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 In this paper, the authors proffer a novel mathematical model for the simultaneous optimization 
of facility location and network design in the presence of uncertainty, with the aim of minimiz-
ing operational and transportation costs. The proposed model constitutes a departure from con-
ventional methods in its consideration of probable events in the real world and the incorporation 
of uncertainty assumptions into the mathematical framework. An algorithm based on simulated 
annealing is then advanced for the solution of the problem, and the performance of the algorithm 
is evaluated through comparison with exact methods for problems of modest size, as well as 
with a basic simulated annealing algorithm for larger problems. The results of these comparisons 
demonstrate the superiority of the proposed meta-heuristic algorithm. Finally, the robust ap-
proach is compared with four other approaches in the presence of uncertainty, with a thorough 
analysis of the results obtained from each of the methods conducted in a suite of sample prob-
lems. 
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1. Introduction 
 

During the early 1980s, SCM (Supply Chain Management) was introduced to address the competitive landscape among 
companies (Oliver and Webber, 1982). Over time, corporations began to recognize the importance of incorporating their 
operations into essential supply chain (SC) processes rather than managing them individually, leading to the further evolu-
tion of SCM (La Londe, 1997). The facility location problems have attracted extensive attention in the literature of opera-
tions research. In general, the term "location" refers to modeling, formulation and solving problems that can be defined as 
the optimum location of facilities in a limited area. The related studies demonstrate that network location models have been 
widely used by individuals and the government. In the facility location problems, the structure of the network is predeter-
mined and the connection between nodes are predefined while determining the optimum location of a facility and designing 
the main network simultaneously. The real-world problems are analyzed with the assumption that input parameters are fixed 
while, in practice, data are stochastic; therefore, these assumptions generate solutions which are not optimal and even are 
infeasible. On the other hand, while making a strategic decision, since the result and consequences are continued for a long 
time and parameter determination with uncertainty is not possible, considering uncertainty in parameters can result in gen-
erating better solutions. The design of a Supply Chain Network (SCN) faces inherent uncertainty in parameters such as 
costs, demand, and supply. Major disruptions like natural disasters, economic crises or intentional acts can severely impact 
the performance of the SCN. To optimize the performance of SCN under uncertainty, robust optimization models are em-
ployed, which model discrete or continuous uncertain parameters either using the scenario approach or interval-uncertainty 
modeling (Govindan & Fattahi, 2017). In SCM, risk management has gained considerable attention, but there's a lack of 
consensus on the definition of supply chain risk. The concept of risk is generally vague and comprehended based on the 
fear of losing value. However, Heckmann et al. (2015) defined it as the potential loss in terms of objectives due to uncertain 
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variations in SC features caused by triggering events. Based on the classification by (Tang, 2006), SC risks can be catego-
rized as operational and disruption risks, where operational risks stem from intrinsic uncertainties and disruption risks from 
events like natural disasters and intentional acts (Behdani, 2013; Snyder et al., 2016). These disruption risks can affect the 
functionality of SC elements either partially or completely for an uncertain duration (Govindan et al., 2017). 
Lack of comprehension of historical and current events hinders the capacity to anticipate future developments in supply 
chain operations, leading to prolonged processes, increased expenses, and inefficiencies. The objective of supply chain 
network design under uncertainty is to achieve a configuration so that it can perform well under any possible realization of 
uncertain parameters. The objective of designing a supply chain network in an uncertain environment is to establish a 
framework that can operate efficiently under any scenario of unpredictable variables. Thus, the innovation of the proposed 
model is to consider uncertainty for combined facility location and network design problems with multi-type capacitated 
links in order to cope with the situations taking place suddenly. The result contributes to a significant reduction in costs. 
  
In this paper, a new mathematical model for facility location problems with network design under uncertainty is developed. 
Demands, capacities, and so on can be changed during a time period; therefore, analyzing and developing the facility loca-
tion-network design model is one of the fields in which few studies have been conducted. In this paper, this problem is 
taken into consideration. The developed model can be applied to telecommunication, emergency events, regional planning, 
pipeline network, energy management, and similar cases. According to our knowledge, it is the first time that the problem 
is studied under uncertainty. Further, to examine the problem, it is analyzed with different methods. In section (2), the 
literature survey of location-network design problems is proposed. In section (3), the two-stage mathematical model and 
the robust model with their assumptions and notations are proposed. In section (4), the proposed algorithm based on simu-
lated annealing is presented. Section (5) evaluates the performance of the proposed algorithm and finally, section (6) con-
tains the conclusion of this study. 
 
2. Literature review 

According to Mulvey et al. (1995), the robust optimization (RO) framework consists of two types of robustness - solution 
robustness and model robustness. This means that the RO problem's solution is "nearly" optimal and "nearly" feasible, 
respectively, under all possible uncertain parameters. The level of "nearly" depends on the modeler's perspective. When a 
decision maker is uncertain about the probability distributions of parameters, the expected value criterion cannot be used, 
making RO a suitable option by defining different robustness measures for the optimization problem. RO problems can 
handle continuous or discrete uncertain parameters (Govindan et al., 2017). System disorders occur when one or a few of 
the facilities become out of control during situations such as unfavorable weather conditions, labor force's actions, sabotage, 
or changes in ownership. When a disruption occurs, customers are forced to use facilities farther away which is cost-induc-
ing. Therefore, it can be effective in improving system performance with regards to the disruptions in network design and 
deployment of facilities (Shishebori & Babadi, 2015). Snyder and Daskin (2005) were the first to propose an implicit for-
mulation of random p-median problems, where candidate sites could experience stochastic disruptions with equal probabil-
ity (Snyder & Ülker, 2005; Snyder, 2003). In recent years, due to the large investment in facility location-network design, 
there has been an increased focus on disruptions and their impact on network design and establishment (Snyder & Daskin, 
2007; Qi & Shen, 2007; Qi et al., 2010). Matisziw et al. (2010) studied the effects of disruptions on network services and 
proposed a multi-objective optimization approach for recovery during network reconstruction after a disaster. (Berman et 
al., 2010) hypothesized that facilities are not always reliable and that disturbances may occur and studied the impact of the 
probability of disruptions on optimal facility location, considering that customers may have incomplete information about 
facilities provided by the government. (O’Hanley & Church, 2011) developed a covered prevention model for facility loca-
tion, aimed at finding a robust arrangement that would remain efficient even in the event of facility loss. (Peng et al., 2011) 
investigated the impact of considering reliability in logistics network design with disruptions in facilities and showed that 
using reliable network design is possible with a slight increase in total space and allocation cost. 
Liberatore et al. (2012) developed a three-level mathematical model for the optimization of enrichment programs in the 
medium capacity distribution systems with limited resources for protection against disturbances, which includes large areas. 
Jabbarzadeh et al. (2012) have studied the designing of a chain supply which can possibly have partial or complete disturb-
ances in those distribution centers. Shishebori et al. (2013) and Shishebori and Jabalameli (2013) considered the problem 
of the reliability of facility location-network design with regards to disturbances in the system. In another study, Shishebori 
et al. (2014) suggested an integrated mathematical formula that not only considers the costs of facility location, establish-
ments, the costs of road construction, and transportation costs, but also the limits of the maximum permissible system 
disorder cost as well as investment in facility location and the establishing of transportation routes. (Sheppard, 1974) was 
one of the first people that had proposed a scenario-based approach to facility location. He proposed the choice of the 
location for the facility to minimize the expected cost.  Santoso et al. (2005) presented a stochastic programming model and 
algorithm to address the real-scale problem of facility location-network design. Tsiakis et al. (2001) considered the uncer-
tainty of demand in a multi-product, multi-category supply chain. Aharon et al. (2009) tackled the multi-periodic stock 
control problem with a focus on selecting facility sites, capacities, transportation routes, and flows to minimize expected 
costs. Gülpınar et al. (2013) addressed a stochastic facility location problem where demand is fulfilled by a single product 
from multiple facilities. Beraldi et al. (2004) studied the emergency medical services design problem under stochastic de-
mand. The topic of home care, with definite or random patient demand, has also been explored, yielding policy analysis or 
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cardinality-constrained models (Jabbarzadeh et al., 2014; Lanzarone & Matta, 2014; Lanzarone & Matta, 2012; Carello & 
Lanzarone, 2014). Mustapha Anwar Brahami (2022) recently discussed on designing a sustainable supply-chain-network 
that minimizes cost and environmental impact. A multi-objective model is proposed and solved using a modified Non-
dominated Sorting Genetic Algorithm II. The approach considers environmental protection constraints and integrates facil-
ity location and transport network design decisions. Numerical experiments and sensitivity analysis are used to evaluate the 
performance of the proposed approach. Hu and Hu (2015) presented a model for creating a hub-and-spoke transportation 
network with the aim of reducing operational costs. This network leverages economies of scale and is designed to handle 
uncertain origin-destination flows between nodes, which can pose challenges in determining node capacities. The research-
ers devised a stochastic programming approach, combined with expectation theory, to calculate the capacities of the spoke 
nodes, and then established a stochastic mixed-integer linear programming model to design the network structure and hub 
capacities. They also created a classification system for nodes based on transportation flows, resource usage, and branch 
and trunk convective equilibrium. To evaluate node contributions, a multi-attribute utility evaluation function was estab-
lished, and the researchers examined existing network operational and adjustment strategies based on the results. 
 
Zare and Lotfi (2015) presented a dynamic and probable mixed-integer linear program for managing the forward and reverse 
supply chains that considered the crucial aspects of efficiency and nimbleness, as well as the capacity for dynamic center 
openings. The resolution of the dynamic model was found to be more practical, yet the calculation of total costs was under-
valued. Zarindast et al. (2018) investigated the challenge of selecting suppliers, transportation methods, and replenishing 
inventory in the face of uncertain changes in currency exchange rates and discounts. A bi-objective mathematical model 
was suggested, utilizing a robust and probable programming approach to reduce the overall cost and the number of late 
deliveries. The results were compared to those produced by a model using chance-constrained programming, demonstrating 
the benefits of the integrated method over a step-by-step approach in cases of currency fluctuations. Moslemipour et al. 
(2018) introduced a new hybrid algorithm that combines simulated annealing with a population of initial solutions produced 
by combining ant colony, clonal selection, and robust layout design methods. This approach can be applied to solve dynamic 
facility layout problems in both deterministic and stochastic environments, where product demands are treated as normally 
distributed random variables with a changing probability density function. The hybrid algorithm uses a quadratic assign-
ment-based mathematical model to design a robust layout for the stochastic dynamic layout problem. The efficacy of the 
proposed algorithm was demonstrated through the resolution of a large number of randomly generated test problems and 
problems from the literature, resulting in exceptional performance in terms of solution quality and computational efficiency. 
Farooquie et al. (2017) introduced a gray approach to address uncertainties and enhance performance in the automotive 
supply chain sector. The complex nature of this industry, with a multitude of suppliers and attendant uncertainties, can lead 
to disruptions with a significant impact on overall performance. The gray-based method models the relationship between 
uncertainty and performance, allowing supply chain managers to focus on mitigating uncertainties with the greatest negative 
impact. Rad et al. (2015) presented a multi-period, multi-product production planning model in a random situation. To 
tackle the variability of demand, process and setup time, the authors adopted a simulation optimization technique. Rad et 
al. (2015) proposed a multi-product, multi-period production planning model that accounted for three uncertain parameters, 
demand rate, process time, and setup time. To determine the optimal response, they used a simulation optimization tech-
nique, which calculated the system response rate and approached it through the simulated annealing algorithm. The results 
were demonstrated through a numerical example. 
 
3. Problem definition 
 

The proposed mathematical model (Rahmaniani & Ghaderi, 2013) assumes that there are multiple paths linking two nodes 
in the network, each with a distinct capacity, and that each node can have only one facility. The network is customer-to-
server and all links are direct, single-directional, and budget-limited.  
 

 
Fig. 1. The topology of the constructed network 
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Fig. 1 depicts a 20-node network, where 4 nodes have facilities, and the rest are serviced via these main nodes with directed 
paths. For example, nodes 6, 7, 17, and 19 are supplied by facility node 13 through different path types. 

3.1 The two-stage stochastic mathematical model 
 
The mathematical model takes into account real-world factors such as customer demand and transportation costs, which 
can only be affected in the long-term and can lead to better decision-making when considered uncertain. To handle these 
uncertainties, the model employs a two-stage approach, utilizing two-stage stochastic programming. In this method, deci-
sion variables are split into two categories: first-stage variables, related to facility location and route choice, and second-
stage variables, encompassing facility allocation and customer route construction. The proposed model incorporates uncer-
tainty into its design, making it more reflective of actual world conditions, and its two-step approach serves to refine deci-
sion-making. 
 
Sets 

N   Set of network nodes, 𝑖, 𝑗 ∈ ሼ1,2, … ,𝑛ሽ and 𝑘 ∈ ሼ1,2, … ,𝑛ሽ is the customer set 

L   Set of candidate links 𝑖, 𝑗, 𝑡 ∈ 𝐿ሖ  
T   Set of different types of links 𝑡 ∈ ൛1,2, … ,𝑇ሖ ൟ 
S   Considered scenarios set 𝑠 ∈ ൛1,2, … , 𝑆ሖൟ 

Parameters 
s
kD    Customer k's demand in the scenario S 

if  Fixed cost for facility establishment in node i  
t
ijc  Fixed cost for construction of link (i, j) of type t 
ts

ijtr  Transportation cost of a link (i, j) of a type t in a scenario S 

ijd  The length of (i, j) a link 
t

ijV  The capacity of a link (i, j) of type t 

B       Maximum budget available for facility construction 
ts

ijdsr  1 if the link (i, j) of a type t in a scenario S is functioning and 0 otherwise  
s

idsf  1 if a facility in a node i in a scenario S, is not functioning and 0 otherwise 
Decision variable 

iz 1 if a facility is constructed in node i and 0 otherwise 

t
ijx  1 if the link (i, j)of type t is constructed and 0 otherwise

kts
ijy    The fraction of the customer k’s demand traveling on

a link (i, j) of type t 
ks
iw  

The fraction of the customer k’s demand served by a
facility i 

The proposed mathematical model is formulated as follow: 

(1)
( , ) ( , )

min s s ts kts t t
k ij ij ij ij

s t k i j L t T i j LS T

P D tr y c x
∈ ∈ ∈ ∈ ∈

 
+ 

 
       

subject to 

(2)1 ;                      t
i ij

t j NT

z x i N
∈ ∈

+ ≤ ∀ ∈  

(3)( )1;                     ,t t
ij ji

t TtT

x x i j L
∈ ∈

+ ≤ ∈   

(4);   , : , kts ks kts
ij i ji

t j N t j NT T

y w y i k N i k s S
∈ ∈ ∈ ∈

= + ∀ ∈ ≠ ∈   
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(5)
:

1;                          ,   ks
k i

s
i

i N i k

z ds w k N sf S
∈ ≠

+ = ∀− ∈ ∈  

(6)1;                         ,   
t

s
i

T

its
i ji

j N

z Ndsf y i s S
∈ ∈

+ ∈− = ∀ ∈  

(7);                                               , ,ks
i i

s
iw z i k N s Sdsf ∀−≤ ∈ ∈  

(8)( );                      , , , , , , kts t
ij ijy x i j k N i j L t s ST≤ ∀ ∈ ∈ ∈ ∈  

(9)( ) ;                   , , ,s kts t t
k ij ij ij

k

D y V x i j L t s ST≤ ∀ ∈ ∈ ∈  

(10);i i
i N

f z B
∈

≤   

(11)( );                      , , , , , kts ts
ij ijy dsr i j N i j L t s ST≤ ∀ ∈ ∈ ∈ ∈

 

(12){ } ( )0,1 ;                               , , t
ij Tx i j L t∈ ∀ ∈ ∈  

(13){ }0,1 ;                                           ,  iz i N∈ ∀ ∈  

(14)( )0;                    , ;  ; ;kts
ijy i j L k N t s ST≥ ∀ ∈ ∀ ∈ ∀ ∈ ∈  

(15)0;                                     , :     ks
iw i k N k i، s S≥ ∀ ∈ ≠ ∈  

 
The model aims to minimize transportation costs and path construction for all scenarios. The constraints of the model ensure 
that demands of customers are met, that facilities are utilized, and that paths are constructed with limited budget. Constraints 
(2-5) regulate the construction of paths and demand supply, while constraints (6-11) regulate the functionality of facilities, 
routing, and route capacity. The decision variables are specified in constraints (12-15). The model considers transportation 
costs and uncertainties in customer demand and transportation costs to make decisions that increase facility availability. 

3.2 Robust model 
 
Robust optimization was one of the most popular topics in the fields of optimization and management science during the 
late 1990s, which deals with uncertain parameters. In robust optimization, uncertain parameters are described by discrete 
scenarios (Baohua and Shiwei, 2009). The aim of this optimization method is to obtain an optimal solution, and in this case, 
almost all uncertain parameters remain feasible. (Mulvey et al., 1995) introduced a robust optimization model which con-
tains two types of robustness:  “solution robustness” (the answer in almost all scenarios is the optimal) and "model robust-
ness" (answer in almost all scenarios is feasible). In continuation, the framework for robust optimization will be mentioned 
in brief. First, some symbols associated with the model will be introduced. x  is a vector of variables of the design and y
is a vector of control variables. A , B and C  are matrixes of parameters, whileb and e are parameter vectors. A and b  are 
deterministic and B , C and e  , are uncertain. Consider a limited set of scenarios { }1, 2,..., SΩ = or modeling the uncertain 

parameters, in which each situation s ∈ Ω is a subset of { }, ,s s sB C e and the probability of the scenario is considered to be

( )1s ss
p p = . The control variable y , when placed in a scenario, is shown as sy for scenario s . Because of the uncertainty 

of the parameters, the model may be infeasible for some scenarios. sδ  shows the infeasibility of the model under the sce-
nario S. If the model is feasible, δs  equals zero. Otherwise, δs is a positive value determined according to constraint (18). A 
robust optimization model is formulated as follows:  

(16)1 2 1 2min ( , , ,..., ) ( , ,..., )s sx y y y wpσ δ δ δ+  

subject to    
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(17)Ax b=  

(18)s∀ ∈Ω  s s s s sB x C y eδ+ + =     

(19)s∀ ∈Ω   0sδ ≥   0;sy ≥ 0;x ≥  

There are two parts of the objective function: the first part of the answer is related to the robustness of the solution and 
shows the desire for lesser costs and risk aversion. The second part is the model's robustness which shows the penalty for 
answers that did not meet the demand required for a scenario or violated other physical constraints such as capacity. Using 
the weight w, the exchanges between the robust solutions of the first row δ(0) is measured and the robust model which is 
calculated by the penalty p(0), and can be turned into a model by using the multi-criteria decision-making process. ξ   is 
used for the introduction of f(x,y) which is a function for the benefit or the cost, ξs = f(x,ys) is used for a scenario S. A high 
variance for ξs = f(x,ys) shows that the answer is a high-risk decision. Mulvey et al. (1995) proposed a second form variance 
with for considering the concept of risk and provided a robust answer. To deal with the computational complexity due to 
its non-linearity, Yu and Li (2000) proposed an absolute value of the two locations, presented as follows:  

(20)' '
'

(0) s s s s s s
s s s

p p pσ ξ λ ξ ξ
∈Ω ∈Ω ∈Ω

= + −    

λ, is used to demonstrate the weight of solutions’ variance in which, when λ is increased, in all scenarios, the solution is 
less sensitive while inputs are changed. To minimize the objective function (21), they proposed an effective method. The 
framework of the method proposed by Yu and Li is designed in constraint (21). 

(21)' '
's  s  

min 2ξ s s s s ss s
s

pp p ξλ ξ θ
∈∈ ∈ Ω

 
− + 

 
+ 

Ω Ω

 

(22)
s  

 ξ ξ 0;s s s sp θ
∈

+− ≥
Ω

    s ∈ Ω   

(23)0;sθ ≥                           s∈Ω  

It can be inferred that when the value of sξ is greater than the value of s s
s

p ξ
∈Ω
 , then 0sθ = and when the value of s s

s
p ξ

∈Ω


is greater than the value of sξ , then s s s s
s

pθ ξ ξ
∈Ω

= − . 

Regarding the mentioned explanations, the expected value of the objective function of the problem is as follows: 

(24)( )
( , ) ( , )

 s s ts kts t t
k ij ij ij ij

t T k i j L i j Ls S

P D tr y c xE A
∈ ∈ ∈∈

 
+ 

 
=      

Regarding the calculated expected value, the objective function of the two-stage model is as formulated below: 

(25)
( , ) ( , )

min ( ) 2 ( )s s ts kts t ts
k ij ij s ij ij

s S t T k i j L i j L

P D tr y E A E A c xθ
∈ ∈ ∈ ∈

 
− + + + 

 

 
 
  

      

subject to 

(26)
( , )

( ) 0                      s ts kts
k ij ij s

t T k i j L

D tr y E A θ
∈ ∈

 
− + ≥ 

 
    
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(27)0sθ ≥  

The objective function minimizes three parts: the variance of total costs, the expected value of traveling costs on routes, and 
the cost of route construction. The results of a sample with 15 nodes were analyzed with the base model, two-stage model, 
and robust model. If two scenarios occur where the link between nodes 11 and 12 is destroyed, the base model would not 
be able to serve the demand of node 11, but the two-stage and robust models consider scenarios and have alternative links 
to serve all nodes. 
 

   
Fig. 2. The result of the base model Fig. 3. The result of two stage stochas-

tic model 
Fig. 4. The result of robust model 

4. Solution approach 

Regarding the fact that the problem of the basic article is NP-Hard (Rahmaniani and Ghaderi, 2013) and the proposed model 
in this paper is its expansion; therefore, the proposed model is also NP-Hard. As a result, solving large-sized sample prob-
lems is not possible in a reasonable time. Thus, to solve the problem, a meta-heuristic method was used. Examining several 
initial examples shows that if the variables related to established and non-established facilities ( )iz is determined, the time 
needed for solving the problem shows a significant decrease; thus, a combined method is used. In this method, selected 
nodes for establishing facilities are identified by a meta-heuristic algorithm, and the rest of the methods is used in relation 
to the exact method of solving the problem. In continuation, the proposed meta-heuristic algorithm is explained.  

5. The proposed algorithm 

In this part, the simulated annealing algorithm, which is used to solve the problem, is explained. The Pseudo code of Sim-
ulated Annealing is presented in Fig. 5. 
 

Generate the random vector of { }0,1x ∈  
If a solution x  is infeasible regarding the budget limit, one of the elements with the value of 1 is randomly 
selected and converted to 0.This process will continue until the vector x  is feasible regarding the budget limit. 
Set the current position equal to x . 
Calculate the value of ( )f x . 
Set 0T T= . 
Until the stop criterion of the algorithm is not met: 
Select several random neighbors for x  and after calculating the value of the objective function, assign the best 
value to y   
Calculate the value of ( ) ( )f y f xΔ = −   

If 0Δ < , assign y to a current position otherwise assign y to current position with the probability of Te
−Δ

  
If the maximum-iteration stop criterion is not met, start from the beginning of the loop otherwise update T and 
start from the beginning of the loop. 
End of the loop. 

Fig. 5. Pseudo code of Simulated Annealing 
 
 The proposed parameters of the algorithm include the number of iterations, the initial temperature and the number of 
neighborhood search, which is calculated through trial and error. The initial temperature is taken to be equal to the objective 
function value of the initial solution, and then in each iteration, this temperature is decreased by a factor of 0.98. The number 
of neighborhood search is measured as 30.  
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5.1 Solution structure 
 
In order to display the answers from a string with the length equal to N , where N  is the total number of nodes used in the 
network, Fig. 6 is illustrated. Each cell in the string represents a node. Values inside the cell are either 0 or 1, which represent 
the probability of establishing facilities in the desired node. Fig. 6 shows a sample solution string in a problem with 9 nodes. 
 

1 1 0 0 1 0 1 0 0 
1 2 3 4 5 6 7 8 9 

Fig. 6. Solution string used in simulated annealing algorithm 
 
In the example given in Fig. 6, facilities are created at nodes 1, 2, 5, and 7. The example for solving the meta-heuristic 
solution methods is to determine the location of these facilities which is determined in each iteration of the simulated an-
nealing algorithm. Then, by keeping the facility nodes at a fixed location, the rest of the problem is calculated by the solver 
of CPLEX. It is necessary to mention that in the cases where the solution is infeasible, regarding the budget limitation, a 
cell will be randomly changed from a value of 1 to a value of 0, and this continues until the answer becomes feasible. To 
explain better the example provided in Fig. 7, the painting is drawn from 3 main points. In Fig. 7, numbers in red are each 
customer's demand, green indicates the cost of a manufacturing facility in each location. The numbers on the candidate 
routes show the distance between the two points.  
 

  
Fig. 7. Hypothetical network of nodes Fig. 8. Solution illustration 

 
 It is assumed that there is a probability of establishing three types of road. After determining the location of facilities, with 
fixing the relevant variables, the model can be solved so that the objective function can be calculated. With regards to the 
solution considered in Fig. 6, the accurate method of solving this problem is shown in Fig. 8. The green dots are locations 
for creating facilities, the green paths are type I roads areas and the purple paths are to indicate type III roads. (Type II roads 
have not been used in the final answer). All the locations that are considered as facility location meet other nodes’ needs as 
well as their own. So, the facility at node 2 services nodes 4 and 3, location 5 to point 4, and point 7 to points 8 and 9. 
Facility in point 1 satisfy the needs of this area.  
 
6. Results 
 
To evaluate the performance of the meta-heuristic algorithm presented, in this section, large and small-sized problems have 
been designed. In small-sized problems, the result of the meta-heuristic algorithm is compared to the exact method. In large-
sized problems, the effect of increase in the number of neighborhood parameters on the quality of the solutions is evaluated. 

6.1 Sample tests generation 
 
Following assumptions are used for the production of sample problems. For each path, three different qualities are taken 
into consideration (T = 3), in terms of travel costs for Type 1 using Eq. (28) and Eq. (29) are produced. 

(28)( ) [ ]1 1                    2,10 , [ 0.2,0.2]ij ijC ud r u r= + ∈ ∈ −  

In which, r andu are random variables. 
The transportation cost of each unit on path type 1 is calculated by means of the following formulation. 

(29)1 (1 )ij ijt d r= +  
 In order to calculate the magnitude of the space production costs and travel expenses for the Road Type II, a random number 
in range [1.1,1.2] was produced and was multiplied by the Type I’s travel costs. Also, to produce the construction and travel 
costs of Type II, another random number between [1.15,1.3] was chosen and multiplied with Type I and II (Rahmaniani & 
Ghaderi, 2013). Traveling waves of type I trip was calculated using Eq. (28) and Eq. (29). Each of the five scenarios was 
considered for each issue. Uncertainty scenarios classified as follows: excellent, good, average, bad and very bad, and for 
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each scenario, a random occurrence chance was calculated for. In each scenario, the amount of customer demand, transpor-
tation cost and the probability of road failure were considered. It also increased the intensity free of changes in the first and 
fifth scenarios,  

6.2 Solving small-sized problems 
 
As the effect of evaluation in increasing the number of local searches after the high-quality service, five problems were 
produced on a small-sized, and the results were compared with the results of the exact solution. Results are presented in 
Table 1. The first column in the table shows the number of network nodes. The next column is related to the optimal solution 
found via exact methods. The next two columns are related to the basic simulated meta-heuristic algorithm and show the 
objective function and degree of error. The two final columns are related to the simulated annealing algorithms. The degree 
of error of our suggested algorithms was gained from Eq. (30). 

(30)% .100best answerG
best
−=     

 In this equation, the “best” and “answer” are respectively the best response ever found by the methods, and the intended 
meaning.  
 
Table 1  
Result from solving small-size problems with GAMS, SA, and ISA  

Test problem   CPLEX   SA   ISA 
N   Opt Sol   answer G%   answer G% 
5  7010  7010 0  7010 0 
7  8132  8132 0  8132 0 
9  9258  9298 0.4  9258 0 
13  8718  8848 1.5  8848 1.5 
15  10322  10759 4.23  10529 2.01 
17  12038  12729 5.40  12420 3.10 
20  15168  16153 6.50  15736 3.75 
22  17488  18135 3.60  18004 2.90 
26  20636  22487 8.97  21155 2.51 
28  23525  26085 10.88   24666 4.85 

Avg   13229   13964 4.15   13576 2.06 
 
The maximum Gap of the basic and proposed meta-heuristic algorithms in small-sized problems are in turn 10.88% and 
4.85%. The average value of Gaps for both algorithms is 4.15% and 2.06 %, respectively. In Fig. 9, the quality of the 
generated solutions is demonstrated. 
 

 
Fig. 9. The quality of solutions in small-sized problem 

6.3 Solving large-sized problems 
 
In order to evaluate the performance of the meta-heuristic algorithm and the impact of increasing local search on the quality 
of the generated solutions, in this section 10, sample problems were solved. In Table 2, results from solving large-sized 
problems by means of SA and improved SA is illustrated. The times are in second. The second column is used to show the 
best solution. The third column is assigned to the required time for solving the problems and column 6 shows the error of 
SA in comparison with ISA. As it can be inferred from Table 2, with increasing the number of local searches, the quality of 
the solutions is averagely improved almost 9.26%. The maximum improvement is equal to 22.01% which belongs to a 
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sample test with 75 nodes. Regarding the processing time, with increasing the number of neighbors, the required time for 
solving problems has increased by 32 seconds. 
 
Table 2  
Results from solving large-sized problems with SA and ISA 

Test problem   ISA   SA 
N   answer Time(s)   answer Time(s) G% 
30  31835 1095  33706 1023 5.8 
35  42598 1397  42812 1342 0.5 
40  46728 1502  48019 1449 2.7 
45  54878 1738  54903 1694 0.04 
50  61074 2017  62313 1978 2.02 
55  68403 2299  73738 2294 7.8 
60  75243 2667  87508 2685 16.3 
65  85777 3147  102504 3106 19.5 
70  96928 3620  112340 3612 15.9 
75   115345 4307   140732 4291 22.01 

average   67881 2379   75857 2347 9.26 
 
 

The effect of robust two-stage stochastic programming on the quality of solutions (managerial insight) 

Robust SCND has gained less attention in comparison with fuzzy and stochastic programs. However, it must be noted that 
in many real-world applications, enough historical data are not present to estimate parameters' distributions, but a robust 
optimization is a suitable tool for handling such a situation (Govindan et al., 2017). Robust SCND is a less popular optimi-
zation method compared to fuzzy and stochastic programs, but it is a useful tool for handling situations where there is not 
enough historical data to estimate parameter distributions (Govindan et al., 2017). On account of being more useful to 
managers, this section examines the impact of various approaches for dealing with uncertainties on the expenses. For this 
purpose, four approaches are used to solve sample problems. These approaches include the average value approach (Ex-
pected value), stochastic two-stage programming approach (Here & Now), waiting and observation approach (Wait & See) 
and robust approach.  It should be noted that the small-sized problems are solved with exact methods and large-sized prob-
lems are solved by using an improved algorithm. In the expected value approach, the values of the parameters in the possible 
state (average) in the first stage of the model and decisions in this level are made on the basis of the calculated values. 
Tables 3, 4, 5 and 6 show the data related to solving each sample problem with regards to the mentioned approaches. L is 
the number of nodes in each sample. 

Table 3  
Results from Expected Value method 

Expected value 
N L S1 S2 S3 S4 S5 Avg(EEV) Variance 
1 5 4592 5610 7010 10945 13176 8266.6 10683057.44 
2 9 6525.6 8045.2 16558 18629 22763 15704.16 107060069.2 
3 13 6349.6 7756.2 9208 16054.5 48067 17487.06 244892088.9 
4 17 8296.8 10096.2 12038 47044.2 62702 28035.44 506090333.3 
5 22 12084.8 14659.2 17488 53293.2 75798.8 34664.8 648829226.4 
6 30 22756.8 27689.2 33038 77754 91950 50637.6 811145506.8 
7 35 29924 35641 43860 88859 135836 66824 1621906431 
8 40 31780 39766 46740 120770 165640 80939.2 2808432555 
9 45 37020.2 48399 56878 99600.1 171089 82597.26 2405630867 
10 50 43259.2 50597 63193 168775 205670 106298.84 4542540528 

Avg       49145.496 1370721066 
 
In the Here & Now approach, which is the stochastic two-step approach, the model involves all scenarios in making deci-
sions during the first step. 
 
Table 4  
Results from Here & Now method 

Here & Now 
N L S1 S2 S3 S4 S5 Avg(HN) Variance 
1 5 5080 5616 6360 9485 11376 7583.4 5926855.84 
2 9 8377.6 10495.2 12878 15567 18535.2 13170.6 12947579.01 
3 13 10081.6 12907.2 15828 19414 23395.2 16325.2 22087611.65 
4 17 18540.8 22693.2 27342 32622.2 38383.2 27916.28 49442416.95 
5 22 21928.8 26791.2 32252 38430.2 45151.2 32910.68 67755802.81 
6 30 32664 37940.2 44324 56167.8 67828 47784.8 161907286.7 
7 35 43225 50743 62258 76456 93125 65161.4 321411309.8 
8 40 49612 60223 75776 91999 115809.4 78683.88 550006143.8 
9 45 41498 65320 77418 95392 120031.4 79931.88 708795315.3 
10 50 64726 82192 100888 125170 153001.2 105195.4 973972320.3 

Avg             47466.36 287425264.2 
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In the Robust approach, the decisions made in the first step are all taken according to the robust model. 
 
Table 5  
Results from Robust method 

Robust 
N L S1 S2 S3 S4 S5 Avg(RO) Variance 
1 5 5080 5616 6360 9485 11376 7583.4 5926855.84 
2 9 8617.6 10843.2 13368 16225 19387.2 13688.2 14564298.53 
3 13 10269.6 13129.2 16088 19716 23743.2 16589.2 22623347.97 
4 17 18728.8 22915.2 27602 32924.2 38731.2 28180.28 50242527.83 
5 22 22116.8 27013.2 32512 38732.2 45499.2 33174.68 68691902.49 
6 30 32284.8 39599.3 49807 58376 70127 50038.82 179457218.1 
7 35 43465 54094 67324 76738 93275 66979.2 301153628.6 
8 40 49076 61953 76432 92161 115902 79104.8 545511043.8 
9 45 54906 66123 79850 97531 121155 83913 549362921.2 
10 50 64901 82431 111247 125189 153045 107362.6 968864584.6 

Avg       48661.418 270639832.9 
 
In the Wait & See approach, the ideal scenario for the problem is imagined, and the assumption is that before making a 
decision the main scenario has happened and is known thus the model is solved for each of the scenarios. 
 
Table 6  
Results from Wait & See method 

Wait & See 
N L S1 S2 S3 S4 S5 Avg(WS) Variance 
1 5 4096 5028 7010 9485 11376 7399 7370139.2 
2 9 2409.6 7611.6 9258 11971 14736 9197.24 17392321.93 
3 13 4156.8 7291.2 8718 13775 18516 10491.4 25737923.78 
4 17 6312.8 9661.2 12038 14274.2 22704 12998.04 30516571.14 
5 22 10232.8 14440.2 17488 20794 27132 18017.4 32892412.42 
6 30 14109.6 22204.2 32038 40303 52824 32295.76 183633393.8 
7 35 21218.4 35104.2 42860 56566 92352 49620.12 587465534.4 
8 40 24211.9 35953.4 46790 77650 121398 61200.66 1221512031 
9 45 29732 40628 55892 75691 130023 66393.2 1250672970 

10 50 30999 48329 61994 95587 15823 50546.4 750487082.2 
Avg             31815.92 410768038 

 

 
Fig. 10. The of mean and variance obtained from different scenarios in different methods 

 
As can be seen in Fig 10, the maximum value of variance belongs to Expected Value approach and the minimum value of 
variance has resulted from Robust approach. Regarding the average value of cost, the minimum value has observed in the 
Wait & See approach. To have a more precise evaluation, EVPI, VSS and PR criteria have been utilized. The mentioned 
value is calculated by means of the following formulations. 
 

(31)HN wsEVPI z z= −  
(32)EEV HNVSS z z= −  
(33)AR HNPR z z= −  

49145.496 48661.418 47466.36
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In Table 7, the values of Expected Value of Perfect Information (EVPI), Value of Stochastic Solution (VSS) and Price of 
Robustness (PR) for each problem are demonstrated. 
 
Table 7  
The value of criteria 

N L EVPI VSS PR 
1 5 184.4 683.2 0 
2 9 3973.36 5733.56 517.6 
3 13 5833.8 1161.86 264 
4 17 14918.24 119.32 264 
5 22 14893.28 1754.12 264 
6 30 15468.84 1873 1910.6 
7 35 14972.6 1391.28 424.64 
8 40 19136.28 2051.44 326.24 
9 45 19389.28 206.42 1225.1 
10 50 27126.8 1156.32 504 

Avg  13589.69 1613.052 570.018 
 

 

 
Fig. 11. The value of EVPI, VSS, and PR in different problems  

 
As can be seen in Fig 11 and Table 7, using stochastic two-stage programming decreased the costs for 1613 units in com-
parison with the expected value. However, using Robust approach added 570 units to the cost. The Wait & See approach 
decreased 13589 units of cost in average. This shows the importance of forecasting the value of data in the proposed model. 
 
7. Conclusion 
 
Recent attention has been directed towards Supply Chain Network Design (SCND) with disruptions, with various optimi-
zation strategies proposed to address the issue (Govindan et al., 2017). Snyder et al. (2016) compiled a review of the man-
agement science and operations research models for mitigating disruptions in SCND. In this research, a novel mathematical 
model for optimizing both the facility location and network design under uncertain conditions is proposed. The model takes 
into account realistic assumptions regarding the uncertainty, which are of utmost importance for decision makers and man-
agers. The study investigates the uncertainty in data related to the facility location-network design problem, which is caused 
by fluctuations in demand, changes in travel costs, and road or route damage. To assess the uncertainty, five methods were 
used including Expected Value, Here & Now stochastic two-step programming approach, Wait & See waiting and obser-
vation approach, and the robust approach. The analysis of the cost improvement from each method revealed that the two-
stage stochastic programming approach resulted in an average reduction of 1,613 units in comparison to the mean, while 
the robust approach led to an average increase of 570 units. The robust approach showed a reduction in variance which 
makes the model more compelling for further study. The wait and see approach resulted in a reduction of cost by an average 
of 13,589 units, highlighting the importance of forecasting data in the proposed network model. The research also introduces 
a meta-heuristic approach based on simulated annealing algorithms to solve large-scale problems, with results showing the 
efficient performance of the algorithm. However, the research also acknowledges that obtaining correct estimates for un-
certain parameters can be a challenge and thus, further studies could be carried out based on real-life case studies in a supply 
chain network. 

0

5000

10000

15000

20000

25000

30000

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

VSS PR EVPI



M. Alinaghian et al. / Journal of Project Management 8 (2023) 
 

211

References 
 
Aharon, B. T., Boaz, G., & Shimrit, S. (2009). Robust multi-echelon multi-period inventory control. European Journal of 

Operational Research, 199(3), 922-935. 
Baohua, W., & Shiwei, H. E. (2009). Robust optimization model and algorithm for logistics center location and allocation 

under uncertain environment. Journal of Transportation Systems Engineering and Information Technology, 9(2), 69-
74. 

Behdani, B. (2013). Handling disruptions in supply chains: An integrated framework and an agent-based model. 
Beraldi, P., Bruni, M. E., & Conforti, D. (2004). Designing robust emergency medical service via stochastic programming. 

European Journal of Operational Research, 158(1), 183-193. 
Berman, O., Krass, D., & Menezes, M. B. C. (2010). Location problems with two unreliable facilities on a line allowing 

correlated failures. Working Paper, Rotman School of Management, University of Toronto, Toronto, Ontario, Canada. 
Brahami, M. A., Dahane, M., Souier, M., & Sahnoun, M. H. (2022). Sustainable capacitated facility location/network design 

problem: a non-dominated sorting genetic algorithm based multiobjective approach. Annals of Operations Research, 
311(2), 821-852. 

Carello, G., & Lanzarone, E. (2014). A cardinality-constrained robust model for the assignment problem in home care 
services. European Journal of Operational Research, 236(2), 748-762. 

Farooquie, P., Suhail, A., & Faisal, M. N. (2017). A grey-based approach for managing uncertainties and performance in 
automotive supply chains. International Journal of Industrial and Systems Engineering, 27(1), 73-89. 

Govindan, K., & Fattahi, M. (2017). Investigating risk and robustness measures for supply chain network design under 
demand uncertainty: A case study of glass supply chain. International journal of production economics, 183, 680-699. 

Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive 
review and future research directions. European journal of operational research, 263(1), 108-141. 

Gülpınar, N., Pachamanova, D., & Çanakoğlu, E. (2013). Robust strategies for facility location under uncertainty. European 
Journal of Operational Research, 225(1), 21-35. 

Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk–Definition, measure and modeling. 
Omega, 52, 119-132. 

Hu, Q. M., & Hu, Z. H. (2015). A stochastic programming model for hub-and-spoke network with uncertain flows. 
International Journal of Industrial and Systems Engineering, 21(3), 302-319. 

Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network design for the supply of blood in 
disasters: A robust model with real world application. Transportation research part E: logistics and transportation 
review, 70, 225-244. 

Jabbarzadeh, A., Jalali Naini, S. G., Davoudpour, H., & Azad, N. (2012). Designing a supply chain network under the risk 
of disruptions. Mathematical Problems in Engineering, 2012. 

La Londe, B. J. (1997). Supply chain management: myth or reality?. Supply chain management review, 1(1), 6-7. 
Lanzarone, E., & Matta, A. (2012). A cost assignment policy for home care patients. Flexible Services and Manufacturing 

Journal, 24, 465-495. 
Lanzarone, E., & Matta, A. (2014). Robust nurse-to-patient assignment in home care services to minimize overtimes under 

continuity of care. Operations Research for Health Care, 3(2), 48-58. 
Li, J., Liu, Y., Zhang, Y., & Hu, Z. (2015). Robust optimization of fourth party logistics network design under disruptions. 

Discrete Dynamics in Nature and Society, 2015. 
Liberatore, F., Scaparra, M. P., & Daskin, M. S. (2012). Hedging against disruptions with ripple effects in location analysis. 

Omega, 40(1), 21-30. 
Matisziw, T. C., Murray, A. T., & Grubesic, T. H. (2010). Strategic network restoration. Networks and Spatial Economics, 

10, 345-361. 
Moslemipour, G., Lee, T. S., & Loong, Y. T. (2018). Solving stochastic dynamic facility layout problems using proposed 

hybrid AC-CS-SA meta-heuristic algorithm. International Journal of Industrial and Systems Engineering, 28(1), 1-31. 
Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research, 

43(2), 264-281. 
O’Hanley, J. R., & Church, R. L. (2011). Designing robust coverage networks to hedge against worst-case facility losses. 

European Journal of Operational Research, 209(1), 23-36. 
Oliver, R. K., & Webber, M. D. (1982). Supply-chain management: logistics catches up with strategy. Outlook, 5(1), 42-

47. 
Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & 

operations research, 37(4), 668-683. 
Peng, P., Snyder, L. V., Lim, A., & Liu, Z. (2011). Reliable logistics networks design with facility disruptions. 

Transportation Research Part B: Methodological, 45(8), 1190-1211. 
Qi, L., Shen, Z. J. M., & Snyder, L. V. (2010). The effect of supply disruptions on supply chain design decisions. 

Transportation Science, 44(2), 274-289. 
Qi, L., & Shen, Z. J. M. (2007). A supply chain design model with unreliable supply. Naval Research Logistics (NRL), 

54(8), 829-844. 



 212

Rad, M. F., Sajadi, S. M., & Kashan, A. H. (2015). Determination of optimal production rate in stochastic manufacturing 
systems by simulation optimisation approach. International Journal of Industrial and Systems Engineering, 20(3), 306-
322. 

Rahmaniani, R., & Ghaderi, A. (2013). A combined facility location and network design problem with multi-type of 
capacitated links. Applied Mathematical Modelling, 37(9), 6400-6414. 

Sadghiani, N. S., Torabi, S. A., & Sahebjamnia, N. (2015). Retail supply chain network design under operational and 
disruption risks. Transportation Research Part E: Logistics and Transportation Review, 75, 95-114. 

Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain 
network design under uncertainty. European Journal of Operational Research, 167(1), 96-115. 

Sheppard, E. S. (1974). A conceptual framework for dynamic location—allocation analysis. Environment and Planning a, 
6(5), 547-564. 

Shishebori, D., & Babadi, A. Y. (2015). Robust and reliable medical services network design under uncertain environment 
and system disruptions. Transportation Research Part E: Logistics and Transportation Review, 77, 268-288. 

Shishebori, D., & Jabalameli, M. S. (2013). Improving the efficiency of medical services systems: a new integrated 
mathematical modeling approach. Mathematical Problems in Engineering, 2013. 

Shishebori, D., Jabalameli, M. S., & Jabbarzadeh, A. (2014). Facility location-network design problem: reliability and 
investment budget constraint. Journal of Urban Planning and Development, 140(3), 04014005. 

Shishebori, D., Snyder, L. V., & Jabalameli, M. S. (2014). A reliable budget-constrained FL/ND problem with unreliable 
facilities. Networks and Spatial Economics, 14, 549-580. 

Snyder, L. V., & Ülker, N. (2005, May). A model for locating capacitated, unreliable facilities. In IERC Conference, Atlanta, 
GA. 

Snyder, L. V. (2003). Supply chain robustness and* reliability: Models and algorithms. Northwestern University. 
Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain 

disruptions: A review. Iie Transactions, 48(2), 89-109. 
Snyder, L. V., & Daskin, M. S. (2005). Reliability models for facility location: the expected failure cost case. Transportation 

science, 39(3), 400-416. 
Snyder, L. V., & Daskin, M. S. (2006). Stochastic p-robust location problems. Iie Transactions, 38(11), 971-985. 
Snyder, L. V., & Daskin, M. S. (2007). Models for reliable supply chain network design. Critical infrastructure: reliability 

and vulnerability, 257-289. 
Tang, C. S. (2006). Perspectives in supply chain risk management. International journal of production economics, 103(2), 

451-488. 
Tsiakis, P., Shah, N., & Pantelides, C. C. (2001). Design of multi-echelon supply chain networks under demand uncertainty. 

Industrial & engineering chemistry research, 40(16), 3585-3604. 
Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International journal of 

production economics, 64(1-3), 385-397. 
Zare, F., & Lotfi, M. M. (2015). A possibilistic mixed-integer linear programme for dynamic closed-loop supply chain 

network design under uncertainty. International Journal of Industrial and Systems Engineering, 21(1), 119-140. 
Zarindast, A., Hosseini, S. M. S., & Pishvaee, M. S. (2018). A robust possibilistic programming model for simultaneous 

decision of inventory lot-size, supplier selection and transportation mode selection. International Journal of Industrial 
and Systems Engineering, 30(3), 346-364. 

 
 

   

© 2023 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


