a 
machine for every operation, or the operation sequence problem and calculating its start and end time, Alvarez et al. 
(2021).The JSSP is known in 14 versions according to Abdolrazzagh-Nezhad and Abdullah (2017)and which respectively: 
flexible JSSP, Deterministic JSSP, static JSSP, dynamic JSSP, cyclic JSSP, periodic JSSP, no-wait JSSP, just-in-time JSSP, 
pre-emptive JSSP, re-entrant JSSP, large-scale JSSP, stochastic JSSP, assembly JSSP, and fuzzy JSSP. The use of exact 
methods requires a set of calculations, the number of which evolves exponentially with the size of the problem considered. 
It is therefore preferable to use approximate methods, such as those based on the principle of local search or evolutionary 
methods, Frihat et al. (2022). Today, the problem of JSSP is a required domain. A lot of literature searches focus on mini-
mizing the makespan and increasing usage, Gao et al. (2020). Nowadays, most studies focus on the use of technical heuris-
tics and meta-heuristics such as Fuzzy Logic (FL), Particle Swarm Optimization (PSO), and Simulated Annealing (SA) etc. 
Most of the techniques used are the Ant Colonies Optimization (ACO) and Genetic Algorithm (GA), Türkyılmaz et al. 
(2020), Job-shop Scheduling Problem with Routing (JSSPR) which is a generalization of Job-shop Scheduling Problem 
with Transport (JSSPT). One of the "classic" challenges for modeling production systems with transport is the JSSPT. An 
extension of the Job-shop Scheduling Problem (JSSP) is the Job-shop Scheduling Problem with Transport. The JSSPT takes 
into account the management of a group of vehicles that must transport the parts between the machines. The JSSPR is 
defined as a JSSPT-type problem in which a quality of service (QoS) criterion concerning transport is added. Unlike the 
JSSPT, which has the sole objective of minimizing the makespan (end date of the last operation), the JSSPR takes into 
account the maximization of the QoS when minimizing the makespan. This article proposes, among other things, the 
disjunctive graph of the JSSPT has a new evaluation function, to obtain a solution of the JSSPR. The JSSPT disjunc-
tive graph is introduced by Hurink and Knust (2005), Lacomme et al. (2013), Zeng et al. (2015), Zhang et al. (2014). 
The approach presented for the JSSPR differs from the JSSPT in the following points: 
 
The definition of the QoS for the JSSPR is comparable to the QoS defined for the Dial-A-Ride Problem (DARP). A new 
disjunctive graph evaluation function that minimizes makespan and maximizes the QoS. An extension of the JSSPT bench-
marks to encompass the JSSPR and non-unit capacity vehicle fleet cases. The new evaluation function is included in a 
metaheuristic-type resolution scheme. An Integer Linear Program (ILP) model for JSSPR is also introduced in 
this paper. 
 
The rest of this paper is structured as follows: The JSSP study and its primary versions are presented and described in 
Section 2. Section 3 represents the graphical model of JSSPR with a QOS consideration. Finally, an analysis of the 
experience study is presented in section 4. Section 5 concludes the paper. 
2. Related Work  
 
The Job Shop Scheduling issue (JSSP), which Graham first proposed in 1966, Abukhader and Kadoore (2021), is a well-
known intractable combinatorial optimization issue. It is one of the challenging NP optimizations that has been researched 
for decades and seeks to allocate numerous operations over several machines. The major goal of optimization has been to 
reduce the Makespan of full processes, (Mihoubi et al., 2021). JSSP management is complete by considering operations' 
accessibility and people's availability and equipment required to carry out an operation. Here, it's important to reduce the 
amount of time products spend in the workshop between receiving a customer order and the end of that workshop's product 
processing, (Zhang et al., 2021). On the other hand, with JSSP, processes are divided into jobs. Each job has a specific set 
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of products for which additional limitations are added and machines are given specific tasks, Cebi et al. (2020). The JSSP 
variant that is the simplest is: We display the input for the 𝑛 jobs 𝐽 , 𝐽 . … , 𝐽 that must be scheduled on 𝑚 machines with 
variable processing power using circles, and the processing in the machines using rectangles. 
 
However, most of the research focuses on developing specific optimization characteristics for static or predictable settings. 
In the literature, many theories discuss different classes of manufacturing systems that are susceptible to unanticipated and 
unpredictable occurrences, such as job cancellation, machine breakdowns, urgent order modifications, changes to the due 
date (advance or postponement), delays in the arrival of raw materials, and changes in employment priority, Cunha et al. 
(2020). The following elements should be taken into account while discussing the Job Shop problem: the number of ma-
chines (workstations), the work order, the performance evaluation criterion, and the arrival model. Two distinct arrival 
patterns exist, Saidat et al. (2022), Jain and Meeran (1999): (i) Static: An idle machine receives 𝑛 jobs that ask to be sched-
uled for work. (ii) Dynamic: sporadic arrival. There are two different sorts of work orders: fixed and repetitive order, which 
is an issue in flow shops, and random order, which is conceivable in all models. The following performance evaluation 
criteria are listed in Kalshetty et al. (2020), Baykasoglu et al. (2014): makespan, average warehouse job duration, delay, 
average job volume, and machine usage. 
 
Remember that an operation can visit the same device. This phenomenon is called “recirculation” or range looping, Nouri 
et al. (2016). However, it is common to find more restrictive formulations. For example, if looping routes are not allowed, 
each operation is then composed of 𝑚operations and each machine must perform 𝑛 operations. the total number of opera-
tions is then 𝑚 ∗ 𝑛. Moreover, if 𝑚 = 𝑛 then the problem is said to square. Another possible restriction is that 𝑖  operation 
must be performed by the 𝑗  machine which amounts to dealing with a flow shop problem, Parveen and Ullah (2010), 
Gaham et al. (2018). 

2.1     Versions of Job Shop 

We detail the main versions of a Job shop, which most research works take into consideration: The classic Job Shop prob-
lem, Flexible Job Shop, Just In Time Job Shop, the cyclic problem of Job Shop, and Dynamic Job Shop Scheduling. 

a) The classic JSSP 
 
JSSP is a classic problem that has been widely researched in the literature, and goes as follows: In a job shop, there are a 
number of 𝑛 well-determined jobs scheduled in several machines 𝑚. The JSSP aims to find an optimal operation sequence 
schedule for each of these jobs where the assignment of machines and the temporal relationships between the different jobs 
are defined, Vital et al. (2020). JSSP has been studied through the development of mathematical programming formulations, 
Sun and Noble (1999), Jamili (2016), and an extensive variety of algorithms Kechadi et al. (2013), Vancheeswaran and 
Townsend (1993). 

b) Flexible JSSP 
 
Flexible Job Shop Scheduling Problem (FJSSP) is a refinement of the classic JSSP. One of the well-known combinatorial 
optimization problems concerns a significant number of applications in industrial fields such as production management, 
Transport systems, The supply chain, and Manufacturing systems. The advantages of FJSSP are cited in Xie et al. (2019) 
as follows: reduction of execution time, reduction of bottleneck resources, reduction of delivery times, and reduction of idle 
time. The restrictions of FJSSP are also cited in Xie et al. (2019) as follows: each operation has certain operations to process, 
each operation can only be assigned to one machine at a time, in each machine, the processing time for each operation is 
determined, each machine can manage at most one operation, at time zero, all jobs are available, and all operations must be 
carried out on certain machines. 

c) Just in Time JSSP 
 
Just in Time-Job Shop Scheduling (JIT-JSSP) is different from the classic JSSP in that the operation has a due date. Jobs in 
JIT-JSSP have operations that must be scheduled on machines in a determined order. Each operation has a due date, and 
early and late penalty coefficients Hussein and Zayed (2021). Any difference between the end time of the operation and its 
due date results in both cases an advance penalty or a late penalty. Specifically, the completion of the operation earlier than 
its due date incurs a penalty. Likewise, the completion of the transaction after its due date incurs a penalty Zhang at al. 
(2022). The main objective of the JIT-JSSP is to minimize the weighted sum of the early and late penalties. JIT-JSSP 
manufacturing can be presented into two categories, Ahmadian et al. (2021): with due dates at the employment level, and 
with due dates at the exploitation level. 

d) The cyclic problem of JSSP 
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Cyclic Job Shop Scheduling Problem (CJSSP), each operation 𝑂 = {1, … ,𝑛} is assigned to a machine 𝑟 ,𝑅 = 1, … ,𝑅, with 𝑅 < 𝑛 and operations linked by precedence constraints constitute jobs, Quinton et al. (2021). For example, in a manufac-
turing or production context, one can represent the manufacturing process of a product, while an operation represents only 
one step in the work process. Taking into account the constraints on the machines in the CJSSP because of an insufficient 
number of resources, the operations compete for the working time of the machines. This problem is represented by the 
disjunction constraints, which consider that for a pair of operations(𝑖, 𝑗) ∈ 𝑂 , which must be executed on the same machine, 
i.e.𝑟 = 𝑟 , two occurrences 𝑖 and 𝑗, cannot be executed simultaneously, (Smutnicki & Pempera, 2022). 

e) Dynamic JSSP 
 
Dynamic Job Shop Scheduling Problem (DJSSP), assumes that a scheduling plan assigning several jobs n to several ma-
chines m to be executed is known at the initial time, but leads to the problem of machine availability and real-time disrup-
tions, the initial plan must be changed dynamically to adapt to real conditions, thus generating a rescheduling (Alaya, 2017). 
Machinery downtime is mainly caused by machine breakdowns and wear of cutting tools, which is supposed to be predict-
able (Mohan et al., 2019). During the period of maintenance, the machine will be available again, but the machine prohibits 
the processing of any operation (Kardos et al., 2021). The dynamic scheduling problem studied is subjected to the following 
assumptions (Zhang et al., 2021): 
 
From the start, all machines and jobs are available; 
Each machine can only process one job at a time; 
Each operation is assigned to at least one machine for processing; 
An operation cannot be processed until the previous operations are   completed; 
An operation cannot be stopped once it has begun, except when the machine is unavailable; 
Although the work time for each operation is known in advance, it may change while processing; 
The time corresponding to maintenance is known in the beginning. 
The last operation is assumed to be integer variables and not negative, (Zhou & Liao, 2020). 

2.2     For the JSSP with transportation 

Taking into account the material manipulation leads to extending the notation𝛼,𝛽, 𝜆,from Grahamet al. (1979). The notation 
is extended to𝛼(𝑘),𝛽(𝑘), 𝜆(𝑘), where𝑘 denotes the number of transportmeans in the system (Zhang et al., 2012). The field 𝛼 tells us about the machining environment, the type of production workshop, and the number of machines present in the 
system. The field 𝛽 relates to the characteristics of the problems scheduling and groups the constraints imposed by the 
production environment and by the resources. The field 𝜆 concerns the performance criteria that will represent the objectives 
to achieve for the problem in question. End date of machine operations: These constraints guarantee that the end date 𝐶  of 
the machine operation 𝑖 is greater than or equal to its start date𝑡  plus its operating time 𝑃𝑇 . 
 𝐶 = 𝑡 + 𝑃𝑇   ∀𝑖 ∈ O (1) 
 
Precedence between transport operations and machine operations. This group of constraints ensures that the start date of the 
machine operation can only be done once completed, the transport operation immediately preceding it. The duration of the 
latter depends on the robot 𝑘 assigned to it. 
 𝑡 ≥ 𝑡 ( ) + 𝑓 ( ) ∗ 𝑡 , ∀𝑖 ∈ O − PT   (2) 

 
With 𝑂 represents the set of machine operations. 

Precedence constraints between machine operations and transport operations. This group of constraints ensures that a 
transport operation only begins once the operation's previous machine is completed. 
 𝑡′ ≥ 𝐶     ∀𝑖 ∈ O − U (3) 
 
WithUrepresents the set of machine operations that have no successors 

Disjunction constraints on machines. This constraint requires that each machine not only process one transaction at a time. 
Given two operations𝑖 ∈ O and 𝑗 ∈ Oprocessed consecutively on the same machine 𝜇  = 𝜇 = μ, the constraints are given by 
the Eqs. (4-6). 
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The constraints (4) and (5) are arbitrated by the binary variable 𝑏 ∈ {1,0} which activates a single constraint at a time 
corresponding to a single order of execution. When 𝑏 = 0 the constraint (5)is still valid because 𝐻 is sufficientlylarge and 
the constraint (4) becomes active. In this case, constraint (4),can be rewritten in 𝑡 ≥ 𝐶 , which means that machine oper-
ation 𝑖 can onlystart processing if the operation machine 𝑗 is finished. On the other hand, if 𝑏 = 1, it is the constraint (5) 
which is active implying that the operation machine 𝑗 begins only once the operation machine 𝑖 finished. Constraint (6) 
guarantees that the machine operation 𝑖 ∈ 𝑂 takes place in first letthe machine operation 𝑗 ∈ 0 take place first. 
 𝑡 ≥ 𝐶 ∗ 𝐻 ∗ 𝑏 ∀ (𝑖, 𝑗)   ∈  𝑂 &𝜇  =  𝜇  (4) 𝑡 ≥ 𝐶 ∗ 𝐻 ∗ (1 − 𝑏 )∀ (𝑖, 𝑗)   ∈  𝑂 &𝜇  =  𝜇                                                                                    (5) 𝑏 + 𝑏 =  1 ∀ (𝑖, 𝑗)  ∈  𝑂 &𝜇  =  𝜇  (6) 
 
Constraints for assigning robots to transport operations. This set of constraints ensures that for each transport operation 
(∀ i ∈  T) a robot is assigned to it. 
 𝑓 = 1   ∀ i ∈  T 

 
(7) 

 
Constraints on disjunction for transport operations. These restrictions state that a single robot cannot do two Transport 
operations at once. The constraints (8), (9), and(10)assigns 1 𝑡𝑜 𝑒  if and only if the two operations transport 𝑖 𝑎𝑛𝑑 𝑗 are 
assigned to the same robot 𝑘 .In the case where two transport operations are assigned to the same robot, we have 𝑑 = 1 if 
transport operation 𝑖 is performed before transport operation𝑗 and 𝑑 = 1 otherwise. Constraint (14) therefore expresses 
thatonly one of these two situations product. 
 𝑔 ≥ 1 − (1 − 𝑓 )𝐻 − 1 − (1 − 𝑓 )𝐻   ∀ (𝑖, 𝑗)   ∈ 𝑇 & 𝑘 ∈  𝐾 (8) 𝑔 ≤ 𝑓 ∀ (𝑖, 𝑗)   ∈ 𝑇 & 𝑘 ∈  𝐾 (9) 𝑔 ≤ 𝑓 ∀ (𝑖, 𝑗)   ∈ 𝑇 & 𝑘 ∈  𝐾 (10) 𝑒 = 𝑔 ∀ (𝑖, 𝑗)  ∈ 𝑇  

(11) 

𝑡 ≥ 𝑡 + 𝑡  , + 𝑣 , 𝑒 − 1 𝐻 + 𝑑 − 1 𝐻 ∀ (𝑖, 𝑗)   ∈ 𝑇  
(12) 

𝑡 ≥ 𝑡 + 𝑡  , + 𝑣 , 𝑒 − 1 𝐻 + 𝑑 ∗ 𝐻 
(13) 

∀ (𝑖, 𝑗)   ∈ 𝑇  (14) 𝑑 + 𝑑 = 1      ∀ (i,j)  ∈𝑇  (15) 
 
The criterion to be minimized is the end date of the last “Makespan” machine operation given by the variable 𝐶 = 𝑚𝑎𝑥 (𝐶 ),∀ 𝑖 ∈  𝑈.  
 𝐶 ≥ 𝐶 (15) 

2.3     QoS for the DARP 

DARP is provided by Stein (1978) , and it is formalized by Cordeau and Laporte (2003), which proposes the following 
definition: each customer has a transport request between a collection point (loading node or pickup node) and a transpor-
tation point. Each node 𝑖 is connected to a service period 𝑑 , which corresponds to the time required to depositor load the 
client 𝑝 ; and at a time window 𝐸  ;𝐿 during which the loading or delivery operation must be carried out. A vehicle arriving 
before the time window for an operation must wait for the opening of the operation before starting the service. Customer 
transportis delivered by a uniform and constrained vehicle fleet with capacity 𝑄. All tours start and end at the depot. 
 
The originality of the DARP proposed by Cordeau and Laporte (2003) lies in the type of solution sought: the dates of the 
visits are not necessarily adjusted to the left (at the earliest) to maximize the QoS. Starting a visit later can limit, for example, 
the time a customer spends in the vehicle. Generally, for “classic” problems, a calculation of the dates at the earliest is 
sufficient to schedule the transport operations. An algorithm solving a DARP maximizes the QoS from the customer's point 
of view, which means that it is necessary to define an algorithm to determine the date of arrival of the vehicle on a node, 
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the start date of service (the date that can be different from the arrival date), the end of service date and the departure date 
of the vehicle. Four variables are needed to explain a route (Fig. 1): 
 𝐴  is the date of arrival of the vehicle at node 𝑖. 𝑠𝑡 is the start date of the service at node 𝑖. 𝐶 is the end date of the service at node 𝑖, 𝐶 = 𝑠𝑡 + 𝐷 . 𝐷 is the departure date of the vehicle from node 𝑖. 
Cordeau and Laporte (2003), introduces three criteria (Figure 1) to meet DARP service quality considerations: 𝑅 is the transport time (Riding Time) of the customer 𝑝, it is defined between the date of departure from the node 𝑖where 
the customer is loaded and its start date on its delivery node 𝑖′. The node immediately after the loading node is not always 
the delivery node; several clients can be loaded and/or unloaded. 𝑅 = 𝑠𝑡 − 𝐷 . 𝐷𝑇  is the trip's duration (Duration Time) of the vehicle 𝑟, described as the variation from the arrival date 𝐸 of the vehicle 
at the depot to its date of departure 𝐵  of the repository, 𝐷𝑇 = 𝐸 − 𝐵 . 𝑊𝑇  is the Waiting Time of the customer 𝑝 between (1) its date of departure 𝐷  from the node𝑖 and the end date𝐶  of its 
service at the node 𝑖, 𝑊𝑇 = 𝐵 − 𝐶  ; (2) its start date of service 𝑠𝑡  at the node 𝑖and its arrival date 𝐴  to the node 𝑖, 𝑊𝑇 = 𝑠𝑡 − 𝐴 . The waiting time is given by: 𝑊𝑇 = 𝑊𝑇 + 𝑊𝑇 . 
 

 
Fig. 1. Description of a production tour. 

A set of routes that satisfies all demands while taking into account the time windows on the one hand and the vehicle 
maximum capacity on the other is known as a DARP solution. In addition, measurements of a solution's QoS take into 
account the following factors: 
 
The Overall Riding Time: 𝑂𝑅𝑇(𝑥) = 𝑅 . 
The Overall Duration: 𝑂𝐷(𝑥) = ∑ 𝐷  , where 𝑚 is the round number. 
The Overall Waiting Time: :𝑂𝑊𝑇(𝑥) = 𝑊𝑇 . 
 
Given the three criteria mentioned above, a DARP solution is not semi-active, i.e. the start dates of the various operations 
(departure, start of service, etc.) are not necessarily planned earlier. For given rounds, the start dates minimizing the various 
criteria can be calculated by the algorithm on𝑂(𝑘 ) of Cordeau and Laporte (2003), or on𝑂(𝑘) by the algorithm of Firat 
and Woeginger (2011). These two algorithms do not provide the same dates, but a different compromise between these 
criteria. Iteratively minimizing the criteria preserves the previously minimized criteria in the algorithm of  Cordeau and 
Laporte (2003), which is frequently employed in heuristic approaches. 
 
3. Graphical Modeling of JSSPR with QoS Consideration  
 
JSSPR involves resolving the JSSP with an explicit modeling of the transport and a QoS criterion associated with the 
transport. To solve this problem, an original approach based on approaches from vehicle routing problems and approaches 
from scheduling problems is proposed. This approach includes the consideration of a QoS requirement in the objective 
function and explicit transport modeling. 
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3.1     Graphical Modeling 

The authors of Hurink and Knust (2005) and Lacomme et al. (2013) added nodes to the connective-disjunctive graph of the 
JSSP to generalize it and describe the loading and transportation operations of the vehicles. Thus, in the disjunctive graph 
there are three types of vertices that model:(i) processing operations (𝑃𝑂 , );(ii) loading (pickup)operations 𝐿𝑂 , ; (iii) de-
livery operations 𝐷𝑂 ,  , Hurink and Knust (2005). 
 
The triplet (𝐷𝑂 , ,𝑃𝑂 , , 𝐿𝑂 , )<represented by Fig. 2, defines a set of three operations successively representing a delivery 
(or unloading) operation, a machine operation, and a pick-up operation. loading. In general, the start date of a machine-
operation 𝑃𝑂 , depends on the end date of the delivery operation 𝐷𝑂 , (the delivery/unloading time is assumed to be zero 
or included in the delivery time). The start date of a loading operation 𝑃𝑂 ,  mustbe greater than the end date of the opera-
tion 𝑃𝑂 , . 
 

 
Fig. 2. Connective arcs defining the passage of a job on a machine. 

Therefore, each job 𝑗with 𝑛 its sequence contains machine-operations 3 × 𝑛 − 2nodes: 𝑛  machine-operations, 𝑛 − 1 de-
livery operations. The job order must include the depot if jobs are to be moved from the starting depot to the first machine 
in their order. 
Each pair of machine-operations (𝑃𝑂 , ,𝑃𝑂 , ) is a request for a transfer  𝑇𝑅( , , , )of the job 𝑖which needs to be 
moved away from the machine 𝜇 ,  at the machine𝜇 , . Each transfer request 𝑇𝑅( , , , ) = 𝐿𝑂 , ,𝐷𝑂 ,  to machine 𝜇 ,  at the machine  𝜇 ,  is defined as a loading operation 𝐿𝑂 ,  and by a transportation operation  𝐷𝑂 , . This loading 
operation 𝐿𝑂 , and this delivery operation𝐷𝑂 ,  are characterized by the vehicle 𝜗 which is assigned to them and by their 
respective start dates. Atransfer request is fully determined by an ordered sequence of operations realizing a path from 𝜇 ,  
to  𝜇 , ,in which all the operations (loading and delivery) belonging to the path are assigned to the same vehicle𝜗. The 
period of the transfer is determined by the time between the start date of the loading operation 𝐿𝑂 , and the start date of the 
transportation operation  𝐷𝑂 , . A disjunction between two operations of the loading and/or delivery type corresponds to 
a transport operation and is modeled by an arc from the vertex which models the loading operation to the machine 𝜇 , , at 
the vertex which models the delivery to the machine 𝜇 , , having the value 𝑡𝑑 , , ,, . This remark is valid for all setups (𝐿𝑂,𝐷𝑂), (𝐿𝑂, 𝐿𝑂), (𝐷𝑂,𝐷𝑂), (𝐷𝑂, 𝐿𝑂), where 𝐿𝑂 is a loading operation and 𝐷𝑂 a delivery operation. A vehicle's route 
is made up of an organized list of loading operations and transportation operations according to the mentioned restrictions: 
1) A delivery operation 𝐷𝑂 ,  must be sequenced after the loading operation 𝐿𝑂 ,  ; 2) at all times, the number of jobs in 
the vehicle must be less than the capacity of the vehicle. As in Fig. 3, the route is𝑡𝑟 = (𝐿𝑂 , , 𝐿𝑂 , ,𝐷𝑂 , ,𝐷𝑂 , ), for 
a capacity vehicle equals 2. Both constraints are checked. 
 

 
Fig. 3. Loading and delivery operations with a non-unit capacity vehicle. 
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3.2     Solution and evaluation 

A directed disjunctive graph is obtained: 1) by assigning a vehicle to each loading and delivery operation; 2) by defining 
the disjunctions between machine-operations sharing the same machine; and 3) by settling conflicts between operations that 
are given the same vehicle. Considering that only semi-active solutions are typically sought, an acyclic network can be 
evaluated to determine the earliest start dates of operations. This evaluation is commonly carried out by the longest path 
algorithm. Fig. 4 presents an evaluated and directed disjunctive graph. The graph in Fig. 4 illustrates a schedule by defining 
the start dates of the machine operations and by defining the rounds of the two vehicles (of capacity two each), these are 
made up of an organized sequence of loading and transportation operations. For example, the machine-operation 𝑃𝑂 , is 
carried out from date 30 to date 35 (Fig.  4). This last date is not explicitly modeled and does not appear in the graph, it 
results from the sum of the start date which is 30, and of the duration of the operation which is 5. The date (at the earliest) 
of the loading operation 𝐿𝑂 , is55, this date defines the moment when the vehicle 𝑅  loads the job 𝐽  to be transported from 
its current position (on the machine (𝑀 ) to the next machine in the range of  𝐽 , that is, the machine 𝑀 . Between dates 35 
and55, the coin occupies the machine's output buffer𝑀 , which is assumed to be of unlimited capacity. 
 

 
 

Fig. 4. Evaluated solution of a problem with a directed disjunctive graph. 

The vehicle 𝑅 is assigned to the transport of the job 𝐽  from the machine 𝑀 to the machine 𝑀  (the transport time is 25 
units of time) between the machine-operations 𝑃𝑂 . and 𝑃𝑂 . . The vehicle begins the loading operation on date 5 and the 
transportation operation on date 30. The following operation is allocated to the vehicle𝑅 comprised in transporting job 𝐽 from machine 𝑀  to machine 𝑀 . Between the delivery operation𝐷𝑂 ,  (unloading of the job 𝐽  on the machine 𝑀  on the 
date 30) and the operation of loading 𝐿𝑂 , of the job 𝐽  on 𝑀 (on the date 30), the vehicle 𝑅  performs an empty transport 
between the machines 𝑀  and 𝑀  with a travel time of 0, this transport is modeled by an arc of zero value and in reality 
corresponds to waiting for the vehicle on the same machine. Between the delivery operation 𝐷𝑂 , and the loading operation 𝐿𝑂 , of the job 𝐽 , the vehicle 𝑅 performs an empty transport from 𝑀  to 𝑀 it is represented by a 15-valued arc ( 15 is the 
transport time from 𝑀  to 𝑀 ). The vehicle 𝑅  is assigned to the transport of 𝐽  from 𝑀  to 𝑀  and then to the transport of 𝐽 from 𝑀  to 𝑀  (cf. Fig. 4). Fig. 5 explains the Gantt graph of the directed and rated disjunctive graph shown in Fig. 4. 
 
Fig. 5 highlights vehicle and job wait times. For example, the vehicle 𝑅  performs the delivery operation 𝐷𝑂 ,  of the job 𝐽  on the machine 𝑀  on date 50 then, it waits until date 50 to perform the loading operation of the job 𝐽 on the same 
machine 𝑀 , therefore the vehicle 𝑅  waits 20 units of time. 
 
Similarly, the job 𝐽  is delivered on date 40 on the machine 𝑀  by the vehicle 𝑅 , and it waits until date 55 in the input 
buffer of the machine 𝑀  before starting its machine-operation 𝑃𝑂 , . Such a situation is induced by the order of passage 
of the jobs on the machine 𝑀  (this order is 𝐽 , 𝐽 , 𝐽 ), which is itself the result of the choice of arbitration of the machine 
disjunctions. 
 
Some jobs may have no waiting time on some machines, in this case: i) The machine-operation is set to begin afterwards 
the delivery date; ii) the end date of the machine-operation corresponds to the start date of the loading operation. For exam-
ple, the job 𝐽  finishes its first processing on date 30 on the machine 𝑀 , it is charged by the loading operation (𝐿𝑂 , ) at 
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the date 30, then transported from 𝑀  to 𝑀 from the date 30 to the date 50 (thanks to the transport opera-
tion𝑇(𝐷𝑂 , ,𝐷𝑂 , ) = (𝑃𝑂 , ,𝐷𝑂 , ,𝑅 ). This same job 𝐽 is deposited on date 50 (delivery operation 𝐷𝑂 , ) on the ma-
chine 𝑀 . 
 

 
Fig. 5. Gantt graph of a semi-active solution. 

3.3     QoS in JSSPR 

Each transport operation 𝑇(𝑃𝑂 , ,𝑃𝑂 , ) = (𝑋 , ,𝑌 , , 𝑟)of a machine 𝜇 ,  (who performs the machine-operation 𝑃𝑂 , )up to 
another machine 𝜇 ,  (which performs the machine-operation 𝑃𝑂 , ) is composed of an initial operation 𝑋 ,  (which is equal 
to either 𝐷𝑂 , 𝑜𝑟𝐿𝑂 , ), of a final operation 𝑌 , (which is equal to 𝐷𝑂 , 𝑜𝑟𝐿𝑂 , ) and a vehicle 𝑟 assigned to both operations. 
Therefore: 𝑇(𝑃𝑂 , ,𝑃𝑂 , ) = 𝐷𝑂 , ,𝐷𝑂 , , 𝑟 𝐷𝑂 , , 𝐿𝑂 , , 𝑟 𝐿𝑂 , ,𝐿𝑂 , , 𝑟 | 𝐿𝑂 , ,𝐷𝑂 , , 𝑟 . In addition, a transport 
operation𝑇(𝑃𝑂 , ,𝑃𝑂 , ) is defined by: 
 
the date of departure 𝐵 , of the vehicle 𝑟 of the machine 𝜇 , ; 
the date of arrival 𝐴 , of the vehicle 𝑟 on the machine 𝜇 , ; 
The vehicle 𝑟assigned to the transport. 
 
Let 𝑠𝑡 , be the start date of the machine operation 𝑃𝑂 , and let 𝐶 , = 𝑠𝑡 , + 𝑃𝑡 , its end date. Since a transport operation 𝑇(𝑃𝑂 , ,𝑃𝑂 , ) is a pair of loading and delivery operations, 𝐵 ,  is the departure date of the vehicle (start date of the trans-
portation operation) (see Fig. 6); and𝐴 ,  is the arrival date of the vehicle. The earliest start date of a machine-operation 
depends both on the arrival date of the vehicle transporting the job and on the end date of the machine-operation formerly 
scheduled on this machine. 
 
The distinction between 𝑠𝑡 ,  and 𝐴 , describes the Waiting Time of the job 𝑦 in the input buffer of the machine 𝜇 , (Fig. 
6). Similarly, the difference between 𝐵 , and 𝐶 , defines the waiting time of the job 𝑖 in the output buffer of the machine 𝜇 , .  
The waiting time of the vehicle is defined by the difference between the date of arrival 𝐴 ,  of the vehicle on the machine 
and the date of departure of the vehicle 𝐵 , . There is no constraint which requires that the departure date𝐵 ,  of the vehicle 
be scheduled immediately after the job loading operation, this means that a job can be loaded and wait in the vehicle before 
it is loaded. it does not begin its movement. Similar remarks concern the delivery operations 𝐷𝑂 ,  which do not need to be 
started immediately on the date of the vehicle's arrival 𝐴 , , this means that the job might not be allowed to get off the 
vehicle immediately upon His arrival. These considerations take on their full meaning when the problems of vehicle routing 
are subject to safety regulations, which are frequent – in particular – in the problems of transporting children or transporting 
dangerous or precious products. For example, in the case of school pick-up, it may be forbidden to drop off a child at his 
place of destination before the scheduled date or before the school opens. Similarly, it is forbidden for a deliverer to deposit 
his goods in front of the depot if it is not yet open. To reduce waiting times (both for vehicles and jobs), a coordinated 
strategy must be favored concurrently addressing the issues of scheduling machine operations, assignment of vehicles to 
transport operations, and rounds. of vehicles. For scheduling problems, the start dates of the different operations are very 
frequently at the earliest ("left-shifted"), because generally the solutions sought are semi-active and the objective function 
only takes into account the makespan. The latter, also referred to as 𝐶 , is the start date of the final fictitious operation, 



 118𝜏 whose start date is equal to the end date of the operation ending at the latest. The makespan therefore corresponds to the 
time required to perform all the operations: 𝐶 = 𝑠𝑡 𝑠𝑡 .  
 

 
Fig. 6. Synchronization of a transport operation and two machine operations. 

The advantage of an explicit modeling of transport operations is to be able to propose start dates that are not at the earliest. 
Depending on the dates of arrival 𝐴 , , depart 𝐵 ,  and start 𝑠𝑡 ,  of the machine operations, the waiting times for vehicles 
and jobs are different in terms of their length and their location. It can be beneficial to delay the start date of an operation 
(transport or machine) to reduce unnecessary waiting times. By analogy with Cordeau and Laporte (2003), it is possible to 
define the QoS of the Job-Shop Scheduling Problem with Routing by considering the time required to complete a job (Total 
Duration – 𝑇𝐷), the time spent by the part in transport (Total Riding Time – 𝑇𝑅𝑇) and the waiting time of the parts in the 
input and output buffers of the machines (Total Waiting Time – 𝑇𝑊𝑇). Fig. 7 is a visualization of these three criteria, 
machine operations are in grey, loading operations are in orange, and delivery operations are in green. Thus, the Total 
Duration (𝑇𝐷) corresponds to the classic notion in industrial engineering of “flow time” and it's determined by the distinc-
tion between the end date of the last operation of the job and the start of processing of the job. This is the time required for 
the full range of one piece. The Total Riding Time represents the time spent by the product (or the customer) between the 
moment it is loaded and the moment it is delivered to the input buffer of the next machine. This duration is visually repre-
sented in Fig. 7 (𝑇𝑅𝑇) by a set made up of the following order: a loading node (in orange), a delivery node (in green), and 
a machine-operation (in Grey). The Waiting Time of a job is the sum of the waiting times of the part in the input and output 
buffers of the machines. In Figure ٧, these times are between delivery operations (in orange) and machine operations (in 
gray) and between machine operations and loading operations (in green). 
 

 
Fig. 7.The new criteria defining the QoS in the JSSPR. 
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Fig. 8, which is a Gantt diagram, presents the different QoS criteria. The Total Duration of the job 𝐽  is in blue, it starts at 
the first operation of𝐽  on the machine 𝑀  (operation-machine𝑃𝑂 , ) and ends at the end of the last operation of 𝐽  on the 
machine 𝑀  (machine-operation 𝑃𝑂 , ). 
 
The Riding Time (𝑅𝑇) of the job 𝐽  (in purple on the Gantt diagram in Fig. 8) is made up of two parts, because there are 
two transport operations in the route. The first 𝑅𝑇 of 𝐽  is between the first operation (machine-operation 𝑃𝑂 , ) on the 
machine 𝑀 , scheduled on date 0, and the start of the following machine-operation (machine-operation 𝑃𝑂 , ) starting on 
date 30. The second part of  𝑅𝑇 of𝐽  begins when𝐽 is loaded into the vehicle, on date 55, and ends when 𝐽  goes on the 
machine 𝑀 on date 80. 
 
Two Waiting Times (𝑊𝑇) are illustrated in green, the first concerns the 𝑊𝑇 of 𝐽  in the input buffer of the machine 𝑀  on 
date 40, the piece waits until date 55 before being produced (operation- machine 𝑃𝑂 , ). The second illustrated 𝑊𝑇is 
located in the output buffer of the machine 𝑀 , the job 𝐽  ends its passage on 𝑀 on date 55 (machine-operation 𝑃𝑂 , ) and 
waits for the loading operation (𝑃) at the date 70. More formally, the following definitions are introduced to define service 
quality Hurink and Knust (2005), Lacomme et al. (2007).  
 
Total Duration (TD). The Total Duration of a job 𝑖 (𝑇𝐷 ) is determined by the distinction among the start and end dates of 
its first and last machine operations (this duration is also called "flow time"). In sequencing problems: 𝑇𝐷 = 𝑠𝑡 , +𝑃𝑡 , − 𝑠𝑡 , . The Total Duration 𝑇𝐷 of a job 𝑖 is shown in Fig. 7. The Total Duration (𝑇𝐷) is the sum of all the 𝑇𝐷 :𝑇𝐷 =∑ (𝑇𝐷 ) =∑ 𝑠𝑡 , + 𝑃𝑡 , − 𝑠𝑡 , . 
 

 
Fig. 9. QoS Criteria in Gantt chart. 

Total Riding Time (𝑇𝑅𝑇). A Riding Time is associated with a request 𝑅( , , , ) and is calculated by 𝑇𝑅𝑇 , = 𝑠𝑡 , −𝐵 , . It therefore relates to the time elapsing among the date of leaving the vehicle 𝑟 from the machine 𝜇 ,  where the loaded 
of job 𝑖 and the start date of the service of the job 𝑖 on the machine 𝜇 ,  (the date of start of the machine-operation 𝑂 , ), 
as Fig. 7 shows. The Total Riding Time (𝑇𝑅𝑇) of job 𝑖 is 𝑇𝑅𝑇 = ∑ 𝑠𝑡 , − 𝐵 , ,∈  with 𝐿  is the set of loading opera-
tions of the job 𝑖. The Total Riding Time is the totality of all the Riding Times of all the jobs: 𝑇𝑅𝑇 = ∑ (𝑇𝑅𝑇 ). 
 
Total Waiting Time (𝑇𝑅𝑇). The Waiting Time of a job 𝑖 is stored in a machine's output buffer𝜇 ,  is named  𝑇𝑊𝑇 , , defined 
by 𝐵 , − (𝑠𝑡 , + 𝑃𝑡 , ). The Waiting Time of a job𝑖 in the input buffer of a machine 𝜇 ,  is named𝑇𝑊𝑇 ,  and is defined 
by𝑠𝑡 , − 𝐴 ,  (see Fig. 7). The Total Waiting Time (𝑇𝑊𝑇)  is the total of the Waiting Times in the output buffers ∑ ∑ 𝑇𝑊𝑇 ,∈ more the Waiting Times during buffer input∑ ∑ 𝑇𝑊𝑇 ,∈ where 𝑈 is the set of  transportation (deliv-
ery) operations of job 𝑖 and 𝐿  is the set of loading operations of job 𝑖. The total Waiting Time is the totality of all the 
Waiting Times:𝑇𝑊𝑇 = ∑ ∑ 𝑇𝑊𝑇 ,∈ + ∑ ∑ 𝑇𝑊𝑇 ,∈  
 
As suggested by Cordeau and Laporte (2003) for the DARP, it is possible to define a strict hierarchical objective function𝐹 
for the JSSPR whose initial step is to reduce the makespan and then secondly decrease the 𝑇𝐷, followed by the 𝑇𝑅𝑇 and 
finally the 𝑇𝑊𝑇: 𝐹 = 𝛼.𝐶 + 𝛽.𝑇𝐷 + 𝛾.𝑇𝑅𝑇 + 𝛿.𝑇𝑊𝑇, With (𝛼,𝛽, 𝛾, 𝛿)respects the following constraints: 𝑀𝑖𝑛(𝛼.𝐶 ) > 𝑀𝑎𝑥(𝛽.𝑇𝐷 + 𝛾.𝑇𝑅𝑇 + 𝛿.𝑇𝑊𝑇); 𝑀𝑖𝑛(𝛽.𝑇𝐷)) > 𝑀𝑎𝑥(𝛾.𝑇𝑅𝑇); 



 120𝑀𝑖𝑛(𝛾.𝑇𝑅𝑇) > 𝑀𝑎𝑥(𝛿.𝑇𝑊𝑇). 

3.4     Principle of the Time-Lag Heuristic assessment 

It is impossible to directly apply the approach of Cordeau to the routes present in a disjunctive graph for the JSSPR because 
the routes are not independent of each other. The algorithm of Cordeau is dedicated to the evaluation of a unique and 
independent tour. For the JSSPR, it is necessary to design an evaluation procedure that simultaneously takes into account 
the whole of the graph which contains all the routes. The dependence between routes is linked to the fact that a vehicle 
performs transport operations belonging to different jobs, which adds temporal dependencies between job ranges. This 
particular point is illustrated in Fig. 9, where the vehicle 𝑅 , whose route is modeled by the arcs in orange, performs, for 
example, a transport operation for the job 𝐽 , then for the job 𝐽 . 
 

Algorithm 1: Principle of criterion minimization at step 𝑐 

1. 𝐺: the graph with minimized criterion 
2. 𝑠𝑡: the start dates of operations 
3. 𝑐: the criterion to be minimized 
4. 𝜑 : maximum time-lags to insert during the 𝑐 step 
5. 𝜃 : order of insertion of the maximum time-lags during the 𝑐 step 
6. Start 
7. | For(∀𝜃 ∈ 𝜑 according to the order of insertion𝜃 do 
8. ||Insertion_time_lag(𝐺, 𝑠𝑡, 𝜈 ) // see algorithm 3 
9. |    End for 
10. | return 𝑇𝐿 ,  
11. End 

 
The new evaluation function, proposed in this paper, TLH – Time-Lag Insertion Heuristic – is based on the same principle 
and is based on the heuristic insertion of time-lags in the disjunctive graph of the JSSPT. The evaluation function TLH 
minimizes the makespan – by calculating the earliest start dates of the operations – then TLH minimizes the Total Duration 
(𝑇𝐷), then the Total Riding Time (𝑇𝑅𝑇) and finally the Total Waiting Time (𝑇𝑊𝑇). The deterioration of a previously 
optimized criterion is prevented by the iterative addition of maximum time-lags in the graph. The TLH evaluation function 
is composed of four tasks: 
 
Task 1: minimizing the makespan. 
Task 2: minimizing the TD. 
Task 3: minimizing the TRT. 
Task4: minimizing the TWT. 
 

 
Fig. 9.  Routes dependency. 

 
The stages of the TLH evaluation range from the most encompassing time-lags to the “smallest” time-lags, because inserting 
the most encompassing time-lags makes it possible to constrain future time-lags. Moreover, inserting time-lags at the start 
of the procedure that includes few operations risks creates an increase in the other criteria, because these will not be con-
strained. For example, the reduction of the Riding Times can cause an increase in the Total Durations of the jobs, indeed, 
to minimize the Riding Times, the jobs will be loaded only when the following machine is free and will be carried out 
without waiting. In this case, transport becomes the most critical resource. 
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Selection of the maximum time-lag value is an important point of TLH evaluation and a challenging issue because the time-
lag value should be minimum, but adding too small value time-lag in the disjunctive graph can lead to a cyclic graph. This 
situation is to be avoided. 
 
The minimum value 𝑆𝑃 , of a maximum time-lag 𝑇𝐿 ,  (the time-lag is represented by an arc with a negative value even 
though this value is positive), from the operation 𝑗to the operation 𝑖is the difference between the earliest start date 𝐿𝑆  of 𝑖 
and the earliest start date 𝐸𝑆  of 𝑗. 
 
Let be a position of insertion of a maximum time-lag 𝑇𝐿 ,  from 𝑗to𝑖, the minimum value (which is equal to 𝑆𝑃𝑀 , )of 
maximum time-lag, is 𝐿 , = 𝐸𝑆 − 𝐿𝑆  where 𝐿𝑆  and 𝐸𝑆  verify that: 
 
1) 𝐿𝑆∗ = 𝐸𝑆∗ 𝑎𝑛𝑑 𝐿𝑆 = 𝐸𝑆  
2) ∀𝑘 𝐿𝑆 = 𝑚𝑖𝑛∈ ( )(𝐿𝑆 − 𝑙 , ) 
 
such that 𝑆𝑢𝑐𝑐(𝑘) is the set of successors of 𝑘, and 𝑙 , is the path length between 𝑢 and 𝑘. With 𝑙 , = 𝑝 , || 𝑙 , = 𝑇𝐿 ,  
From the definition of the earliest and latest dates of operations, the proposition can be inferred immediately. In general, 
among two operations 𝑖 and 𝑗 of the same route, whatever their types (loading, delivery, or machine operation), one or more 
paths are going from 𝑖 to 𝑗. These paths are composed of a succession of arcs whose extremities do not necessarily belong 
to the same range as 𝑖 and 𝑗.To avoid the creation of a cycle in the graph by inserting a maximum time-lag between 𝑖 and 𝑗, 
the longest path must be found. The length of this path is the minimum value that the time lag between these two operations 
can take to avoid creating a cycle. Algorithm 2 is used to calculate the minimum value of a time-lag. 
 

Algorithm 3 exemplifies the principle of inserting a maximum time-lag 𝑇𝐿 ,  in the graph𝐺. The time-lag is initialized to its 
initial value 𝜈 , , then the graph is evaluated using a Bellman-Ford type least-distance algorithm. When a cycle is found, the 
cycle duration value 𝛿 is positive (𝛿 > 0). The time-lag value is elevated by𝛿, until there are no more cycles detected.  
 

Algorithm 2: Calculation of the minimum time-lag 

1. 𝑇𝐿 , : the value of time-lag from 𝑗 to 𝑖 
2. 𝐸𝑆: the earliest start dates of operations 
3. 𝐺: the graph 
4. 𝑖 𝑎𝑛𝑑 𝑗: two operations linked by a maximum time-lag from 𝑗 to 𝑖 
5. Start 
6. |    𝐿𝑆∗ = 𝐸𝑆∗        // the final fictitious operation 
7. |𝐿𝑆 = 𝐸𝑆  
8.  For (∀𝑘 ∈  𝑊)do 
9. ||  𝑙 , = 𝑝 , ||𝑙 , = 𝑇𝐿 ,  
10. ||𝐿𝑆 = min∈ ( )(𝐿𝑆 − 𝑙 , ) 

11. |     End for 
12. |𝑇𝐿 , = 𝐸𝑆 − 𝐿𝑆  
13. | return  𝑇𝐿 ,  
14. End 

 

The initial minimum value 𝜈 ,  when minimizing the Total Duration, of the maximum time-lag of a job 𝐽  is the total of all 
operations𝑂 ,  ∀𝑗 ∈ {1, … ,𝑛 }aboutit, plus the transport times between the machines where the operations 𝑂 ,  ∀𝑗 ∈{1, … ,𝑛 } are carried out. 

Algorithm 3: Time-lag insertion 

1. 𝐺: the graph with inserted time-lag 
2. 𝜈 , : the value of time-lag  

3. 𝑇𝐿 , : the time-lag to be inserted between 𝑖 𝑎𝑛𝑑 𝑗 
4. Start 
5. |    𝐿𝑆∗ = 𝐸𝑆∗        // the final fictitious operation 
6. |𝐿𝑆 = 𝐸𝑆  
7.      For (∀𝑘 ∈  𝑊)do 
8. ||  𝑙 , = 𝑝 , ||𝑙 , = 𝑇𝐿 ,  
9. ||𝐿𝑆 = min∈ ( )(𝐿𝑆 − 𝑙 , ) 

10. |     End for 
11. |𝑇𝐿 , = 𝐸𝑆 − 𝐿𝑆  
12. | return  𝑇𝐿 ,  
13. End 
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4. Experimentations and Results 

4.1     Presentations of instances and studies 

To our information, there isn't a single instance accessible that is committed to the Job-shop Scheduling Issue with Routing. 
On the instances originally established for the simultaneous scheduling of machine operations and transport operations, 
Zeng et al. (2015), a new batch of instances is provided. The scientific community generally recognizes these examples as 
the JSSPT reference dataset for two-unit capacity vehicles. 

The instances in our study are made of two sets (called datasets) 𝐷 𝑎𝑛𝑑𝐷 : the first involves instances with a ratio of the 
transport time 𝑡  and the processing time 𝑝  greater than 0.25(𝑡 /𝑝 > 0.25) which means that the processing times are 
much longer in duration than the transport time. These are predominantly scheduling instances. The second set (or dataset) 
contains the instances with 𝑡 /𝑝 ≤ 0.25. The instances of the second dataset are therefore transport-dominant. These 
instances are all produced by integrating 10 jobsets and 4  layouts and defining the dataset 𝐷  with 40 instances and the 
dataset 𝐷  with 42 instances. 

Instances of 𝐷  are denoted 𝐸𝑋 , with x denotes the jobset currently used and y the layout taken into account. For the set 𝐷 , the instances are named 𝐸𝑋 , where 𝑧 is an additional digit with a value of 0 if the transport times are divided into 
two parts and the processing times doubled or a value of 1 if transport times are halved and processing times tripled. 

For the occurrences of Zeng et al. (2015), the transit times for the two vehicles are the same regardless of the load and the 
vehicle. For numerical assessments including a group of non-unit capacity vehicles, these situations are extended. In this 
instance, two vehicles are taken into account, each of which has a capacity of two jobs, each of which corresponds to the 
same volume. The job operating ranges and processing times are the same as in the original instances. JSSPR's objective is 
to shorten the makespan and increase QoS by defining ℎ (𝑦) = 1/ℎ (𝑦). The two criteria are ordered by an aggregate 
sum with the coefficients (𝛼;𝛽) modeling the level of necessity of QoS and makespan. The objective function is described 
as follows: 𝐹(𝑦) = 𝛼 × ℎ (𝑦) + 𝛽 × ℎ (𝑦) 
where: 𝑦: a solution to the problem; ℎ (𝑦) =  𝐶𝑚𝑎𝑥 of the solution 𝑦, i.e. the makespan of 𝑦; ℎ (𝑦) = 𝑇𝐷(𝑦) + 𝑇𝑅𝑇(𝑦) + 𝑇𝑊𝑇(𝑦), which are respectively the Total Duration, the Total Riding Time, and the Total 
Waiting Time of the solution 𝑦; ℎ (𝑦) = 1/ℎ (𝑦) is the QoS of 𝑦. 
Giventhe metaheuristic used and the objective function 𝐹(𝑦) = 𝛼 × ℎ (𝑦) + 𝛽 × ℎ (𝑦), GRASP×ELS , Gondran et 
al. (2017) can solve the JSSPT and the JSSPR. It should be noted that GRASP×ELS is a combination of two metaheuristics, 
GRASP (Greedy Randomized Adaptive Search Procedure) (Prins, 2009) and ELS (Evolutionary Local Search), which has 
been cited as Gondran et al. (2017) for the Vehicle Routing Problem (VRP). 

The objective function for the JSSPT resolution is specified with 𝛼 = 1 𝑎𝑛𝑑𝛽 = 0 corresponding to an evaluation of the 
dates at the earliest. The coded algorithm is generic and in this specific case, it simply corresponds to the initial stage of the 
TLH evaluation and is therefore equivalent to a classical shortest path algorithm. 

Two different approaches are experimented with to solve the JSSPR. The first approach is an integrated approach, while 
the second is a sequential approach: The objective function of the integrated approach (integrated JSSPR) is 𝐹(𝑦) =𝛼 × ℎ (𝑦) + 𝛽 × ℎ (𝑦) where with 𝛼 = 10 000 𝑎𝑛𝑑 𝛽 = 0, the TLH evaluation is used at each iteration of the me-
taheuristic. 

For the sequential approach (sequential JSSPR), 𝛼 = 1 𝑎𝑛𝑑𝛽 = 0 in the objective function during the GRASP×ELS (this 
step is equivalent to solving the JSSPT). Then, to obtain a solution from the JSSPR, the TLH assessment is applied to the 
best solution discovered during the resolution of the JSSPT. 
Our numerical assessments are divided into two studies. The first study concerns the ability of GRASP×ELS to provide 
results comparable to the literature for solving the JSSPT with a fleet of unit-capacity vehicles. To our knowledge, there is 
no article in a journal proposing numerical results for the JSSPT with a fleet of non-unit capacity vehicles or proposing a 
study on QoS. The second study is composed of two numerical evaluations: the first deals with the order of insertion of the 
maximum time-lags during the TLH evaluation; and the second numerical evaluation looks at the TLH function's speed at 
finding high-quality answers in reasonable amounts of time Lacomme et al. (2007). All of the investigations are conducted 
under identical circumstances. A GRASP×ELS includes the TLH assessment. The ELS iterations total 60, the GRASP 
iterations total 200, and the number of neighbors during the ELS iterations total 30. To lessen the impact of chance on the 
result, each experiment is replicated five times using a different set of random numbers each time. 
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4.2     First study: Capacity of GRASP×ELS to solve the JSSPT with a fleet of unit capacity vehicles 

The study focuses on the last three publications of the JSSPT with a fleet of vehicles (group of vehicles) of unit capacity, 
Gondran et al. (2017), Gondran et al. (2018), He and Hao (2023). These three methods offer many new best solutions and 
are tested on all instances of the two datasets. 

Table. 1 
MTSP, DSMG and Petri-EUF methods 

 Method Dataset𝐷  Dataset𝐷  
  Best Time Best Time 

Gondran et al. (2017) MTSP   × × 
Gondran et al. (2018) DSMG   × × 
He and Hao (2023) Petri-EUF  ×  × 
Information is provided 
× No provided information  

 
Recall that the MTSP method is introduced by Gondran et al. (2018) and consists of a Tabu Search type algorithm (MTSP). 
In Gondran et al. (2018), the authors describe an approach based on genetic algorithms: the DSMG to enable flexible pro-
cessing and dynamic scheduling, additionally resolving a static version of the JSSPT. The Petri-EUF method is suggested 
by He and Hao (2023). For each method, the results in terms of solutions and computation time provided in the articles are 
summarized in Table 1. 
 
JSSPT, which is determined by an objective function only based on the makespan lacking consideration of the QoS, can be 
solved using the proposed Time-Lag Insertion Heuristic (TLH) assessment because it is generic. In this case, the objective 
function is outlined by 𝛼 = 1 𝑎𝑛𝑑𝛽 = 0in the TLH evaluation. This is related to the longest path algorithm of the Dijkstra 
type. 
 
Table 2 and Table 3 present the results acquired by GRASP×ELS solving the JSSPT with a fleet of unit capacity vehicles 
for the two datasets. The mean deviation𝑔𝑎𝑝 ,∗(𝑦) 
 
Attribute of the best performance is 26.8% for dataset𝐷  (Table 2) and 6.5% for the dataset 𝐷  (Table 3). 
 
For the dataset 𝐷  (Table 2), the GRASP×ELS participates with the most successful methods, with a deviation from the 
lower bound of 𝑔𝑎𝑝 ,∗(𝑦) = 26.8% which is more favorable than HRA and FMAS. The GATS+HM offers a deviation of 
around 20.6% which is slightly lower than the departure from GRASP×ELS with a calculation time of around 12.08 seconds, i.e. four times longer than the calculation time of GRASP×ELS, which is about 2.83 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Likewise, 
the ALS offers a departure from about 25.5%, but a scale calculation time of 503.1 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 on average. The TS_SPMA 
obtains results of about25.5%, so a relative analysis of computing time is not sufficient. 
 
Table 2 
GRASP×ELS to solve the JSSPT for datasets 𝑫𝟏 

 Dataset 𝑫𝟏: 𝒕𝐢𝐤/𝒑𝐤 > 𝟎.𝟐𝟓  
 𝑔𝑎𝑝  ∗(𝑦) 𝑠𝑡  ∗(𝑦) 𝑠𝑡𝑡  ∗(𝑦) 𝑔𝑎𝑝  (𝑦) 𝑠𝑡  (𝑦) 𝑠𝑡𝑡  (𝑦) 

MTSP 44.9 % × × × × × 
DSMG 25.5 % 503.1 s 3600 × × × 

Petri-EUF 20.6 % 12.08 s × × × × 
GRASP×ELS 26.8 % 2.83 s 10.50 s 27.4 %  2.10 s 10.51 s 

×    No provided information  𝑠𝑡 ,∗(𝑦):The average normalized time to identify the ideal solution𝑦, when it was the best replication ∗ among the 𝑛 replications, for all instances of 
the dataset𝑧 ∈ {𝐷  ;  𝐷 } 𝑠𝑡𝑡 ,∗(𝑦) : The normalized total time to resolution for the best replication∗among the n replications, for all instances of the dataset 𝑧 ∈ {𝐷  ;  𝐷 } 𝑠𝑡 , (𝑦) : The total normalized time to identify the ideal solution during 𝑛replications, for all instances of the dataset𝑧 ∈ {𝐷  ;  𝐷 } 𝑠𝑡𝑡 , (𝑦) : The total normalized resolution time for 𝑛replications, for all instances of the dataset𝑧 ∈ {𝐷  ;  𝐷 } 𝑔𝑎𝑝 , (𝑦) : The average deviation for 𝑛replications for all instances of the dataset𝑧 ∈ {𝐷  ;  𝐷 } 

 

Mostly asked, is it possible to increase the number of iterations in the hopes of reducing the difference in solutions between 
GRASP×ELS and GATS+HM. 

So many numerical evaluations were carried out to give GRASP×ELS a similar duration as the GATS+HM algorithm, but 
no significant improvement was obtained. There is therefore probably a very and too rapid convergence of GRASP×ELS 
and the diversification mechanisms have not allowed the exploration of another region of space. For the dataset 𝐷  (Table 
3), GRASP×ELS offers high-quality results with an average deviation of 6.5%, which places it between the TS_SPMA 
method (6%) and the FMAS method (7.2%). But no comparative study is possible on the computation times, because none 
of the methods gives their execution times. 
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Table 3  
GRASP×ELS to solve the JSSPT for datasets 𝑫𝟐 

 

 Dataset 𝑫𝟐: 𝒕𝐢𝐤/𝒑𝐤 > 𝟎.𝟐𝟓  
 𝑔𝑎𝑝  ∗(𝑦) 𝑠𝑡  ∗(𝑦) 𝑠𝑡𝑡  ∗(𝑦) 𝑔𝑎𝑝  (𝑦) 𝑠𝑡  (𝑦) 𝑠𝑡𝑡  (𝑦) 

MTSP 6.0% % × × × × × 
DSMG 7.2 % × × × × × 

Petri-EUF 11.3 % × × × × × 
GRASP×ELS 6.5 % 0.15 s 8.01 s 7.0 %  1.60 s 8.02 s 

 

This first numerical study leads us to consider that GRASP×ELS is adapted and well-parameterized to solve the JSSPT with 
two vehicles of unit capacity. 

4.3     Second study: JSSPT and integrated JSSPR 

The second study is a comparison of the makespan and QoS criteria between the JSSPT and the integrated JSSPR. The 
resolution of the JSSPT does not consider the QoS evaluation and corresponds to a Dijkstra-type evaluation. To compare 
the resolution methods, the QoS of the JSSPT is calculated on the final solution returned by the GRASP×ELS. It is important 
to note that in the case of the JSSPT, the QoS is only evaluated without trying to maximize it: the start dates of operations 
are constraints and cannot be modified. This study is divided into two sections: a section for the case of a fleet of unit 
capacity vehicles, and a section for the case of a fleet of vehicles of non-unit capacity. 

4.3.1 Unit Capacity Vehicles 

Table ٤ and Table ٥present the results obtained for the JSSPT and the JSSPR. The first column is the name of the instance, 
the second is the lower bound proposed by Ulusoy et al. (1997). Columns 3, 4, 5, and 6 relate to the resolution of the JSSPT 
by the GRASP×ELS with the objective function: 𝐹 = ℎ (𝑦) where ℎ (𝑦)is the makespan. Columns 7 to 12 relate 
to the resolution of the built-in JSSPR (the objective function is: 𝐹(𝑥) = 10000 × ℎ (𝑥) + 1 × ℎ (𝑥). 

Columns 3 and 7 give the value of the makespan of the best solution found, during the five replications, respectively by the 
JSSPT and the integrated JSSPR. Columns 4 and 9 are the values of the cost of the best solution found, during the five 
replications, respectively by the JSSPT and the integrated JSSPR.  

A value of  ℎ ,∗ (𝑦) (column 3) equal to ℎ ,∗ (𝑥)(column 7) means that the best solution obtained for the JSSPT and the 
best solution obtained for the built-in JSSPR have an equivalent makespan.  

A deviation of 0.16% means that the average makespan found during the solving of the integrated JSSPR is better than the 
average makespan found during the solving of the JSSPT. This difference results from a better diversification during the 
GRASP×ELS. A deviation of 0% means that the two methods have solutions with an equivalent makespan. 𝑠𝑡 ,∗ is the time taken by GRASP×ELS to locate the ideal solution, while 𝑠𝑡𝑡 ,∗ is the total running time of GRASP×ELS. 
For example, for instance, EX21 (Table 4), the period to locate the ideal solution for the JSSPT is 1.94 seconds, and the 
total time to solve the JSSPT is 8.72 seconds. The time required by GRASP×ELS to provide the best solution is 11.40 
seconds and the total time is 19.93 seconds. 

The difference in execution times is explained by the fact that the number of evaluations of the disjunctive graph is much 
greater for the JSSPR. Moreover, for the JSSPT, the time 𝑠𝑡 ,∗ corresponds to the first solution obtained with the minimal 
makespan, while for the JSSPR, the solution with the minimal makespan and the minimal QoS can require much more time.  

The gap between the QoS of the ideal solution found during the JSSPT and the ideal response found during the integrated 

JSSPR is defined by∆ ,∗ = ,∗ ( ) ,∗ ( ),∗ ( ) which therefore represents the improvement in the QoS of the JSSPR compared 

to that of the JSSPT. A ∆ ,∗ > 0 means that the JSSPR solution has a better QoS than the JSSPT.This is the case of instance 
EX11 (Table ٤) with ∆ ,∗ =  25.33%: the JSSPT solution has the criterion ℎ ,∗ (𝑦) = 683 and the solution of the inte-
grated JSSPR has the value of ℎ ,∗ (𝑥) = 510. ∆ ,∗  is the average deviation of ∆ ,∗ ,∆ ,∗ = 35.78%for the dataset𝐷 (Ta-
ble 4) and ∆ ,∗ = 46.37% for dataset 𝐷 (Table 5). These gaps highlight the importance of considering the QoS during the 
resolution scheme. 

 

For the dataset 𝐷 (Table 4), the average amount of time needed to locate the ideal solution of the JSSPT is 2.83 seconds 
and the total time is 10.50 seconds. The average duration of the JSSPR is 9.38 seconds to locate the ideal solution and 23.14 
seconds for the complete resolution. The differences between these durations are explained by the number of evaluations 
of the graph which is much more important for the JSSPR. The same remarks remain true for the dataset 𝐷  (Table 5). 
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Table 4  
Results for the JSSPT and the JSSPR with datasets 𝑫𝟏 (For unit capacity vehicles) 

Ulusoy et al. (1997) JSSPT resolution:𝑭 = 𝒉𝐜𝐦𝐚𝐱(𝒚) Resolution of integrated JSSPR:𝐹(𝑥) = 10000 × ℎ (𝑥) + ℎ (𝑥). 
Instance-

name 
Lower-
bound 

ℎ  ∗ (𝑦) ℎ  ∗ (𝑦) 𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ ℎ  ∗ (𝑥) ∆  ∗  ℎ  ∗ (𝑥) ∆  ∗  𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ 
EX11 96 683 0,01 6,8 96 0,00 510 25,33 5,05 15,9 96 
EX21 100 799 1,94 8,7 100 0,00 529 33,79 11,40 19,9 100 
EX31 103 858 5,21 9,0 99 3,88 543 36,71 4,28 20,3 103 
EX41 112 831 3,52 11,37 112 0,00 673 19,01 4,80 23,7 112 
EX51 87 641 0,02 6,5 87 0,00 441 31,20 4,09 16,1 87 
EX61 118 901 1,73 12,73 118 0,00 582 35,41 0,08 24,4 118 
EX71 116 1387 4,46 13,50 115 0,86 882 36,41 10,59 28,1 116 
EX81 161 1338 0,03 13,77 161 0,00 597 55,38 22,35 30,2 161 
EX91 116 807 1,43 10,52 116 0,00 589 27,01 3,87 21,9 116 
EX101 148 1144 3,93 14,97 149 0,68 788 31,12 9,98 28,9 148 
EX12 82 520 0,08 5,8 82 0,00 370 28,85 0,12 15,8 82 
EX22 76 553 1,93 7,8 76 0,00 373 32,55 3,95 18,5 76 
EX32 85 663 0,00 7,4 85 0,00 407 38,61 8,84 19,4 85 
EX42 87 646 3,61 10,82 87 0,00 532 17,65 14,02 22,7 87 
EX52 69 460 0,01 6,8 69 0,00 338 26,52 5,78 15,9 69 
EX62 98 725 0,15 11,70 98 0,00 424 41,52 4,96 23,3 98 
EX72 84 894 0,93 13,00 84 0,00 532 40,49 26,31 27,1 84 
EX82 151 1206 0,16 12,75 151 0,00 408 66,17 5,72 38,9 151 
EX92 102 657 1,81 10,21 102 0,00 496 24,51 16,89 21,0 102 
EX102 135 1049 0,16 14,58 136 0,74 695 33,75 5,78 28,5 135 
EX13 84 583 0,02 5,9 84 0,00 412 29,33 0,02 15,7 84 
EX23 86 687 0,07 8,6 86 0,00 388 43,52 14,06 19,0 86 
EX33 86 675 0,05 7,5 86 0,00 401 40,59 5,94 19,9 86 
EX43 89 648 4,07 10,63 89 0,00 503 22,38 0,57 23,3 89 
EX53 74 500 1,07 6,7 74 0,00 299 40,20 4,82 16,0 74 
EX63 103 777 8,77 11,50 103 0,00 430 44,66 18,91 24,1 103 
EX73 89 957 10,93 13,06 88 1,12 513 46,39 25,81 28,6 89 
EX83 153 1232 0,05 12,65 153 0,00 422 65,75 20,80 36,5 153 
EX93 105 677 1,09 10,09 105 0,00 528 22,01 5,06 21,3 105 
EX103 140 1151 14,37 14,49 139 0,71 679 41,01 1,98 28,3 140 
EX14 103 744 0,16 6,2 103 0,00 528 29,03 0,88 16,2 103 
EX24 108 871 3,84 8,9 108 0,00 511 41,33 1,48 19,2 108 
EX34 112 964 6,42 9,9 111 0,89 597 38,07 12,15 20,8 112 
EX44 125 980 9,92 11,36 124 0,80 715 27,04 22,00 23,9 125 
EX54 56 97 746 0,19 6,97 97 0,00 519 30,43 15,9 16.2 

AVG  109.4 873.78 2.83 10.50 109.3 0.16 546.08 35.78 9.38 23.14 
 

Table 5  
Results for the JSSPT and the JSSPR with datasets 𝑫𝟐 (For unit capacity vehicles) 
Ulusoy et al. (1997) JSSPT resolution:𝑭 = 𝒉𝐜𝐦𝐚𝐱(𝒚) Resolution of integrated JSSPR:𝑭(𝒙) = 𝟏𝟎𝟎𝟎𝟎× 𝒉𝐜𝐦𝐚𝐱(𝒙) + 𝒉𝐜𝐨𝐬𝐭(𝒙). 
Instance name ℎ  ∗ (𝑦) ℎ  ∗ (𝑦) 𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ ℎ  ∗ (𝑥) ∆  ∗  ℎ  ∗ (𝑥) ∆  ∗  𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ 

EX101 83 548 1,56 13,40 80 0,01 501 8,39 1,31 24,04 
EX201 88 669 3,54 16,81 85 0,01 539 19,06 2,65 28,52 
EX301 91 720 3,42 18,43 88 0,01 600 16,22 25,82 30,41 
EX401 96 730 7,85 27,31 93 0,01 659 9,26 9,86 40,78 
EX501 72 532 1,30 14,34 69 0,01 456 14,14 9,70 24,32 
EX601 109 820 2,36 22,22 106 0,01 652 19,95 23,89 35,13 
EX701 87 1006 3,59 27,68 84 0,01 894 10,44 4,69 41,72 
EX801 162 1261 1,17 21,43 159 0,01 595 52,03 38,05 46,67 
EX901 107 684 2,83 20,40 104 0,01 615 9,68 13,12 32,03 
EX102 139 966 16,21 27,32 136 0,01 808 15,69 20,96 42,14 
EX202 77 466 1,17 11,16 74 0,01 387 16,98 19,71 22,93 
EX302 77 593 1,24 13,29 74 0,01 380 35,69 1,56 26,31 
EX402 81 578 1,18 13,86 78 0,01 406 29,55 3,18 27,63 
EX502 75 490 4,80 24,30 72 0,01 454 7,29 5,47 36,99 
EX702 65 433 1,63 12,24 62 0,01 328 24,39 13,45 23,34 
EX802 99 742 1,97 19,08 96 0,01 432 41,35 20,52 32,93 
EX702 80 827 3,31 22,84 77 0,01 483 41,07 11,94 38,30 
EX802 152 1251 1,16 19,14 149 0,01 441 63,98 19,42 49,52 
EX902 99 623 2,35 17,60 96 0,01 484 22,01 21,47 30,05 
EX112 130 893 15,78 24,37 129 -1,54 684 22,80 25,63 40,24 
EX113 75 433 1,17 11,34 72 0,01 385 11,20 5,07 22,50 
EX213 83 682 1,22 14,49 80 0,01 382 43,63 23,70 27,18 
EX313 83 568 1,23 13,98 80 0,01 414 26,92 1,43 27,49 
EX413 75 525 5,67 23,67 72 0,01 436 16,83 28,66 36,27 
EX513 64 406 1,23 12,75 61 0,01 318 21,91 12,33 23,26 
EX613 101 760 1,66 19,69 98 0,01 475 37,04 29,00 33,06 
EX713 85 572 1,42 13,87 82 0,01 493 13,59 2,68 23,85 
EX813 89 663 14,38 17,06 86 0,01 538 18,49 27,77 28,86 
EX913 93 756 2,29 18,49 90 0,01 578 23,07 20,23 30,41 
EX123 99 725 26,71 28,03 96 0,01 697 3,40 4,60 40,39 
EX124 74 503 1,17 14,72 71 0,01 428 14,84 7,00 24,78 
EX224 107 812 3,64 23,34 102 1,90 615 23,73 29,14 35,67 
EX324 91 1037 7,43 27,42 88 0,01 827 19,55 27,46 42,11 
EX424 164 1337 1,19 22,59 161 0,01 654 50,27 27,55 44,31 
EX524 106 679 6,10 21,05 103 0,01 585 13,45 7,01 32,38 
AVG 99 755 4,92 19,65 96 0,07 544 24,70 15,56 33,69 
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4.3.2 Non-Unit Capacity Vehicles 

Similar to the previous section, Table 6 and Table 7 introduce the best replications among the five GRASP×ELS replications 
for the JSSPT and the integrated JSSPR. In this section, the vehicles have non-unit capabilities, each of which can optionally 
carry two jobs simultaneously. 

For the dataset 𝐷  (Table 6), the average deviation of the makespan, ∆ ,∗ = 0.06%, means that the integrated JSSPR is on 
average very slightly better than the JSSPT concerning the makespan criterion.  

Concerning the QoS criterion,∆ ,∗ = 26.00%, which means that the integrated JSSPR finds solutions on average 26% 
better than the JSSPT for the QoS criterion. The average computation times of the JSSPT are𝑠𝑡 ,∗ =3.61 seconds and  𝑠𝑡𝑡 ,∗ = 18.66𝑠𝑒𝑐𝑜𝑛𝑑𝑠, and, 𝑠𝑡 ,∗ =  14.51seconds and 𝑠𝑡𝑡 ,∗ = 32.19. The resolution of the JSSPR requires approximately 
twice as much time as the resolution of the JSSPT, but it makes it possible to obtain solutions of much higher quality in 
terms of QoS, without degrading the criterion of the makespan. 

Table 6  
Results for the JSSPT and the JSSPR with datasets 𝑫𝟏 (For non-unit capacity vehicles) 
Ulusoy et al. (1997) JSSPT resolution: 𝑭 = 𝒉𝐜𝐦𝐚𝐱(𝒚) Resolution of integrated JSSPR:𝑭(𝒙) = 𝟏𝟎𝟎𝟎𝟎 × 𝒉𝐜𝐦𝐚𝐱(𝒙) + 𝒉𝐜𝐨𝐬𝐭(𝒙) 

Instance 
name 

ℎ  ∗ (𝑦) ℎ  ∗ (𝑦) 𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ ℎ  ∗ (𝑥) ∆  ∗  ℎ  ∗ (𝑥) ∆  ∗  𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ 
EX11 80 52 0,52 14,21 84,6 0,00 497 8,58 0,4 23,64 
EX21 85 666 2,42 17,62 89,6 0,00 535 19,34 1,74 28,12 
EX31 88 717 2,32 19,24 92,6 0,00 596 16,5 24,84 30,01 
EX41 93 727 6,81 28,12 97,6 0,00 655 9,54 8,95 40,38 
EX51 69 529 0,26 15,15 73,6 0,00 452 14,42 8,79 23,92 
EX61 106 817 1,32 23,03 110,6 0,00 648 20,23 22,94 34,73 
EX71 84 1003 2,55 28,49 88,6 0,00 890 10,72 3,78 41,32 
EX81 159 1258 0,13 22,24 163,6 0,00 591 52,31 37,14 46,27 
EX91 104 681 1,79 21,21 108,6 0,00 611 9,96 12,14 31,63 
EX101 136 963 15,17 28,13 140,6 0,00 804 15,97 20,04 41,74 
EX12 74 463 0,13 11,97 78,6 0,00 383 17,26 18,74 22,53 
EX22 74 590 0,2 14,1 78,6 0,00 376 35,97 0,65 25,91 
EX32 80 575 0,14 14,67 82,6 0,00 402 29,83 2,27 27,23 
EX42 72 487 3,76 25,11 76,6 0,00 450 7,57 4,56 36,59 
EX52 62 430 0,59 13,05 66,6 0,00 324 24,67 12,54 22,94 
EX62 96 739 0,93 19,89 100,6 0,00 428 41,63 19,54 32,53 
EX72 77 824 2,27 23,65 81,6 0,00 479 41,35 10,94 37,9 
EX82 149 1248 0,12 19,95 153,6 0,00 437 64,26 18,44 49,12 
EX92 96 620 1,31 18,41 100,6 0,00 480 22,29 20,54 29,65 
EX102 126 890 14,74 25,18 133,6 1,61 680 23,08 24,64 39,84 
EX13 72 430 0,13 12,15 76,6 0,00 381 11,48 4,16 22,1 
EX23 80 679 0,18 15,3 84,6 0,00 378 43,91 22,74 26,78 
EX33 80 565 0,19 14,79 84,6 0,00 410 27,2 0,52 27,09 
EX43 72 522 4,63 24,48 76,6 0,00 432 17,11 27,74 35,87 
EX53 61 403 0,19 13,56 65,6 0,00 314 22,19 11,34 22,86 
EX63 98 757 0,62 20,5 102,6 0,00 471 37,32 28,04 32,66 
EX73 79 909 1,72 23,74 83,6 0,00 528 41,35 25,34 38,07 
EX83 151 1219 0,13 21,08 155,6 0,00 453 62,12 5,61 48,29 
EX93 100 651 1,44 19,15 102,6 0,00 500 22,87 1,08 29,51 
EX103 131 1000 4,32 25,56 135,6 0,00 719 27,52 32,44 39,92 
EX14 82 569 0,38 14,68 86,6 0,00 489 13,87 1,77 23,45 
EX24 86 660 13,34 17,87 90,6 0,00 534 18,77 26,84 28,46 
EX34 90 753 1,25 19,3 94,6 0,00 574 23,35 19,24 30,01 
EX44 96 722 25,67 28,84 100,6 0,00 693 3,68 3,69 39,99 
EX54 71 500 0,13 15,53 75,6 0,00 424 15,12 6,09 24,38 
AVG 93.11 703,37 3,19 19,71 97,69 0.046 514,8 24,95 14,01 32,44 

 

Concerning dataset 𝐷  (Table ٧), ∆ ,∗ = 0.00% means that the JSSPT and the integrated JSSPR obtain solutions with an 
equivalent makespan. Remarks similar to the numerical results obtained with the dataset 𝐷 can be established for the results 
obtained from the dataset 𝐷 . The average deviation of the QoS, for the dataset 𝐷 , is ∆ ,∗ = 45.60 %, and reflects the 
improvement brought by the integrated JSSPR for the criterion of the compared QoS to a JSSPT resolution. The computation 
times of the integrated JSSPR are nevertheless much greater than for the JSSPT. 

 

 



K. Assafra et al.  / Journal of Project Management 9 (2024) 
 

127

Table 7  
Results for the JSSPT and the JSSPR with datasets 𝑫𝟐 (For non-unit capacity vehicles) 
Ulusoy et al. (1997) JSSPT resolution:𝑭 = 𝒉𝐜𝐦𝐚𝐱(𝒚) Resolution of integrated JSSPR:𝑭(𝒙) = 𝟏𝟎𝟎𝟎𝟎 × 𝒉𝐜𝐦𝐚𝐱(𝒙) + 𝒉𝐜𝐨𝐬𝐭(𝒙) 

Instance name ℎ  ∗ (𝑦) ℎ  ∗ (𝑦) 𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ ℎ  ∗ (𝑥) ∆  ∗  ℎ  ∗ (𝑥) ∆  ∗  𝑠𝑡  ∗ 𝑠𝑡𝑡  ∗ 
EX110 123 739 0.01 6,79 138 0,00 523 35.86 1.39 25.74 
EX210 145 1069 0,00 9,17 160 0,00 545 52.51 7.06 29.55 
EX310 147 1082 0,02 9,67 162 0,00 649 43.53 18.23 33.91 
EX410 113 723 0,01 14.43 128 0,00 661 12.62 1.26 31.27 
EX510 99 622 0,00 6,55 114 0,00 367 45.1 1.65 24.95 
EX610 183 1484 0,03 13.12 198 0,00 683 57.24 4.39 33.81 
EX710 143 1480 0,04 13,64 158 0,00 555 65.75 18.63 45.73 
EX810 289 2537 0,00 15,22 304 0,00 691 75.77 6.39 54.52 
EX910 171 1052 1.49 14.36 186 0,00 717 35.4 1.17 29.04 
EX1010 235 1661 1.11 17.45 250 0,00 949 46.09 9.18 40.15 
EX120 120 661 0,00 5.22 135 0,00 507 27.4 1.36 23.14 
EX220 140 1027 0.02 7.26 155 0,00 529 52.02 9.69 27.09 
EX320 142 1065 0,00 9.78 157 0,00 613 45.96 5.89 30.99 
EX420 111 717 0.05 14.35 126 0,00 611 18.81 1.93 30.71 
EX520 97 617 0,00 4.22 112 0,00 345 48.18 1.98 25.51 
EX620 178 1316 0.04 15.2 193 0,00 631 55.39 23.23 30.98 
EX720 140 1630 0.01 13.45 155 0,00 508 72.02 27.63 42.63 
EX820 284 2370 0.02 15.55 299 0,00 623 76.74 25.33 52.86 
EX920 170 1067 0.00 12.11 185 0,00 657 41.95 4.92 27.39 
EX1020 233 1621 1.01 18.54 248 0,00 903 47.53 3.24 37.28 
EX130 119 703 0.01 8.6 134 0,00 505 32.16 1.31 21.99 
EX230 143 1079 0,00 7.15 158 0,00 497 57.41 22.43 26.68 
EX330 143 1059 0.06 8.12 158 0,00 617 45.26 6.37 29.94 
EX430 110 770 0.04 11.62 125 0,00 613 24.3 1.44 29.14 
EX530 96 640 0.04 7.45 111 0,00 343 50.44 2 23.44 
EX630 179 1396 0.12 11.2 194 0,00 643 57.24 9.02 30.46 
EX730 141 1497 0.05 18.6 156 0,00 523 68.3 36.53 42.31 
EX830 285 2461 0.03 13.2 300 0,00 635 77.21 23.03 52.09 
EX930 171 941 0.15 11.3 186 0,00 667 32.78 3.79 26.89 
EX1030 234 1660 1.85 14.5 249 0,00 915 48.1 3.37 36.33 
EX140 121 676 0.01 8.3 136 0,00 531 25.53 1.48 24.81 
EX241 214 1483 0.03 10.3 229 0,00 746 52.97 15.73 28.89 
EX340 145 1039 0.01 11.89 160 0,00 671 38.98 4.07 30.47 
EX341 215 1655 0.14 5.23 230 0,00 970 44.62 1.69 32.91 
EX441 166 1043 0.02 15.2 181 0,00 902 17.14 1.83 33.1 
AVG 164.1 1218 0.18 9.64 179.1 0,00 629.8 46.52 8.81 32.76 

 

The second study highlights the importance of the QoS during the optimization scheme and the impact of the QoS on a 
solution. This QoS can be greatly improved by solving an integrated JSSPR without losing quality in terms of makespan. 
However, the integrated JSSPR requires more computation time. These remarks remain true whatever the dataset considered 
and whatever the capacity of the vehicles (unitary or non-unitary). 

4.3.3 Capacity Vehicles 

To further emphasize the importance of QoS in both JSSPT and JSSPR, Figure 10 showcases the contrast among four 
averages (AVG1, AVG2, AVG3, and AVG4), which correspond to the findings from the preceding section's tables. This 
comparison pertains to the utilization of two datasets, D1 and D2, across two vehicle capacity scenarios: unitary and non-
unitary.  

 

Fig. 10. Comparative chart for the two capacities of vehicles (unitary or non-unitary). 
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After this comparison, we conclude that the combined JSSPR necessitates additional processing time. These observations 
hold regardless of the dataset under consideration or the vehicle capacity being unitary or non-unitary. 

5. Conclusion and Future Work 
 

This article has proposed to take into account a quality criterion in a scheduling problem with routing. The vast majority of 
problems combining scheduling and transport do not consider such criteria. The transport problem is often seen as a "sub-
problem" or "a constraint" of the problem scheduling and then a semi-active solution is sufficient. Consideration of the QoS 
criterion requires obtaining solutions that are no longer semi-active. 

This research presents an evaluation function of a disjunctive graph, named TLH, for the JSSPR, which can be used in the 
case of a group of vehicles of unit capacity and the case of a non-unit capacity fleet. TLH evaluation is included in a 
GRASP×ELS type metaheuristic and is tested numerically. These instances are extended to take into account the case of a 
group of vehicles of non-unit capacity. Two algorithmic schemes using TLH evaluation are tested: the first scheme, named 
sequential JSSPR, minimizes – during GRASP×ELS – only the makespan, then the TLH evaluation is applied to the best 
solution to maximize its QoS. The second scheme, called integrated JSSPR, uses the TLH function for each evaluation of a 
graph, and GRASP×ELS has the objective function of minimization of makespan and maximization of QoS. 

The work presented in this paper offers several perspectives. It should be noted that additional constraints could be added 
to the JSSPR. These constraints would concern the transport part: for example, a maximum distance that vehicles can travel 
which can be justified by the use of electric vehicles and therefore by the need to recharge the vehicle's batteries. The JSSPR 
could take into account constraints on the loading and unloading orders of the parts in the vehicles: thus, the first part to be 
delivered would be the one loaded last in the vehicle. 

A Constraint Programming (CPP) model could be proposed for the JSSPR, and hybrid approaches could be considered. It 
should also be noted that additional constraints could be added in the JSSPR. These constraints would concern the transport 
part: for example, a maximum distance that vehicles can travel and which can be justified by the use of electric vehicles 
and therefore by the need to recharge the vehicle's batteries. The JSSPR could take into account constraints on loading and 
delivery orders. Unloading of parts into vehicles: thus, the first part to be delivered would be the one loaded last into the 
vehicle. Another area of research would be to allow vehicles to exchange the products transported. In this case, the transport 
of the JSSPR would approach the problems of Vehicle Routing Problem with Trailers and Transshipments and would im-
pose coordination constraints between the tours. 
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