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 The trend toward sustainable city development is associated with intelligent transportation sys-
tems (ITS). Automation, efficiency, safety, security, and cost-effectiveness are critical factors 
in establishing each aspect of a smart city. Real-time data obtained from ITS play an essential 
role in improving the level of service of road segments, enhancing road safety, and supporting 
road users with road circumstances information. Travel time information is applicable in travel 
time maps, decision makings for traffic congestion, dynamic pricing of the network, emergency 
relief services, traffic flow monitoring, traffic jams management, and air quality analysis. Travel 
time on a road segment highly depends on geometrical specifications, environmental and 
weather conditions, traffic flow, and driving behavior. Due to specific driving behavior and road 
conditions, the above parameters are not essentially applicable in another region. The present 
research uses the data collected from loop detectors and License Plate Recognition (LPR) sys-
tems to develop a Bureau of Public Roads (BPR) model for Iran’s freeway network (Tehran-
Qom Freeway). Because of the large amount of data, the SQL server program was used for 
creating and organizing the database and the BPR model was calibrated using SPSS statistical 
software. The results of the BPR model were evaluated with an ANOVA test, indicating that the 
derived model can estimate the travel time at freeway sections with a %5.2 error for the volume-
to-capacity ratio (V/C) of less than 0.8.    
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1. Introduction 
 
As a fundamental measure in the performance evaluation of traffic facilities, travel time is used by many users, including 
travelers, transportation engineers, and planners (Yanying Li and McDonald, n.d.). Travel time is defined as the required 
time to traverse a route from one specified location to another. Generally, travel time data is employed to identify problem 
locations on facilities, measure the level of service at arterials, and develop traffic assignment models (Roess et al., 2004). 
Travel time data can be utilized in different fields. It enables road users to get informed of the operational characteristics of 
traffic flow, reduce travel costs, increase reliability in route selection, and avoid getting stuck in a traffic jam. It also reduces 
costs and increases the reliability and quality of the cargo and public transportation (Menglong Yang et al., 2010). Generally, 
the users who deal with travel time data can be categorized into three groups: 
 
I) Road users: Those who use the road, such as drivers and travelers. This group selects the route and departure time 

according to their information about traffic flow proportional to their personality trait and travel purpose. 
II)  Transportation engineers: This group needs an appropriate awareness of influential factors in travel time, its variations, 

and the drivers’ reaction to these variations. Their effort is to minimize travel costs. 
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III) Public or commercial transportation managers: This group needs travel time data in planning, road network 
management, and increasing fleet performance. To this group, reducing delay and improving the precision of time esti-
mation is of great importance (Ishak and Al-Deek, 2002). 

 
Travel time information can be provided through the Variable Message System, Radio Data System, and Radio Advisory 
System to inform drivers about the road condition, weather, alternative paths, and safety warnings and to pre-inform them 
of probable road events in order to prevent drivers’ sudden reactions. Furthermore, the Timetable Management System 
makes public transportation users aware of departure times and possible delays (Ishak and Al-Deek, 2002). Travel time can 
be measured, estimated, or forecasted. Measurements can be classified into direct and indirect. Direct measurements are 
done using transportation instruments such as the Global Positioning System or Advanced Vehicle Technology and the LPR 
cameras or through the usage of a floating car or test vehicle technique. When the direct measurement of travel time is not 
possible, it can be calculated or predicted (extrapolation method) using the recorded data from vehicle counting systems 
(Holt et al., 2003). 
 
Many researchers have been using travel time information in recent years to build traffic models and simulate and analyze 
traffic behavior on streets, highways, and freeways, especially in large cities. Based on traffic network features, the provided 
models can be used to provide sensitivity analyses for the assessment of the current state of the traffic network, as well as 
to suggest alternatives to optimize the transportation network. To accomplish so, the purpose of this study is to develop a 
model to predict travel time on a major freeway in Iran using Loop Detector data and LPR systems. In order to boost the 
performance of the transportation network, planners are going to benefit from the proposed model. It offers a clear picture 
of the current state of the transportation network and allows them to make informed decisions. 
 

The rest of the paper is organized as follows. Section 2 presents the theoretical background and literature review. In Section 
3, the collected data has been explained. Section 4 describes the analysis method as well as the results. The discussion and 
conclusion have been presented in Section 5 and Section 6, respectively.  

2. Theoretical background and literature review  
 
Since 1920, engineers and designers have used travel time and delay variables to evaluate and improve transportation facil-
ities. Travel time has been the subject of hundreds of studies. Berry et al. (Berry, 1952; Berry and Green, 1950) presented 
general research on travel time. Institute of Transportation Engineers (ITE) has published “The Manual of Transportation 
Engineering Studies” as a reference for the travel time study for engineers (Hummer et al., 1994). In 1994 the “Highway 
Capacity Manual” (HCM) introduced the general principles of travel time as a criterion for assessing the performance 
quality of arterial roads. The second volume of the National Cooperative Highway Research Program (NCHRP) Report No. 
398 presented an instruction for measuring the density and travel time (Lomax et al., 1997). Also, numerous researchers 
have carried out studies on travel time on freeway sections and urban road networks. Most studies focused on providing 
algorithms to forecast travel time based on inductive loop counters data. 
 
Recently, engineering and transportation challenges are being addressed with technological advances, especially in system 
management, scheduling, and safety concerns (Aghakhani & Rajabi, 2022; Omer et al., 2022; Rajabi, Radzi, et al., 2022; 
Rajabi, Rezaeiashtiani, et al., 2022). Particularly, in recent years transportation researchers tried to utilize emerging Arti-
ficial Intelligence (AI) and Machine Learning (ML) tools to predict and simulate traffic behavior, especially in megacities 
(Aghakhani et al., 2022; Beigi et al., 2022; Lotfi et al., 2022; moeinifard et al., 2021; Mudiyanselage et al., 2021; 
Rajabi, Beigi, et al., 2022; Rajabi, Taghaddos, et al., 2022; Shakerian et al., 2022). In terms of the scope of this paper, 
when traffic conditions are relatively stable, a reasonably simple estimation can be used, but a prediction model is required 
when conditions are rapidly changing. Travel time is an element that is sensitive to many factors. An incident can cause a 
trip to be delayed considerably. Current applications of travel time information in transportation and logistics are driven 
mainly by travel time prediction. The goal of forecasting traffic information instead of relying on real-time data is to make 
travel decisions more proactive, both before and during the trips (Lin et al., 2005). 
 
Research on the estimation of travel time started in 1960. Smock (Lomax et al., 1997) provided Eq. (1) for the Detroit 
study: 
 𝑇 = 𝑡଴ 𝑒ቀ ௩ொೞቁ (1) 

 
where 𝑇 is the travel time per unit distance (minute per kilometer), 𝑡଴ is the travel time per unit distance under free-flow 
conditions, 𝑣 is the flow on a link (equivalent vehicle per hour), and 𝑄௦ is the steady-state capacity of the link. Overgaard 
(1967) generalized the Smock function to Eq. (2) (Lomax et al., 1997): 𝑇 = 𝑡଴𝛼𝛽 ቆ 𝑣𝑄௣ቇ 

(2) 
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where 𝑄௣ is the link's capacity, and 𝛼 and 𝛽 are the parameters for calibration. The Department of Transport in the UK has 
proposed many travel time-flow functions for various link types based on speed volume curves. The general forms of these 
functions are as follows (Lomax et al., 1997): 

 

𝑆ሺ𝑉ሻ =
⎩⎪⎨
⎪⎧ 𝑆଴                                                           𝑉 < 𝐹ଵ𝑆଴ − 𝑆଴ − 𝑆ଵ𝐹ଶ − 𝐹ଵ = ሺ𝑉 − 𝐹ଵሻ             𝐹ଵ ≤ 𝑉 ≤ 𝐹ଶ𝑆ଵቂ1 + ቀ𝑆ଵ8𝑑ቁ ቀ𝑉𝐹ଶ − 1ቁቃ                                  𝑉 > 𝐹ଶ 

(3) 

 
where 𝑆଴ is the free-flow speed (kilometer per hour), 𝑆ଵ is the speed at capacity flow 𝐹ଶ (kilometer per hour), 𝐹ଵ is the 
maximum flow at which free-flow conditions prevail, and 𝑑 is the distance or length of the link. Then the time-flow function 
is presented as follows: 

 

𝑉 =
⎩⎪⎪⎨
⎪⎪⎧ 𝑑𝑆଴                                                        𝑉 < 𝐹ଵ𝑑𝑆(ଶ) = 𝑑𝑆଴ + 𝑆𝑆଴ଵ.𝐹ଵ − 𝑆𝑆଴ଵ.𝑉             𝐹ଵ ≤ 𝑉 ≤ 𝐹ଶ𝑑𝑆ଵ + ቀ𝑉 𝐹ଶൗ − 1ቁ 8⁄                         𝑉 > 𝐹ଶ

 

 
 
 

(4) 

 
with 𝑆𝑆଴ଵ given by: 

 𝑆𝑆଴ଵ = ( 𝑆଴. 𝑆ଵ𝐹ଶ − 𝐹ଵ) (5) 

2.1 BPR model 
 

A mathematical formula for representing the traffic impedance quantitatively is a road impedance function (Tan et al., 2017) 
(2). The most used impedance calculation model is the BPR function, which acknowledges that the saturation of traffic flow 
is essential to traffic speed (Roads, 1964). 
 
The US BPR function is the theoretical regression model (Tan et al., 2017). The function largely took into account the 
effects of traffic flow and demonstrated enhanced impedance changes (Tan et al., 2017). The model is straightforward, user-
friendly, and capable of simple parameter calibration (Tan et al., 2017). In light of the fact that this model is based on data 
from a highway, which differs from the circumstances on a city road, researchers should concentrate on the model's practical 
implementation (Tan et al., 2017). The BRP in the USA provided their well-known function in 1964 as Eq. (6):  
 
 𝑇 =  𝑡଴ [1 + 𝛼 ቀ𝑣𝐶ቁఉ] (6) 
 

where 𝑇 is the travel time per unit distance at flow 𝑄, 𝑡଴ is the travel time per unit distance at zero flow, 𝑣 is the flow on a 
link, 𝐶 is the “practical capacity” of a link (equivalent vehicle for one meter of link width per hour), 𝛼 and 𝛽 are dependent 
on the type of the link. 𝛼 is the ratio of travel time per unit distance at practical capacity 𝐶 to the capacity at zero flow, and β represents the rate of changes in travel time (Roads, 1964). The BPR engineers suggested 0.15 and 4 for α and β, respec-
tively.  Dowling and Skabardonis (2008) evaluated the BPR function experimentally. They declared the underestimation of 
travel time resulted from the function for the values of V/C between 0.8 and 1 and its overestimation in queuing conditions. 
Moreover, their study revealed another flaw of the function: the offline estimation of travel time. It means that the travel 
time estimated by the BPR function is based on the previously recorded data and does not necessarily account for the present 
traffic flow condition (Dowling & Skabardonis, 2008). The BPR formula was included in the HCM book (Hansen, 2020) 
back in 1965. Afterward, in 1985, a function similar to the BPR was proposed by HCM, with more sensitivity to low traffic 
flow conditions. In 1994, another function based on experimental data was presented on HCM, which could account for the 
other forms of relationship between speed and flow. Recently, in the HCM (2000), new speed-flow curves for different 
levels of service were provided, which could not estimate travel time for the values of V/C more than 1. Kurth, Singh, and 
Hansen conducted the calibration of the BPR function for different values of 𝛼 and 𝛽. Portland Metropolitan Planning 
Organization (METRO) calibrated the formula by using α equal to 0.15 and β equal to 7. Their proposed function is as 
follows (Saberi & Figliozzi, 2010): 
 
 𝑇 = 𝑡଴ ቆ1 + 𝛼 ቀ 𝑣0.75𝐶ቁఉቇ 

(7) 
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Also, for the first time in Iran, Pourzahedi and Ashtiani (1995) developed a time-flow function for the Zayanderoud riverside 
road and calibrated the BPR model. Furthermore, a road network study by Tabibi and Mohseni (2012) using neural networks 
didn’t significantly change travel time for the volume-to-capacity ratio of less than 0.6. They also calibrated the BPR model 
for the Iran highway network and two-way suburban roads. Sun et al. (2018) used YOLO detectors for Chinese car license 
plate detection. They found that one network can recognize a license plate with a different number of characters. Luo et al. 
(2019) used LPR to estimate queue length for signalized intersections. The obtained results were fully consistent with the 
experimental findings (Luo et al., 2019). Laroca et al. (2018) presented a robust automatic LPR based on the YOLO object 
detector with better system performance and a recognition rate of %78.33.  
 
Using four years of Virginia Interstate data, a modeling methodology was developed based on classification trees in Babi-
ceanu Lahiri’s work (Babiceanu & Lahiri, 2022). As independent variables, this model used the Hourly Volume, Vol-
ume/Capacity Ratio, Truck Percentage, Equivalent Property Damage Only Rate, Lane Impacting Incident Rate, Number of 
Lanes, Presence of Safety Service Patrol, Terrain, and Urban Designation to predict the reliability class (reliable or unreli-
able) of each segment in a year. Applied sensitivity analyses revealed that the predicted PMTR-IS (Percent of the Person-
Miles Traveled on the Reliable Interstate) was reactive to capacity increase in unreliable sections at the local level, slower 
to respond to increases in AADT (annual average daily traffic) at the local level, and stable to small oscillations of AADT 
at the statewide level.  
 
Global Positioning System (GPS) raw data were analyzed to identify trips in the study conducted by Zhao and Li (2022). A 
five-step procedure was utilized to extract trips based on origin-destination pairs (OD). Based on OD trips for each dedicated 
truck, three metrics were used to estimate the performance of travel time reliability. According to the application, trucks 
traveling long distances have less reliable travel times as compared to trucks traveling short distances. They used GPS data 
to study travel time for freight performance and similar punctuality requirements in logistics without providing further 
information. 

2.2 Research objectives 
 

Based on the literature review, there are few studies focused on travel time estimation based on loop detector data. Moreo-
ver, LPR systems always end up with high procurement and maintenance costs, therefore, the main objective of this research 
is to estimate the travel time based on vehicle counting itself. In this research a BPR model was also calibrated to predict 
travel time based on the traffic flow data and LPR system in Iran freeway network (Tehran-Qom). It is noted that to simplify 
the study, other variables such as weather conditions, traffic incidents and topography along the road were not considered. 
 
3. Data collection  
 
The traffic speed and volume data used for this study were collected by loop detectors and travel time data was gathered 
from LPR systems during a one-year period, as shown in Fig. 1. Since LPR cameras were not installed in all highway toll 
gates and were not activated sometimes, especially in heavy traffic situations and some night hours, the corresponding data 
in both systems have to be aligned. 
 

 
Fig. 1. The position of the LPR system and loop detectors in Tehran-Qom freeway lanes 
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The following method is employed in the present research based on the available data from the loop detectors and LPR 
systems. The LPR cameras record the entrance and exit time data, as presented in Table 1. 
 
Table 1  
Sample of plate count system output 

Vehicle License plate No. Departure from Tehran Arrival at Qom Travel Time(seconds) 
65T85933 14:36:38 15:42:26 3948 
18S59254 14:17:04 15:23:34 3990 
47D94616 13:22:42 14:29:14 3993 

 
Loop detectors have recorded speed, time, and date of passing vehicles for the specified period, ac-cording to Table 2. 
 
Table 2  
An output sample of loop detectors. 

Start time End time Time period (min) Volume Heavy Veh. percentage Speed 
13:45 14:00 15 166 19 115 
13:30 13:45 15 189 17 116 
13:15 13:30 15 185 15 113 

 
In conjunction with the lighting on the Tehran-Qom freeway, there is no difference in speed and travel time between daytime 
and nighttime; therefore, the entire recorded data is used in developing the model. It is noteworthy that the cameras and 
loop detectors were activated approximately 98 percent of the time during both day and night. Consequently, an algorithm 
was employed to extract the time intervals with overlapping data in the database management software. Table 3 illustrates 
a sample of SQL-Server output. 
 
Table 3  
A sample of SQL-Server output. 

Starting 
time 

Ending 
time 

Observation 
No. 

Average travel time 
(sec.) 

Vol-
ume 

Speed at loop detector 
(km/hr) 

13:45 14:00 10 3720 213 115 
13:30 13:45 29 3678 237 116 
13:15 13:30 11 3901 227 113 

 
3. Research method and data analyzing  

3.1 Evaluating the Distribution of Data 
 
Device measuring error–based on the extracted results, equals %3.5. The amount of collected data for achieving %95 reli-
ability in each interval was sufficient according to the equation (1.96s2/e2). The model was developed using 1333 pairs of 
travel time and flow data out of 1800 total data, randomly selected using Excel software. The remaining data were utilized 
in the model validation. The presented histogram in Fig. 2 shows the symmetric shape of data frequency around the mean. 
 

  
Fig. 2. Histogram of travel time variable in Tehran-Qom 
freeway 

Fig. 3. Q-Q plot of response data (travel time) in the Teh-
ran-Qom freeway 

 
As presented in Fig. 2, the travel time variable has a mean value of 0.6 and a variance of 0.045. A Q-Q plot was used to 
demonstrate the normality of data, as shown in Fig. 3. As the values are mainly along the 45-degree line, the normality of 
the distribution may be indicated. 
 

Travel Time (hr)
. . . . .
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3.2 Capacity Calculation 
 

The output data of vehicle counting devices in suburban routes show that on most highways of the country (except a few 
ones such as Tehran-Karaj, and Karaj-Chalous), the traffic volume is less than the capacity, and it is nearly free flow most 
of the time (except for holidays and last days of summer). Some famous models were assessed based on the dataset randomly 
selected out of the total one-year vehicle counted data on the Tehran-Qom freeway and using fundamental traffic flow 
functions. Finally, a linear regression model between speed and flow was established. Then the equation was multiplied by 
density, which ended up with a flow-density relationship. Finally, the maximum value for capacity was obtained by deriva-
tion of flow-density relationship. Moreover, the maximum capacity value of 6596 (Veh/hr) was attained based on the linear 
regression model relating speed and density, like Greenshield’s model (Fig. 4). 
 

Fig. 4. Speed-density diagram on Tehran-Qom freeway Fig. 5. Other types of regression between speed and den-
sity in the Tehran-Qom freeway 

 
The derived formulas for the other regression types are presented in Fig. 5. The goodness of fit parameters for the linear 
regression model and the capacity analysis results are provided in Table 4 and Table 5, respectively. 
 
Table 4  
Goodness of fit for capacity analysis model for Tehran-Qom freeway. 

R R Square Adjusted R Square Std. Error of the Estimate 
0.8342 0.696 0.696 2.432 

 
Table 5  
Summary of capacity analysis results for Tehran-Qom freeway. 

Section Lane No. Lane width(m) Shoulder width(m) Capacity 
(vehicle per hour) 

Tehran-Qom 3 10 1 6596 
 

3.3 Developing the BPR Model 

Based on the literature review, the BPR model is one of the most common models for forecasting travel time. Therefore, in 
the present research, in order to develop a BPR model adopted for specific traffic conditions of the country, the values of 𝛼 
and 𝛽 are calibrated based on the input values of capacity and free flow travel time using SPSS Statistical software. The 
final regression model and the results of the ANOVA test are presented in Eq. (8) and Table 6. 

 𝑇 = 𝑡଴(1 + 0.451(𝑣/𝑐)଴.ଽ଺ଷ) (8) 

Table 6  
ANOVA test results for the BPR model 

Source Sum of Squares df Mean Squares 
Regression 480.117 2 240.059 
Residual 1.787 1331 0.001 

Uncorrected Total 481.905 1333  
Corrected Total 2.682 1332  

R-squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = 0.334 
 

S = -0.495D + 114.264
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In this study, %85 of the dataset is used for establishing the model and the rest was used for evaluating the model. Finally, 
it was showing that the model was able to predict the travel time with %5.2 accuracy level. 
 

5. Discussion  
 

As a key component of traffic engineering, travel time can be used for a variety of purposes. Travel time estimation and 
prediction in transportation networks are clearly critical components to implementing ITS and developing smart cities. As 
a result of providing travel-time information to travelers, they can save time and improve the reliability of their trips by 
selecting routes and times in advance and during their travels. Logistics applications that utilize accurate travel-time esti-
mation can reduce delivery costs, enhance the quality of service, and increase delivery reliability. Traffic planners use 
travel-time information to evaluate the efficiency of their traffic systems. With the accurate estimation of travel time, trans-
portation costs can be reduced by avoiding congested sections, and the service quality of commercial deliveries can be 
improved by delivering goods within the specified timeframe (Laroca et al., 2018). In order to accomplish this, this study 
also attempted to develop a BPR model using travel time and traffic flow data obtained from loop detectors on a major 
freeway in Iran. In response to the expensive costs related to installing and maintaining an LPR system, an estimate of travel 
time has been presented based solely on the number of vehicles. It was shown that the proposed method resulted in accurate 
results in estimating the travel time, which could be used in subsequent applications. It is important to note that one of the 
major limitations of this study is that it only considered basic conditions and neglected to examine other variables, such as 
weather conditions, traffic incidents, and topography along the route. As a best practice, future studies should examine the 
same approach in inclement weather conditions as well. 
 
6. Conclusions 
 
In the past few years, ITS has become an invaluable part of sustainable city development. Establishing a smart city depends 
on automation, efficiency, safety, security, and cost-effectiveness. ITS real-time data contribute significantly to improving 
the level of service on road segments, improving road safety, and providing road users with information about road condi-
tions. Travel time as a fundamental index of traffic facilities performance is typically used by road users and transportation 
managers. The presented research on travel time was conducted based on data collected by LPR cameras installed at toll 
gates and inductive traffic counters, which were placed in the middle of the route. Additionally, on the basis of the collected 
data on the freeway network (Tehran-Qom Freeway), the BPR model was calibrated. Due to the large amount of data, the 
SQL server was used to storage and organize the data and SPSS statistical software was utilized to analyze data. Based on 
the result of ANOVA test, the BPR model was able to predict travel time at freeway segments with a %5.2 error for volume-
to-capacity ratios less than 0.80. According to the results, the maximum capacity of the Tehran-Qom freeway was approx-
imately around 2200 vehicles/hour per lane, and the achieved speed-density model was linear (as per Greenshields’s model). 
The results of this research can be employed in freeway network (Tehran-Qom freeway) travel time estimation with similar 
circumstances (topography, V/C ratio, weather). However, for different situations other models should be developed. 
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