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 Advanced production systems usually are complex in nature and aim to deal with multiple per-
formance measures simultaneously. Therefore, in most cases, the consideration of a single ob-
jective function is not sufficient to properly solve scheduling problems. This paper investigates 
the multi-objective mixed no-idle flowshop scheduling problem. The addressed optimization 
case is minimizing makespan subject to an upper bound on total completion time. To solve this 
problem, we proposed a two-stage iterated greedy and a multi-objective constructive heuristic. 
Moreover, we developed a new multi-objective improvement procedure focusing on increasing 
the performance of the developed methods in solving the addressed problem. and a new initial-
ization procedure. We performed several computational tests in order to compare our developed 
methods with the main algorithms from similar scheduling problems in the literature. It was 
revealed that the proposed approaches give the best results compared with other state-of-the-art 
performing methods. 
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1. Introduction 
 
 

The permutation flowshop scheduling problem (PFSP) can be described as a set of jobs that has to be processed on a group 
of  machines. The purpose is to generate a sequence of jobs that optimize the objective function. Decision making in modern 
production systems generally demand the consideration of complex constraints and several performance objectives, which 
are often conflicting in nature. The particularities of each manufacturing system translate in different constraints which can 
be associated with properties of the jobs (due dates, release dates) or the machines (no-idle, setup times). Usually, the main 
objective is to minimize production costs, which may involve the work-in-process inventory, better utilization of machines, 
due date penalties. Accordingly, the consideration of two or more objectives at the same time is a common occurrence in 
real case scenarios. Thus, a multi-criteria approach for the flowshop scheduling problem should be considered in order to 
generate more realistic solutions (T’kindt & Billaut, 2006; Pinedo, 2016). 
Recently, the variation known as the no-idle PFSP (NPFSP) has received much attention from the literature (Ruiz, Vallada, 
& Fernández-Martínez 2009; Fatih Tasgetiren et al., 2013; Shen, Wang, & Wang, 2015; Zhao et al., 2020). In a NPFSP, as 
the idle times between the machines is not allowed, the jobs must be processed without stop once started, resulting in the 
start times of the jobs must be delayed further in the scheduling. The no-idle machines are present in complex and expensive 
operations that require long and costly setup activities to start the processing of jobs. As observed in (Pan & Ruiz 2014), a 
flowshop consisting only of no-idle machines is highly unlikely to show up in a real industrial environment, being the 
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consideration of a mixed no-idle flowshop with both no-idle and regular machines a more realistic approach. An example 
of this situation is present in the metallurgical and ceramic industries, where some steps require continuous processing while 
others do not (Pan & Ruiz 2014). While mixed flowshops have been studied before, it was addressed with a single objective 
criterion (Pan & Ruiz 2014; Rossi & Nagano 2020, 2021a, 2021b). This work investigates the multi criteria mixed no-idle 
permutation flowshop scheduling problem (MNPFSP) with the minimization of the makespan subject to the total flowtime 
criterion. Both are important optimization criteria, as minimizing the makespan is crucial to increase the resource use effi-
ciency, and the total flowtime is a relevant objective in reducing the work-in-process inventory (Aydilek & Allahverdi 2012; 
MACCARTHY and LIU 1993). As a result, these objectives have considerable importance in flowshop problems and are 
critical in practice and have been extensively studied. 

This paper addresses for the first time the MNPFSP with the minimization of the makespan subject to total flowtime. We 
propose an efficient multi-stage heuristic and a two-stage iterated greedy (IG) algorithm for the addressed problem. The 
developed heuristic has three phases. The first construct a partial sequence using an index-based function. The second uses 
a variant of the NEH (Nawaz, Enscore, & Ham 1983) to efficiently generate a complete solution. The last and third phase, 
apply an improving procedure focusing on satisfying the total flowtime upper-bound. The two-stage iterate greedy algorithm 
has two stages, where the first stage optimizes the makespan criterion and the subsequent phase improves the solution 
aiming to satisfy the total flowtime objective. Both makespan and total flowtime criteria are important objectives in modern 
agile production systems, as the first leads to maximum utilization of resources and the last results in a lower work-in-
process inventory (Rajendran & Ziegler 1997). Moreover, we performed computational experiments and adapted several 
state-of-the-art solution methods from the literature. A total of 17 high performance algorithms were compared in a bench-
mark proposed by (Pan & Ruiz 2014). 

The paper is arranged as follows. In Section 3, an extensive literature review is presented on the multi-objective PFSP and 
the NPFSP. Section 2 presents the addressed problem. We propose our multi-objective constructive heuristic and the two-
stage IG algorithm in Section 4. In Section 5, we test our proposed methods and other algorithms from the literature using 
extensive computational and statistical experimentation. Finally, the conclusion is presented in Section 6.  

2. Literature review 

As we are studying the MNPFSP with both makespan and total flowtime criteria, we divided the literature review into two 
parts: multi-objective scheduling problems and NPFSP/MNPFSP. We focused on presenting studies that addressed the 
makespan and total flowtime criteria. The objective is to identify the main heuristics and metaheuristics proposed for these 
scheduling problems. 

2.1 Multi-objective PFSP 

Most of the attention in studying the PFSP has been directed to the single-criterion scheduling. Nonetheless, in real-world 
situations two or more objectives must be considered simultaneously. Unfortunately, it is common that these criteria conflict 
with each-other, resulting in the PFSP with a single objective function being insufficient for most practical situations. 
Recently, multi-objective scheduling problems have attracted attention of researchers and are currently studied with a 
multitude of different constraints and criteria ((Yenisey & Yagmahan 2014; Singh, Oberoi, and Singh 2021; Sun et al., 
2011). The main focus of this review is papers addressing the variants of the PFSP with multi-objective criteria including 
makespan, total flowtime and total tardiness objective functions. 

The flowshop scheduling problem with the minimization of the makespan and total flowtime criteria was addressed under 
different constraints by many researchers. (Ravindran et al., 2005) presented three heuristic methods for the problem, 
namely HAMC1, HAMC2 and HAMC3. Their performance was evaluated against another heuristic procedure by (Rajen-
dran 1995). Varadharajan and Rajendran (2005) also considered the multi-objective problem and developed a metaheuristic 
procedure based on the simulated annealing algorithm, denoted as MOSA. The MOSA method generated two initial se-
quences using a heuristic procedure and applied three improvement schemes. Pasupathy et al. (2006) proposed a genetic 
algorithm (GA), called PGA-ALS, which applies a non-dominated sorting, and a metric for crowding distance is used to 
rank the generated solutions. (Framinan and Leisten (2008) were the first to propose an IG algorithm for the multi-objective 
problem. The algorithm iterates over a multi-objective heuristic to generate non-dominated solutions. The IG algorithm was 
evaluated with the HAMC heuristics from (Ravindran et al., 2005). Yagmahan and Yenisey (2008) presented an ant colony 
optimization (ACO) algorithm and compared it to the methods developed by Nawaz et al. (1983) and Ho and Chang (1991). 
Dubois-Lacoste et al. (2011) studied five bi-objective flowshop scheduling problems involving makespan, total flowtime 
and total tardiness criteria. They used an algorithm which applies several local search methods in conjunction to solve the 
addressed problems. The presented algorithm was compared with the methods of (Varadharajan and Rajendran 2005) and 
(Pan and Wang 2008a). Minella, Ruiz, and Ciavotta (2011) analysed two multi-objective problems, makespan/flowtime and 
makespan/total tardiness. They proposed an IG algorithm with a new method for initializing the population and a greedy 
phase where only non-dominated partial solutions are maintained. The proposed method was compared to the simulated 
annealing-based metaheuristic form (Varadharajan and Rajendran 2005). Aydilek and Allahverdi (2012) addressed the no-
wait PFSP with makespan and subject total flowtime criteria. They developed a heuristic, called HH1, which is based on 
the simulated annealing algorithm. The HH1 method significantly outperformed the other methods. Aydilek and Allahverdi 
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(2013) addressed the no-wait PFSP with the minimization of makespan and mean completion time criteria. The authors 
proposed two heuristics and compared them against the HH1 heuristic from (Aydilek & Allahverdi 2012). Ciavotta et al. 
(2013) analysed the multi-criteria PFSP with setup times. They presented an algorithm based on a new initialization method 
and an iterated greedy procedure. Their algorithm outperformed the IG method from (Framinan & Leisten 2008). Shao et 
al. (2019) proposed a metaheuristic based on the water wave optimization algorithm for the multi-objective blocking PFSP 
with makespan and total flow time minimization criteria. The authors developed an initialization procedure-based decom-
position and a ranking-based operator to direct local exploitation and global exploration. The proposed algorithm was com-
pared NSGA-II (Deb et al., 2002), DDE (Pan, Wang, and Qian 2009), RIPG (Ciavotta, Minella, and Ruiz 2013) and 
HMOBSA (Lu et al., 2017). Marichelvam et al. (2018) proposed a hybrid crow search algorithm to solve the multi-objective 
PFSP. The algorithm was compared to traditional metaheuristics as the simulated annealing algorithm, genetic algorithm, 
artificial bee colony algorithm, among others. (Ye, Li, and Nault 2020) studied the no-wait multi-objective PFSP and pro-
posed heuristic which uses a reconstruction method coupled with a local search based on reinsertion movements. (Marcelo 
Seido Nagano, Almeida, and Miyata 2021) also addressed no-wait PFSP, and proposed a method based on the NEH heuristic 
and the iterate greedy algorithm, denoted as G6. The GL method iterates times applying the NEH procedure and the IG 
algorithm. The algorithm was compared with the HH1 method from (Aydilek and Allahverdi 2012). The results show that 
the proposed approach offered superior solutions when compared with the HH1 algorithm. 

It is worth noting that several papers addressed different objective function combinations (makespan, total flowtime, tardi-
ness) under various constraints (no-wait, setup times, blocking). As a result, many methods were developed to solve these 
extensions of the multi-criteria flowshop scheduling problem: heuristics algorithms (Allahverdi 2004; Jose M. Framinan 
and Leisten 2006; W. Liu, Jin, and Price 2016), genetic algorithms (Deb et al., 2002; Arroyo and Armentano 2005; Shah-
savari Pour, Tavakkoli-Moghaddam, and Asadi 2013; Allahverdi and Aydilek 2013; Allali, Aqil, and Belabid 2022), dis-
crete differential evolution (DDE) algorithms (Pan, Wang, & Qian 2009), simulated annealing (Jarosław, Czesław, and 
Dominik 2013; Allahverdi, Aydilek, & Aydilek 2018, 2020), iterated greedy algorithms (Ruiz and Allahverdi 2009; Aqil 
and Allali 2021; Almeida & Nagano 2022), tabu search (Arabameri & Salmasi 2013), among other metaheuristics ap-
proaches (Rahimi-Vahed et al., 2008; Rifai, Nguyen, and Dawal 2016; Cho & Jeong 2017; Deng & Wang 2017; Marich-
elvam, Azhagurajan, & Geetha 2017; Keskin & Engin 2021). Furthermore, energy efficiency based multi-objective prob-
lems have also been studied for the PFSP (Jian-Ya Ding, Song, & Wu 2016; Lu et al., 2017; Chen, Wang, & Peng 2019; 
Fatih Tasgetiren et al., 2019; Wu & Che 2020; Cheng et al., 2021). 

2.2 No-idle and mixed no-idle PFSP 

In this section, we highlight the main works dealing with the NPFSP with makespan and total flowtime objectives. Early 
studies on the subject focused on developing exact methods, proposing mathematical models and investigating special 
properties of the problem (Vachajitpan 1982; Baptiste & Hguny, 1997; Bagga 2003; Kamburowski 2004; Pawel Jan 
Kalczynski and Kamburowski 2007). Special extensions, such as the three-machine no-idle flowshop were also addressed 
by the literature (Bagga 2003; Saadani, Guinet, & Moalla 2003; Kamburowski 2004). A heuristic algorithm based on the 
Travelling Salesman Problem (TSP) was proposed by (Saadani, Guinet, & Moalla 2005). (Pawel Jan Kalczynski and 
Kamburowski 2005) presented a heuristic based on the (Johnson 1954) rule. In another work, (Pawel Jan Kalczynski and 
Kamburowski 2007) showed that the no-idle and no-wait flowshops are related to scheduling problems. (Baraz and 
Mosheiov 2008) presented a two-stage heuristic, which performed better than the algorithm from (Saadani, Guinet, and 
Moalla 2005). Firstly, the jobs are appended one by one at the final position of the partial sequence being the chosen job, 
the one that results in the lowest markspan. The second stage, the sequence is improved by a simple procedure based on 
pairwise job interchange. 

Recent developments in the NPFSP algorithms were presented by (Pan and Wang 2008b), where they proposed a hybrid 
discrete particle swarm algorithm (HDPSO). The HDPSO algorithm outperformed the methods from (Pawel Jan Kalczynski 
and Kamburowski 2005), (Baraz & Mosheiov 2008) and (Fatih Tasgetiren et al., 2007). The same authors developed a 
discrete differential evolution algorithm (DDE) in (Pan & Wang 2008a). The method was tested against the algorithms from 
(Pawel Jan Kalczynski & Kamburowski 2005) and (Baraz & Mosheiov 2008). (Ruiz, Vallada, & Fernández-Martínez 2009) 
developed an IG algorithm and heuristics procedures. The methods that obtained the best performance were the FRB3 
heuristic ((Rad, Ruiz, & Boroojerdian 2009)), as well a modified version of the GH-BM from (Baraz & Mosheiov 2008), 
called GH-BM2. The IG algorithm surpassed in solution quality the algorithms from (Pan and Wang 2008a), (Pan and Wang 
2008b) and (Rad, Ruiz, & Boroojerdian 2009). (Goncharov & Sevastyanov 2009) presented an approximation algorithm 
which ensures a theoretical performance. Another Discrete Differential Evolution (HDDE) algorithm was presented by (G. 
Deng and Gu 2012) and compared to algorithms from (Rad, Ruiz, & Boroojerdian 2009), (Pan & Wang, 2008b) and (Pan 
and Wang 2008a). Fatih Tasgetiren et al. (2013) developed an algorithm based on both the IG procedure and differential 
evolution operators, which showed superior results when compared to the metaheuristics from (Pan & Wang, 2008a), (Pan 
& Wang, 2008b) and (Deng & Gu, 2012). (Zhou, Chen, & Zhou 2014) presented an Invasive Weed Optimisation algorithm 
(IWO), which was compared to other particle swarm optimization algorithms ((Fatih Tasgetiren et al., 2007; Pan and Wang 
2008b) and to heuristics algorithms (Pawel Jan Kalczynski & Kamburowski 2005; Baraz & Mosheiov 2008). More recently, 
(W. Shao, Pi, & Shao 2017) developed a complex memetic algorithm with a hybrid node and edge histogram (MANEH), 
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which was compared to the methods from (Pan & Wang 2008b), (Pan & Wang 2008a), (Ruiz, Vallada, & Fernández-
Martínez 2009), (Deng & Gu 2012) and (Fatih Tasgetiren et al., 2013). 

Constructive heuristics were also developed for the problem. The LR(𝑥) proposed by (J. Liu and Reeves 2001) is among 
one the most used methods to solve the PFSP with total flowtime. The LR(𝑥) procedure appends jobs one by one at the end 
of the sequence until a complete solution is generated. The method generates 𝑥 sequences by selecting different jobs to be 
the first appended in the partial sequence. Among the 𝑥 generated solutions, the method chooses the one that resulted in the 
best total flowtime. A variant of LR(𝑥) was developed by (Pan and Ruiz 2013), called LR-NEH(𝑥), which combines the 
LR(𝑥) and NEH methods. More recently, (Fernandez-Viagas and Framinan 2015) developed a variant of the LR(𝑥) proce-
dure, denoted as FF(𝑥). The FF(𝑥) was combined with the LR-NEH(𝑥), resulting in a new extension of the LR-NEH(𝑥) 
heuristic called FF-NEH(𝑥). (Li, Wang, and Wu 2009) also developed three variants of the LR(𝑥) heuristics, called ICH1, 
ICH2 and ICH3. They applied new local search procedures based on insertion and permutations movements on the sequence 
generated by the LR(𝑥) to further increase the solution quality. An improved version of the LR-NEH(𝑥) was proposed by 
(Pan and Ruiz 2013), where an improvement scheme based on insertion movements is used after the LR-NEH(𝑥) method. 
Recently, (Fernandez-Viagas, Leisten, and Framinan 2016) presented the FF-ICH1 and FF-PR1 algorithms, which are ex-
tensions of the ICH1 and PR1(𝑥) methods by using FF(𝑥) and FF-NEH(𝑥) heuristics instead of the LR(𝑥) and LR-NEH(𝑥) 
methods by in both algorithms, respectively. 

The important variant which considers a MNPFSP addressed in this paper was first considered by (Pan and Ruiz 2014). The 
authors presented a MILP model and an IG algorithm with referenced local search improvement procedure (RLS). The 
computational results show that the IG-RLS outperformed several high-performance algorithms from the literature (Pan & 
Wang 2008b, 2008a; Deng & Gu, 2012; Ruiz, Maroto, & Alcaraz 2006). 

From the literature review, it can be noted that, despite the significant number of papers addressing both the NPFSP and the 
multi-objective PFSP, the consideration of a MNPFSP with a multi-objective criterion has not yet been addressed in the 
literature. In the next section, we define the addressed problem in more detail. 

3. Problem definition and notations 

The MNPFSP with makespan minimization subject to the total flowtime criterion can be defined as 𝐹௠|𝑝𝑟𝑚𝑢,  𝑚𝑖𝑥𝑒𝑑 𝑛𝑜 −𝑖𝑑𝑙𝑒|𝐶௠௔௫ ∖ ∑𝐶௝ (Graham et al. 1979)). The definitions and notations are presented as follows: 

• The flowshop contains 𝑚 machines (𝐹௠); 

• The order of the jobs is maintained for all machines, resulting in a permutation flowshop (𝑝𝑟𝑚𝑢); 

• The set 𝑀′ defines the no-idle machines; 

• 𝐽௝ is job 𝑗 on machine 𝑀௜; 
• Job 𝑗 has a processing time of 𝑝௜,௝ on machine 𝑀௜; 
• 𝜋 is the sequence of jobs; 

• Job 𝜋௝ or ] is placed at the 𝑗th position of the sequence 𝜋; 

• 𝐶௜,௝ is the completion time for job 𝐽௝ in 𝑀௜ and the start time is denoted as 𝑆௜,௝; 
• 𝐶௠௔௫ or makespan denotes the completion time of the last machine for the last job (𝐶௠,௡); 

• ∑𝐶௝ or total flowtime is the sum of the completion times on the last machine (∑ 𝐶௠,௝௡௝ୀଵ ) 

• The makespan and the total flowtime for a sequence 𝜋 can be denoted as 𝐶௠௔௫ and 𝑇𝐹𝑇ሺ𝜋ሻ, respectively. 

4. Proposed algorithms 

In this section, we present the two-stage IG algorithm and the heuristic algorithm in more details. 

4.1 A multi-objective constructive heuristic  

Constructive heuristics are known to generate good solutions with computational efficiency (Ribas, Companys, & Tort-
Martorell 2017). As a result, they have been applied successfully for a variety of scheduling problems (Nagano & Moccellin 
2002; Framinan & Leisten 2003; Dong, Huang, & Chen 2008; Kalczynski & Kamburowski 2008; Laha & Sarin 2009; 
Ribas, Companys, & Tort-Martorell 2010; Pan & Ruiz 2013; Fernandez-Viagas & Framinan 2014; Rossi, Nagano, & 
Sagawa 2017; Marcelo Seido Nagano, Rossi, & Tomazella 2017; Marcelo Seido Nagano, Rossi, & Martarelli 2019). In this 
work we propose a novel multi-objective constructive heuristic, denoted as MOH. In more detail, the MOH method 
construct sequences with 𝐿 jobs (𝐿 ≤ 𝑛) using an index based procedure. At each iteration the procedure evaluates all jobs 
using an index, and the one that results in the lowest value for the index is chosen to be inserted at the last position of the 
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partial sequence. The The rest of the 𝑛 − 𝐿 jobs are inserted using an improved variant of the NEH heuristic the rest is and 
the jobs. 

We propose an index which represents the main proprieties of the addressed multi-objective problem. The principle is 
choosing jobs to be appended that minimizes both makespan and total flowtime objectives. Therefore, we incorporate three 
measures in our index: (i) idle time between the jobs, (ii) makespan, (iii) total flowtime. 

In more detail, a partial sequence with 𝑘 jobs 𝜋 = ሺ𝜋ଵ, … ,𝜋௞ሻ, being 𝐽௝ the job to be tested at the last position (𝑘 + 1) of 
the sequence 𝜋. The index 𝜈௞,௝ and is calculated as follows: 

𝜈௞,௝ = ෍𝑚௠
ଶ 𝑎𝑥൫𝑆௝,ሾ௞ାଵሿ − 𝐶௝,ሾ௞ିଵሿ, 0൯ + 𝐶௠,ሾ௞ሿ; +෍𝐶௠,ሾ௝ሿ௞ାଵ

ଵ  

The procedure tests all jobs and chooses the one that results in the lowest value of 𝜈௞,௝ to be appended in the sequence. As 
we are dealing the a multi-objective problem, the principle is that the job which offers a good trade-off between the measures 
(i), (ii) and (iii) should be selected to be inserted at the last position of the sequence. 

In order to construct the rest of the sequence we resort to the construction method presented in (Rossi and Nagano 2021b). 
The proposed heuristic orders the unscheduled jobs by the non-ascending greater standard deviation (𝑆𝑇𝐷) of the processing 
times of the jobs. Moreover, reinsertions movements are applied in the partial sequence generated at the end of each NEH 
insertion procedure, where two adjacent jobs are removed, 𝜋௞ and 𝜋௞ାଵ (𝑘 = {1, … ,𝑛 − 1}), from the sequence, and the 
same jobs are inserted again in the best possible position of the sequence (lowest value of makespan). The procedure con-
tinues by reinserting pairs until the last pair 𝜋𝑛 − 1 and 𝜋௡ିଶ is considered. The principle is to generate a better optimization 
of the sequences. Similar procedures have been used with great success for similar problems (Laha and Sarin 2009; Rad, 
Ruiz, and Boroojerdian 2009; Rossi, Nagano, and Neto 2016). In order to increase the computational efficiency, we select 
a limited set of jobs to the reinserted, where parameter 𝑥 limits the number of jobs selected to be reinserted. 

As we are dealing with the minimization of the makespan and subject to total flowtime objective, it is possible that the 
solution generated does not result in a total flowtime value lower than the established upper bound. In order to circumvent 
this problem, we developed a Multi-objective Improvement Procedure (MIP), which focuses on minimizing the total flow-
time without compromising the makespan objective. This applies a construct-destruction improvement scheme that iterates 
until the total flowtime results in a lower value than the upper-bound defined by the scheduler. For the scheduler used to 
generate the upper-bound for the total flowtime, we choose the NEH heuristics (Nawaz, Enscore, & Ham 1983), as it is a 
simple method that generates tight upper-bounds for the problem with computational efficiency. Algorithm 1 presents the 
pseudocode of the MOHx heuristic and Algorithm 2 details the MIP procedure. 

 

Algorithm 1 Multi-objective Constructive Heuristics MOHx algorithm 
Calculate the upper-bound for the TFT, UB(TFT) 
π = Φ 
U = {J1, …, Jn} 
For k = 1 to J do 
      Select the job Jj Ɛ U with the lowest δkj (Eq. (1)) 
      Place it at the end of π. 
      U = U -Jj 
End for 
Order the jobs in U according to the non-ascending order of STDj generating α = {α1, …, αn-d}. 
For l = 1 to n-d do 
    Insert job αl in π in the position b that results in the lowest Cmax 
    For k = max (1, b-x) to min (l, b+x), step k = k +2 do 
          π' = π 
          Remove the jobs  π’k and π’k+1 from π’. 
          Insert the job π’k in the position that results in the lowest Cmax. 
          Insert the job π’k+1 in the position of that results in the lowest Cmax.  
          If Cmax (π’) ¡Cmax (π) then 
                   π= π’ 
          end if  
    end for 
 end for 
if TFT(π) ≥ UB(TFT) then  
     Apply the MIP on the π solution (Algorithm 2).  
end if  
Return π. 
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Algorithm 2 Multi-objective Improvement Procedure (MIP) 
Define πs as the sequence generated by the scheduler. 
Calculate the makespan of πs (UB(Cmax)),  
counter = 0 
while TFT(π) > UB (TFT) and counter < n do 
     Remove L jobs from π 
      Insert the removed jobs in position of the results in the lowest TFT. 
      Calculate the new TFT(π) value. 
      Counter = counter + 1 
end while  
Calculate the makespan of the sequence π.  
If Cmax(π) < UB (Cmax) then 
    π = πs 

end if 
Return π. 

 

4.2 The Two-stage IG Algorithm 

The IG algorithm iterates through a destruction-reconstruction operator, where a set of jobs is removed from the sequence 
and then inserted again in the solution. This destruction-reconstruction strategy for solving flowshop scheduling problems 
has various advantages: as a general-purpose method, it is easy adapted or and has high applicability for a difference set of 
problems; it is easy to implement, as it has a simple structure; the main parameters are simple and intuitive; and it easily 
integrates local search methods within its structure. As a result, the IG algorithm has been successfully applied for several 
flowshop problems (Ruiz & Stützle 2007, 2008; Ding et al., 2015; Tasgetiren et al., 2017). Moreover, IG algorithms have 
been used in multi-objective problems (Minella, Ruiz, & Ciavotta 2011; Dubois-Lacoste, Lopez-Ibanez, & Stutzle 2011; 
Ciavotta, Minella, & Ruiz 2013). 
In this work, we propose a two-stage IG algorithm, denoted as IG-2S, where the first phase is an improved IG algorithm 
based on the method proposed by (Pan & Ruiz 2014), and the second phase applies the same improving procedure in case 
the method results in an infeasible solution, where the resulting total flowtime is not lower than its upper-bound. 

As mentioned before, Pan and Ruiz (2014) proposed an IG algorithm, denoted IG-RLS, for the MNPFSP with makespan 
minimization. A new destruction-reconstruction operator is applied, with a reinsertion procedure and a referenced local 
search (RLS). In more detail, the IG generates an initial solution using a constructive heuristic, which is subsequently 
perturbed with a destruction-construction procedure. The destruction phase involves the random removal of jobs from the 
solution. The removed jobs are then inserted again in sequence, resulting in a reconstruction procedure. A referenced local 
search is used to improve the solution with a simple simulated annealing phase. 

In the proposed IG algorithm, we implemented simple and effective methods to improve the performance. In the first stage 
the original IG algorithm is applied. To improve the IG-RLS algorithm, we propose to use the MOH heuristic to generate 
the initial solution, as a more robust initialization procedure results in higher quality solutions generated by the IG algorithm 
(Fernandez-Viagas, Valente, & Framinan, 2018). As we are addressing a multi-objective problem, with makespan subject 
to the total flowtime, the first stage is dedicated to minimizing the makespan. Therefore, there is a chance that the final 
solution results in a total flowtime higher than the upper-bound defined by scheduler, as we only minimized the makespan 
in the first phase. For that motive, we employ in the second stage, the Multi-objective Improvement Procedure (Algorithm 
2) focusing on minimizing the total flowtime of the solution. In this way, the IG algorithm optimizes the makespan without 
compromising the total flowtime upper-bound. All these changes help to solve the PFSP with a multi-criteria objective 
function. 

5. Computational experiments 

5.1 Performance evaluation 

The algorithms are tested considering two performance measures: (i) solution quality and (ii) efficiency in terms of 
computational time. The average relative percentage deviation, which is denoted as ARPD(y) measures the solution quality 
of algorithm 𝑦 for a set of 𝑇 problem instances (Eq. (1)). In order to obtain the ARPD value we need to calculate the relative 
percentage deviation RPD(i,y) for each instance i obtained by heuristic y (Eq. (2)). 𝐶௠௔௫ሺ𝑖,𝑦ሻ is the makespan obtained by 
the method 𝑦 for instance 𝑖. 𝐶௠௔௫ሺ𝑖ሻ is the best makespan for instance 𝑖. 𝑅𝑃𝐷 measures the distance between the solution 
obtained by the method and the best solution for the instance. 
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𝐴𝑅𝑃𝐷ሺ𝑦ሻ = ෍𝑅𝑃𝐷ሺ𝑖, 𝑦ሻ𝑇ூ
௜ୀଵ  

(1) 

𝑅𝑃𝐷ሺ𝑖,𝑦ሻ = 100 ⋅ 𝐶௠௔௫ሺ𝑖,𝑦ሻ − 𝐶௠௔௫ሺ𝑖ሻ𝐶௠௔௫ሺ𝑖ሻ  
(2) 

The average computational time 𝐴𝐶𝑇, which measures the computational efficiency, can be calculate as follows: 

𝐴𝐶𝑇௜ = ෍𝑇௜,௛𝐻ு
௛ୀଵ  

All methods were analyzed with the same upper bounds, which were generated by using the NEH method from (Nawaz, 
Enscore, and Ham 1983). For the metaheuristics, the maximum elapsed CPU time (𝐶𝑃𝑈௠௔௫) in milliseconds is defined by 
the following expression: 𝐶𝑃𝑈௠௔௫ = ൫𝑛 ⋅ ሺ𝑚/2.00ሻ൯ ⋅ 100 

The algorithms were implemented in C++ (Intel oneAPI DPC++ 2021 1.2 with O2 flag) and implemented on a PC with an 
Intel(R) Core(TM) i9-9900k 5.00 GHz CPU and 32 GB RAM. 

5.2 Benchmark Instances 

We used the well-known set of problems instances proposed by (Pan and Ruiz 2014) for the MNPFSP. This testbed has 
seven sets of problems instances, each one with a mixed no-idle scenario: 

• (1): 100% of no-idle machines; 

• (2): The first 50% machines are no-idle machines; 

• (3): Inverse of set (2); 

• (4): The machines switch between regular and no-idle; 

• (5): Randomly 25% of the no-idle machine; 

• (6): Randomly 50% of the no-idle machines; 

• (7): Randomly 50% of the no-idle machines;. 

Each problems instance is generated by the combination of several jobs (50, 100, 150, 200, 250, 300, 350, 400, 450, 500) 
and a number of machines (10, 20, 30, 40, 50), resulting in a total of 1750 problems instances. The uniform distribution 𝑈ሾ1,99ሿ was used to generate the processing times of the jobs. 

5.3 Compared methods 

Through the extensive literature review presented in Section 2 we were able to identify the best methods available in the 
literature for related problems. The GL algorithm proposed by (Marcelo Seido Nagano, Almeida, and Miyata 2021) is one 
of the most recent high-performance methods developed for multi-objective flowshop scheduling. The GL method is based 
on the IG algorithm and iterates the NEH and a simple IG procedure over L times. We implemented a version that is limited 
by a maximum elapsed computational time parameter instead of iterating over a specific number of times. We denoted this 
version as IG-NAM, in this work and compared it with other IG algorithms. From the no-idle PFSP we adapted the best 
methods recently proposed for the problem. The following list presents the methods selected for comparison: 

• Proposed solution methods; 

– MOH(𝑥); 

– IG-2S. 

• Heuristics adapted from the literature: 

– GH-BM2 (Ruiz, Vallada, and Fernández-Martínez 2009) (no-idle PFSP); 
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– FRB3 and FRB4𝑘(Rad, Ruiz, and Boroojerdian 2009) (PFSP with makespan objective); 

– FF-PRI1(𝑥) and FF-ICH1(𝑥) (Fernandez-Viagas and Framinan 2015) (PFSP with total flowtime objec-
tive); 

– GL (L = 6) (Marcelo Seido Nagano, Almeida, and Miyata 2021) (multi-objective PFSP). 

• IG algorithms adapted from the literature: 

– IG-RLS (Pan and Ruiz 2014) (NMPFSP); 

– IG-NAM (Marcelo Seido Nagano, Almeida, and Miyata 2021) (multi-objective PFSP). 

5.4 Computational results 

Computational results of heuristics comparison for the (Pan and Ruiz 2014) benchmark are presented in Table 1. Table 2 
shows results grouped by number of machines. The average computational time (ACPU) is shown in Table 3. As noted, 
MOH70 resulted in the best ARPD for almost all subsets of problems, as indicated by the ARPD values. Nevertheless, 
computational times increase significantly as the number of jobs selected for reinsertion by parameter 𝑥 increases (𝑥 =10,30,50,70). For the proposed methods and those adapted from the literature, the best trade-off between solution quality 
and average computational time is achieved by FRB4, G6 and FF-PR1(10). The methods FRB3, MOH50 and MOH70 
obtained the best overall ARPD values of 2.62, 2.65 and 2.45, respectively. At the same time, they prove to be very efficient 
as their overall ACPU values are around 6.69, 7.25 and 7.43 seconds, respectively. Fig. 1 shows the Pareto chart with ARPD 
vs ACPU for the heuristics, with the Pareto front that shows a set of most efficient solutions methods. These results show 
that the use of the Multi-Objective Improvement Procedure allows the proposed constructive heuristic MOHx to generate 
better solutions to solve a multi-criteria problem when compared to other adapted methods from the literature. 

Table 1 
APRDs obtained by the heuristics. The best ARPDs are emphasized in bold. 
n 

GH-
BM2 FRB3 FRB45 FRB410 FRB415 G6 FF-

ICH1(5) 
FF- 
ICH1(10 

FF- 
PR1(5) 

FF- 
PR1(10) MOH10 MOH30 MOH50 MOH70 

50 7.30 4.89 7.08 6.23 5.59 5.89 6.20 6.20 5.90 5.78 5.56 4.65 4.38 4.36 

100 6.66 4.22 6.44 5.93 5.46 5.73 5.36 5.36 4.78 4.71 4.84 4.05 3.70 3.60 

150 5.87 3.26 5.80 5.10 4.63 5.20 4.51 4.51 3.93 3.91 3.99 3.41 3.10 3.04 

200 5.19 2.91 5.20 4.41 4.18 4.57 3.71 3.71 3.11 3.10 3.50 2.93 2.74 2.56 

250 4.37 2.24 4.35 3.85 3.49 3.97 3.25 3.25 2.91 2.82 3.10 2.50 2.27 2.20 

300 4.20 2.17 4.00 3.67 3.34 3.89 2.84 2.84 2.49 2.47 2.73 2.22 2.13 1.92 

350 3.89 1.83 3.65 3.21 3.04 3.49 2.60 2.60 2.22 2.21 2.44 1.95 1.74 1.69 

400 3.24 1.63 3.11 2.92 2.61 2.95 2.24 2.24 1.86 1.83 1.98 1.69 1.55 1.40 

450 3.20 1.60 3.17 2.70 2.47 2.98 2.13 2.13 1.78 1.76 1.92 1.60 1.48 1.45 

500 3.12 1.50 2.84 2.59 2.42 2.83 1.91 1.91 1.55 1.52 1.86 1.49 1.39 1.25 

ARPD 4.71 2.62 4.56 4.06 3.72 4.15 3.47 3.47 3.05 3.01 3.19 2.65 2.45 2.35 

 
Table 2 
APRDs obtained by the heuristics grouped by the number of machines. The best ARPDs are emphasized in bold. 

n GH-
BM2 FRB3 FRB45 FRB410 FRB415 G6 FF-

ICH1(5) 
FF- 
ICH1(10 

FF- 
PR1(5) 

FF- 
PR1(10) MOH10 MOH30 MOH50 MOH70 

10 2.75 2.51 2.71 2.76 2.65 2.71 1.38 1.38 1.60 1.46 1.48 1.31 1.29 1.19 

20 3.95 2.59 3.91 3.55 3.26 3.74 2.45 2.45 1.95 1.90 2.39 2.02 1.89 1.87 

30 4.77 2.18 4.66 4.09 3.62 4.22 3.54 3.54 3.09 3.08 3.27 2.68 2.43 2.33 

40 5.72 2.63 5.45 4.72 4.30 4.75 4.58 4.58 3.97 3.95 4.13 3.41 3.07 2.89 

50 6.34 3.21 6.08 5.19 4.78 5.33 5.42 5.42 4.67 4.67 4.69 3.83 3.56 3.46 

ARPD 4.71 2.62 4.56 4.06 3.72 4.15 3.47 3.47 3.05 3.01 3.19 2.65 2.45 2.35 
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Table 3 
ACPU of the compared heuristics methods. 
n GH-

BM2 FRB3 FRB45 FRB410 FRB415 G6 FF-
ICH1(5) 

FF- 
ICH1(10 

FF- 
PR1(5) 

FF- 
PR1(10) MOH10 MOH30 MOH50 MOH70 

50 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.07 0.01 0.02 0.02 0.02 

100 0.05 0.17 0.05 0.07 0.08 0.09 0.09 0.11 0.25 0.46 0.08 0.12 0.16 0.18 

150 0.15 0.59 0.17 0.19 0.22 0.25 0.26 0.31 0.77 1.47 0.28 0.37 0.49 0.58 

200 0.35 1.41 0.38 0.42 0.48 0.55 0.55 0.65 1.76 3.38 0.77 1.03 0.92 1.45 

250 0.68 2.72 0.72 0.79 0.89 1.00 1.00 1.19 3.38 6.59 1.06 1.75 1.76 2.14 

300 1.20 4.76 1.23 1.35 1.49 1.66 1.62 1.87 5.88 11.37 3.63 4.04 4.39 4.79 

350 1.88 7.63 1.95 2.14 2.32 2.59 2.52 2.83 9.35 18.13 6.67 7.34 7.76 8.09 

400 2.80 11.24 2.95 3.17 3.37 3.78 3.64 4.06 14.25 27.46 9.11 10.15 11.12 11.62 

450 4.05 16.08 4.22 4.51 4.70 5.28 5.19 5.74 20.32 38.89 16.36 18.22 20.49 21.69 

500 5.64 22.32 5.79 6.05 6.42 7.22 7.02 7.68 27.85 53.70 20.45 21.82 25.33 23.71 

ACPU 1.68 6.69 1.75 1.87 2.00 2.24 2.19 2.45 8.38 16.15 5.84 6.49 7.25 7.43 

 

We also performed statistical tests to verify whether the difference between the obtained ARPDs is statistically significant. 
We present a plot of the ARPD values with error bars with 95% confidence intervals. If the error bars overlap, there is no 
significant statistical difference between the heuristics. Fig. 2 presents that the differences among ARPD between the 
MOH70 the other heuristics is statistically significant. 

 

Fig. 1. Pareto chart with ARPD vs ACPU for the heuristics. 

Tables 4 and Table 5 show the results for the iterated greedy algorithms IG-NAM, IG-RLS and IG-2S. From the results, the 
best results are achieved by IG-2S with an ARPD of 0.29, which outperforms the ARPD from IG-RLS and IG-NAM of 
0.67 and 0.84, respectively. Also, IG-2S obtains the best ARPD for all subsets of problems, for both cases, when the sets 
are grouped by number of jobs (Table 4) and number of machines (Table 5). As mentioned, the main difference of the IG-
2S is the inclusion of a second stage focusing on addressing the total flowtime objective in case its upper-bound is not 
satisfied. From the results, the IG-2S algorithm benefits greatly from this strategy, as we can see that the solutions generated 
by the proposed IG are far superior to those obtained by the other compared IG algorithms. For this comparison, we also 
performed statistical tests with means to verify if they are statistically different. The results are shown in Fig. 3 and Fig. 4. 
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Fig. 4 show that the means are statically different for almost every set of problems. These results confirm that the IG-2S is 
an effective method for solving the multi-objective MNPFSP. 

Table 4  
APRDs obtained by the metaheuristics. The best ARPDs are emphasized in bold. 
n IG-NAM IG-RLS IG-2S 
50 0.65 0.33 0.25 
100 1.02 0.74 0.28 
150 1.00 0.69 0.36 
200 1.01 0.83 0.32 
250 0.90 0.73 0.28 
300 0.75 0.70 0.25 
350 0.82 0.69 0.32 
400 0.65 0.59 0.24 
450 0.81 0.67 0.30 
500 0.81 0.73 0.32 
ARPD 0.84 0.67 0.29 

 

Table 5 
APRDs obtained by the metaheuristics grouped by the number of machines. The best ARPDs are emphasized in bold. 
m IG-NAM IG-RLS IG-2S 
10 1.73 1.95 0.65 
20 0.74 0.85 0.37 
30 0.43 0.23 0.15 
40 0.57 0.15 0.11 
50 0.75 0.17 0.18 
ARPD 0.84 0.67 0.29 

 

  
Fig. 2. Means plot for the heuristics (95% confidence 
intervals). 

Fig. 3. APRD for the metaheuristics (95% confidence 
intervals). 

 
Fig. 4. APRD for the metaheuristics for different number of jobs (95% confidence intervals). 
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6. Conclusions 

We addressed the multi-objective MNPFSP with the objective of minimizing makespan subject to an upper bound on total 
flowtime. As far as we know, this is the first time that the MNPFSP is studied with a multi-criteria approach. A two-stage 
iterated greedy (IG-2S) and a new heuristic (MOH𝑥) were proposed to solve the problem. In order to generate a solid 
computational experimentation for the novel method, we adapted several heuristics and two high performance IG 
algorithms. Computational results demonstrate the effectiveness of the proposed methods through extensive comparisons. 
In conclusion, the novel Multi-objective Constructive Heuristic (MOH) and the Two-Stage Iterated Greedy algorithm (IG-
2S) can be considered a contribution to the state-of-the-art in solution methods for the multi-objective scheduling problem 
addressed in this paper. For future research, the proposed algorithms could help solving other similar scheduling problems, 
as one clear advantage of the proposed algorithms is that they are of easy implementation and adaptation for other multi-
objective scheduling problems. 
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