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 In disease mapping, it is preferable to estimate the risk rather than the significance in general, 
but the variation in estimation precision across the geographical map of the study region must 
also be taken into consideration. In such a situation the conventional methods would not yield 
the best estimates. Heterogeneity is an important aspect to be considered as significant in Dis-
ease Mapping and relative risk estimation. The simple regression models often do not capture 
the extent of the variation exhibited in the spatial count data. This is the case when the spatial 
data is over-dispersed or there is spatial correlation due to unobserved confounders. In such 
situations, it is appropriate to include some additional terms, which may be in the form of the 
prior distribution. In this paper, a Poisson model with Gamma prior is used to model and map 
the dengue incidences in Tamil Nadu to explain the patterns of variations.     
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1. Introduction 
 
Disease mapping involves the cartographical representation of the spatial distribution of disease risks (Clayton & Kaldor, 
1987). In spatial epidemiology modelling for disease mapping and relative risk estimation consists of functions of fixed, 
unobserved covariates (Knorr-Held & Becker, 1999). In disease mapping, it is preferable to estimate the risk rather than the 
significance in general, but the variation in estimation precision across the geographical map of the study region must also 
be taken into consideration (Lawson et al., 2000). In such a situation the conventional methods would not yield the best 
estimates (Bernardinelli et al., 1995). Also, there may be high heterogeneity or substantial extra variability involved in the 
case of the geo-referenced data. To overcome this, Bayesian modelling would be highly helpful which consists of treating 
the parameters as random variables, and hence relying on shrinkage of estimators to obtain stabilized risk estimates (Eckert 
et al., 2007). Bayesian hierarchical models are found to be highly useful to obtain smooth risk estimates in disease mapping 
(Millar, 2009; Richardson et al., 2004). The Poisson-Gamma is the one which is potentially useful in many applications.  
This model considers the spread of the disease in human populations and enables covariate adjustments and spatial corre-
lation between adjacent areas. The present work aims at the application of the Poisson-Gamma model for the data on dengue 
incidences in Tamil Nadu, India.In disease map re-construction and relative risk estimation for case event and count likeli-
hoods, the simplest model is the Poisson Process model which is characterized by a point process in space (Cressie, 1993). 
Defining a study area say, T and within that area m disease incidences occur and define 𝑠 , 𝑖 = 1, … ,𝑚 this is called the 
realization of the disease process. Here it is assumed that all cases within the study area are recorded. The basic point process 
model assumed for such data within disease mapping is the heterogeneous Poisson process with first-order intensity with 
the basic assumptions that points (case events) are independently spatially-distributed and governed by the first-order in-
tensity. 

2. The Poisson Model for Count Data 
 

The Poisson model is appropriate when there is a relatively lesser count of disease, and the population is large in each small 
area (Jaisankar & Kesavan, 2019; Jaisankar et al., 2019). The disease count 𝑦  is assumed to have a mean 𝜇  and is inde-
pendently distributed as  



 102 𝑦 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇  ) 

The likelihood is given by  

𝐿(𝒚|𝝁) = 𝜇 exp(−𝜇 ) /𝑦 !. 
The mean function is usually considered to consist of two components, (i) a component representing the background pop-
ulation effect, and (ii) a component representing the excess risk within an area. This second component is often termed the 
relative risk. The first component is commonly estimated or computed by comparison to rates of the disease in a standard 
population and a local expected rate is obtained. This is often termed standardization (Inskip et al., 1983). The usual as-
sumption here is that the data is independently distributed with expectations, 𝐸(𝑦 ) = 𝜇 = 𝐸 𝜃  

where 𝐸  is the expected rate for the ith area and 𝜃  is the relative risk for the ith area. For the Bayesian hierarchical model, 
consider {𝑦 } to be conditionally independent given knowledge of {𝜃 }. The expected rate is usually assumed to be fixed for 
the time period considered in the spatial realm (Ripley, 1988; Snow, 1854).  

3. The Poisson-Gamma Model 
 

The simple regression models do not capture the extent of variation present in count data. That is, overdispersion or spatial 
correlation due to unobserved confounders will usually not be captured by simple covariate models and often it is appropri-
ate to include some additional terms or terms in a model which can capture such effects. In Bayesian model formulation, 
all parameters are stochastic and so the extension to the addition of random effects is a relatively straightforward procedure.  

The overdispersion or extra-variation can be accommodated by either (i) inclusion of a prior distribution for the relative 
risk, such as the Poisson-Gamma model or (ii) by extension of linear or non-linear predictor term to include an extra random 
effect such as Log-Normal model (Besag & Newell, 1991; Besag et al., 1001). 

The simplest extension to the Poisson likelihood model that accommodates extra variations is one in which the parameters 
of interest in the likelihood are given a prior distribution. The Poisson model is the most used model for counting data. This 
model is appropriate when there is a low count of disease in the population that is relatively large.  The Bayesian hierarchical 
model that is familiar in disease mapping is the Poisson likelihood with the risk parameter under single Gamma prior dis-
tribution (Venkatesan & Srinivasan, 2010; Srinivasan & Venkatesan, 2014). 

Let, 𝑦 , 𝑖 = 1, … ,𝑛 be counts of disease in arbitrary small areas. Also define, for the same areas, expected rates {𝐸 } and 
relative risks{𝜃 }. It is assumed that 𝑦 ~𝑃𝑜𝑖𝑠(𝐸 𝜃 ) given 𝜃  are iid. Assuming 𝜃 = 𝜃, for all i and that the prior distribution 
of 𝜃, 𝑝(𝜃), is 𝜃~𝐺𝑎𝑚𝑚𝑎(𝛼,𝛽) where 𝐸(𝜃) = 𝛼/𝛽, and 𝑉𝑎𝑟(𝜃) = 𝛼/𝛽 . The posterior distribution of 𝜃 is given by, 𝜃|𝒚,𝛼,𝛽 = 𝛽∗𝛼∗Γ(𝛼∗)𝜃 ∗ exp(−𝜃𝛽∗) 

where 𝛼∗ = ∑𝑦 + 𝛼,𝛽∗ = ∑𝐸 + 𝛽. It follows that the predictive distribution is  𝑦∗|𝑦,𝛼,𝛽 = 𝑓(𝑦∗|𝜃)𝑓(𝜃|𝛼,𝛽)𝑑𝜃 

= 𝛽Γ(𝛼) Γ(𝑦∗ + 𝛼)(𝐸 + 𝛽)( ∗ )  

4. Data Description 
 

The number of Dengue Disease cases reported from 2007 to 2018 have been obtained from the Department of Public Health 
and Prevention Medicine, Tamil Nadu. The observed cases were aggregated for each district of Tamil Nadu and expected 
numbers of cases were calculated using the indirect standardization method from the population of each district. The data 
covered the details on Dengue cases in Tamil Nadu, District-wise from 2007 to 2018. The coordinate information about the 
geographical location for the analysis is collected where the cases happened and the details about location name, latitude, 
and longitude of the location of the cases were assimilated. 

The real-world coordinates to each pixel of the raster are assigned by the process of Geo-referencing using ArcGIS. In the 
present work, a scanned map of Tamil Nadu which is marked district wise is digitized by using the coordinates from the 
markings on the map image. With the aid of GCPs (Ground Control Points), the image is warped and is made to configure 
within the coordinate system that is chosen. 
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5. Results 
 

The details of the results of Bayesian Disease mapping analysis through the Poisson Gamma model are presented below in 
the form of tables and map. Table 1 shows the posterior point estimate of relative risk for each of the study areas using the 
Poisson Gamma model.  

Table 1  
Posterior statistics for the parameter in the Poisson Gamma model 

Parameter Mean Std.dev MC_error val2.5pc Median val97.5pc 
Alpha -0.2213 0.1298 0.01067 -0.4559 -0.2417 0.05762 
Mean 0.8083 0.1077 0.008852 0.6339 0.7853 1.059 
Sigma 0.5335 0.5797 0.05705 0.3374 0.4252 3.578 
Tau 5.519 1.787 0.1415 0.07812 5.531 8.783 

 

Table 2  
The Posterior relative risk for all the regions of Tamil Nadu using Poisson-Gamma model 

Area Mean Sd MC_error val2.5pc Median val97.5pc 
RR[1] 0.3760 0.0244 0.0002 0.3291 0.3756 0.4249 
RR[2] 1.9020 0.0215 0.0001 1.8600 1.9020 1.9450 
RR[3] 1.1960 0.0203 0.0001 1.1570 1.1960 1.2360 
RR[4] 0.5594 0.0160 0.0001 0.5286 0.5592 0.5913 
RR[5] 0.9803 0.0277 0.0002 0.9269 0.9800 1.0360 
RR[6] 0.6064 0.0182 0.0001 0.5714 0.6062 0.6429 
RR[7] 0.4659 0.0155 0.0001 0.4358 0.4658 0.4967 
RR[8] 0.3236 0.0100 0.0001 0.3042 0.3235 0.3435 
RR[9] 1.4470 0.0301 0.0002 1.3880 1.4460 1.5070 
RR[10] 0.6220 0.0265 0.0002 0.5709 0.6216 0.6748 
RR[11] 0.7026 0.0206 0.0001 0.6629 0.7023 0.7440 
RR[12] 1.7940 0.0263 0.0002 1.7440 1.7940 1.8460 
RR[13] 0.5926 0.0208 0.0001 0.5523 0.5922 0.6337 
RR[14] 0.5406 0.0194 0.0002 0.5033 0.5402 0.5793 
RR[15] 0.2375 0.0186 0.0002 0.2026 0.2370 0.2748 
RR[16] 0.6969 0.0379 0.0002 0.6245 0.6963 0.7731 
RR[17] 0.6410 0.0215 0.0002 0.5994 0.6407 0.6834 
RR[18] 1.1580 0.0319 0.0002 1.0970 1.1580 1.2220 
RR[19] 0.8900 0.0171 0.0001 0.8568 0.8897 0.9244 
RR[20] 0.4165 0.0193 0.0001 0.3795 0.4161 0.4551 
RR[21] 1.0610 0.0228 0.0002 1.0170 1.0610 1.1060 
RR[22] 2.6820 0.0502 0.0004 2.5840 2.6820 2.7800 
RR[23] 0.6175 0.0141 0.0001 0.5900 0.6174 0.6456 
RR[24] 2.6530 0.0427 0.0003 2.5700 2.6530 2.7370 
RR[25] 0.8338 0.0190 0.0001 0.7972 0.8336 0.8718 
RR[26] 2.4770 0.0310 0.0002 2.4160 2.4760 2.5370 
RR[27] 1.4350 0.0269 0.0002 1.3820 1.4350 1.4870 
RR[28] 0.5681 0.0165 0.0001 0.5363 0.5680 0.6006 
RR[29] 0.8842 0.0286 0.0002 0.8302 0.8836 0.9418 
RR[30] 0.4784 0.0118 0.0001 0.4560 0.4783 0.5018 
RR[31] 0.4232 0.0120 0.0001 0.4001 0.4230 0.4469 
RR[32] 0.6171 0.0192 0.0001 0.5798 0.6169 0.6551 

 

From Table 2, it is observed that the range of the relative risk estimates is calculated using the Poisson-Gamma model on 
average. Tables 2 shows the posterior summary of various parameters estimated by the MCMC which consists of mean, 
standard deviation, Monte Carlo error and selected the percentiles (2.5%, 50%, and 97.5%). MC error was estimated using 
the batch mean method. The Bayesian estimators of the parameter’s alpha, tau and the mean, sigma of the Poisson Gamma 
model were observed as -0.1607, 0.8592, 2.636, and 5.519 respectively. The respective confidence intervals of these pa-
rameters were (-0.1618, 0.0887), (0.6737,1.093), (1.499, 4.117) and (0.3609, 0.9793), respectively.  

The iteration trace of alpha, tau, and mean trace plots about the sigma parameter were also analyzed. The results of iteration 
show that the Markov chain-based Gibbs sampler of model parameters offered convergence. For each area and parameter 
(alpha, tau, and sigma), the correlogram plots of autocorrelations of the chain are developed to understand the convergence 
of the parameters in detail. The densities of sections of the chains for the study area and parameters alpha, mean, tau and 
sigma and was produced an approximate visual kernel estimate of the posterior densities of the two models which are shown. 
The relative risks of dengue disease are estimated by two models. The Poisson Gamma and used to estimate the relative 
risks refer to the above equations respectively. On the contrary, the estimates of the Bayesian Poisson-Gamma not only on 𝑦  and 𝑒  but also on the probability distributions and other parameters.    



 104

Using the results obtained from the Poisson Gamma model a map indicating the relative risk of dengue at each district of 
Tamil Nadu was constructed and presented in Fig. 1. It is seen that about 18 districts have a relative risk ranging between 
0.238 to 0.703, 7 districts come under the relative risk of 0.703 to 1.196, 4 districts come under relative risk of 1.196 to 
1.902. Also, it is observed that 3 districts have a higher relative risk of 1.902 to 2.282. 

 

Fig. 1. The map indicating the relative risk of dengue at each district of Tamil Nadu 
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6. Conclusion  
 

In this study, based on the results of the estimations, the study areas that have very high relative risk claims through the 
Poisson-Gamma model are Theni, Tirunelveli and Thoothukudi. The Poisson Gamma model provides smoother estimates. 
It is expected that the results of this research can be used by the health authorities as a reference for estimating the risk of 
dengue disease in all districts of Tamil Nadu. It can also be used to estimate the high and very high relative risk of the study 
region. The more accurate results may be obtained from further research. Apart from that, other types of Bayesian models, 
especially the spatial one (Cressie, 1993), can be applied to the estimation. 
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