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 The evolving technology has pushed machine learning techniques to replace human smartness. 
A machine learning model is capable of learning and replicating like our brain. This approach 
of data-driven model is implemented to predict the cutting force in machining of Ti6Al4V. Ti-
tanium alloys are commonly used in high strength applications due to their excellent properties. 
These same properties make the machining of the titanium alloy complicated. An attempt has 
been made for finding the cutting force under minimum quantity lubrication (MQL). MQL is a 
sustainable manufacturing-based lubrication system. Taguchi’s approach was used to attain a 
full factorial design for combination of different parameters. Accordingly, a neural network 
(NN) model was developed which was capable of predicting cutting forces based on the trained 
model. The proposed model could be implemented to find optimal parameters in shortest dura-
tion, thereby eliminating the need for experimental computations.    
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1. Introduction 
 
With the development of technology, automated and adaptable manufacturing techniques have been implemented in man-
ufacturing. To remove the material from the workpiece, different procedures are being used in the industries. The most 
common method for removing metal in machining is by turning operation. It involves the reduction of diameter of a cylin-
drical workpiece. The mechanical device required for this kind of operation is called a CNC-lathe. Turning is one of the 
widely used machining processes to trim the excess material and achieve an excellent surface finish. Good machining output 
can be achieved if the parameters are tweaked to optimal performance. Certain parameters can help increase productivity 
and save both cost and time. The input parameters such as cutting speed, feed rate, depth of cut, tool angles and cooling 
conditions can be controlled by the operator. For controlling these parameters and getting the desired output, the manufac-
turer intends to know the optimal conditions in machining processes.  
  
Artificial intelligence has been implemented into a number of technological advancements that have influenced and made 
our lives better. Through advanced analytics, automation, and networked systems, machine learning offers huge opportuni-
ties to transform industries. These technologies have already enabled enormous developments across a lot of sectors. The 
arrival of futuristic applications like facial recognition in smartphones, virtual personal assistants, product recommendations 
in online shopping and self-driving cars are real-world examples of machine learning. Machine learning algorithms are 
produced by data-driven predictions and judgments. The algorithm learns and adjusts itself based on a connection to a data 
source. There are many different types of machine learning algorithms that perform a variety of tasks and functions. Deep 
learning is one such type that focuses on extracting sophisticated feature representations from complex data. Artificial neural 
network (ANN) is a way of accomplishing deep learning, using evolved data processing and decision-making processes. 
  
The use of artificial neural networks can be used to train systems to analyze data like the human brains. The human brain is 
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made up of something like a neural network composed of neurons, which are the nerve cells that are connected with each 
other. The computation happens at the nucleus, or cell body, of the neuron. From one neuron to another, the axon transmits 
the electrical signal of the activity (Graupe, 2013). This is how the biological neural network functions. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Biological Neural Cell 
 

ANN uses a connectionist model of computation to interpret data and it consists of a network of artificial neurons that are 
connected to each other thoroughly. In a number of situations, an ANN is an adaptive system that modifies its structure in 
response to input coming from the outside or within the network during the learning period. Usually, layers are used to set 
up a neural network model. The 'activation function' is found in each of the highly interconnected 'nodes' that make up a 
layer. The 'input layer' communicates with one or more 'hidden layers', where the real processing is performed using a 
system of weighted 'connections', to present patterns to the network. The response is then delivered in an 'output layer' that 
is connected to the hidden layers and can predict values (Wu & Feng, 2018). 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Neural Network Model 

 
Titanium Grade 5 alloy commonly referred to as Ti6Al4V, has outstanding qualities which includes its high strength-to-
weight ratio, exceptional resistance to corrosion, low coefficient of thermal expansion and high toughness (Caggiano, 2018). 
This makes the alloy very appealing for cutting-edge applications in a multitude of sectors, including the aerospace, auto-
motive and medical domains. According to reports, titanium alloys make up 15% of the Boeing 787 and 14% of the Airbus 
A350-900 aero frames (Shokrani & Newman, 2019). The qualities of titanium alloys that make them desirable for many 
engineering applications are also the factors that make them challenging for machining. Due to the inherent material char-
acteristics, titanium alloys typically have poor machinability. The factors such as high cutting temperature, strong adhesion 
at the interface between the tool and workpiece, and low thermal conductivity and high chemical reactivity of titanium 
alloys, makes the machining difficult due to rapid tool wear and short tool life. Workpiece bending is caused by the low 
elastic modulus and high strength that is retained at high temperatures. 
  
Hard turning of titanium alloys generates high cutting forces, which causes poor surface finish and increased mechanical 
vibrations. The use of cutting fluid in metal cutting processes consequently appears to be an efficient technique of control-
ling the cutting temperatures, which are related to the optimum cutting parameters. Cutting fluids have the tendency to 
produce a thin film on the tool-chip interface, reducing friction on the cutting tool edges (Salur et al., 2021). However, 
conventional flood cooling unfortunately poses serious threats to both the environment and public health. The benefit of 
dry cutting is that it doesn't require any fluid, which also eliminates the need for additional equipment to deliver the coolant. 
However, some drawbacks of dry machining include inadequate chip evacuation, premature tool wear, unexpected tool 
breakage, and poor surface quality. To enhance the characteristics during the machining process, a near-dry machining 
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method called minimum quantity lubrication (MQL) is implemented. By applying a pressured fine coolant spray and reduc-
ing the lubrication cost by 40–60%, MQL was capable of effectively reducing temperatures in the cutting zone (Jamil et al., 
2021). The fluid used in MQL is usually an environmentally friendly oil such as palm oil or soybean oil. 

 
2. Related Works 
 
The work done in (Wang et al., 2020) predicted the degree of tool wear using physics-based and data-driven modelling. The 
model proposed a cross physics-data fusion scheme to fuse the hidden information explored from both the models. A loss 
function was derived based on the physics knowledge that tool wear increases with the number of cuts. The developed 
method would provide sufficient information from both physics and machine learning domains to eliminate the incon-
sistency of conventional methods. Online tool condition monitoring systems were used to prevent downtime and get high 
quality production in (Kaya et al., 2011). Cutting force components in all three axes and torque data was collected using 
MATLAB data acquisition toolbox. Based on this data an ANN model was developed to predict the flank wear on the tool. 
The cutting forces and torque signals were observed to be sensitive to cutting conditions. These parameters would decrease 
with the effect of crater wear. 
  
The ball end milling process was analyzed for change in cutting forces with respect to varied cutting parameters in (Bal-
asubramanian et al., 2021). The milling operation was simulated using CutPro software and cutting force data of all three 
mutually perpendicular directions was obtained. The neural network model was trained using python scripting with PyTorch 
optimizer to decrease rates of error during training. A linear surface was observed to be fitting over the data with 5% 
deviation in the predicted values. The neural network based on increment learning scheme was suggested for predicting 
fatigue growth by (Ma et al., 2021). The specimens were made of 7B04 T6 aluminum and TA15 titanium alloy, placed 
under constant amplitude stress. Since the back propagation algorithm is not effective for small datasets, inputs were em-
ployed with multiple increment information to improve quality and quantity of the dataset. The developed NN model 
showed superiority to conventional curve fitting models with high accuracy. 
  
ANN model of high performance has numerous advantages as noted in (Madić & Radovanović, 2011). If the training data 
and architectural parameters are chosen correctly then the model can be used for optimising machining processes. A L18 
orthogonal array was developed using Taguchi method with four factors to estimate the resultant cutting force. The Leven-
berg-Marquardt algorithm is used as it is faster and finds better optima than other methods. Around eight different models 
were developed and a trial-and-error method was implemented to determine the best NN model. It was observed that the 
transfer function in the hidden layer is most influential on ANN prediction performance. Prediction of cutting force using 
fuzzy logic was done (Malagi et al., 2018), for titanium alloy Ti-6Al-4V under minimum quantity lubrication. To calculate 
and improve the experimental cutting conditions, response surface methodology and fuzzy logic model were used. Cutting 
the titanium alloy at a speed of 45 m/min, a feed rate of 0.11 mm/rev, and a depth of cut of 0.25 mm was found to be the 
ideal conditions. The cutting force could be predicted using fuzzy logic during turning of the alloy. 
  
The study for prediction of cutting forces in milling of 618 stainless steel was undertaken in (Kadirgama & Abou-El-Hos-
sein, 2006). Cutting force was used as a response, and the variables taken into account were cutting speed, feed rate, axial 
depth, and radial depth. Using design of experiments, the optimal experimental circumstances were attained. For the neural 
network, the Levenberg-Marquardt training algorithm was combined with Bayesian regularisation. The created model was 
capable of successfully predicting the data for the trained range. The simulation model for predicting mechanical properties 
of Ti6Al4V using NN is described in (Detak et al., 2010). Tensile strength, elongation, and Rockwell Hardness were the 
predicted mechanical properties. The alloy's chemical composition at ambient temperature was used as the input. Gradient 
Descent and Levenberg-Marquardt learning algorithms were used for the training. The results indicated that Gradient De-
scent is more suitable to achieve a high performance of output criterion and even that the Levenberg-Marquardt algorithm 
demonstrated great ability for training. 
  
The researchers have suggested that the NN training model gives higher accuracy based on the architecture of the model. 
This model can be used to predict values that can reduce the time for experimental estimation and conventional calculations. 
An ANN model can be suited for accurate prediction of cutting force based on the varying input parameters such as cutting 
speed, depth of cut and feed rate.  
 
3. Research Methodology 
Artificial neural networks require data for training and prediction of models. This data has to be obtained from true experi-
ments and fed to the system. The larger the dataset, the accuracy of predicted values increases in the neural network. The 
experiments were performed to obtain the cutting force data. 
 

3.1 Experimental Setup 
The cutting forces were measured by an experiment conducted using a combination of different input parameters. The 
Ti6Al4V workpiece used was of a cylindrical-shaped, with dimensions of 30 mm in diameter and 250 mm in length. Cubic 
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Boron Nitride (CBN) was used as the cutting tool because of its capacity for turning off hard materials. After diamond, it is 
the second-hardest material available on earth. CBN’s key advantage is that it retains its mechanical stability even when it 
is subjected to air temperatures higher than 1000 °C. The workpiece and the cutting tool are the same throughout the exper-
iment, regardless of their composition or dimensions. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) CBN Cutting Tool (b) Ti6Al4V Workpiece 
 

Design of Experiment (DOE) is a powerful technique to gain insights of the process and optimize them for high perfor-
mance. It helps researchers to plan the experimentation appropriately. Taguchi method is widely used for planning of ex-
periments to acquire data in a controlled manner. It is an orthogonal array-based experiment. The full factorial technique 
takes into account all possible interactions between factors and their varying levels. A full-factorial Taguchi design of L27 
orthogonal array was used with three factors and three levels. The cutting speed, feed rate and depth of cut was varied to 
obtain different values of cutting forces. There were three different cutting speeds: 45, 73, and 101 m/min. While the depth 
of cut was set as 0.25, 0.5, and 0.75 mm, the feed rate varied between 0.11, 0.18, and 0.25 mm/rev. 
 
Table 1  
Machining Parameter Factors and Levels 

 
The turning operation is conducted on a PSG conventional lathe model A141. The tool-workpiece interface was lubricated 
using the MQL technique. The MQL arrangement included an oil reservoir, air filter, pressure gauge, jet nozzle, variable-
speed control motor, and oil injection pump. Through the tip of the system, coconut oil was sprayed to the tool-workpiece 
interface. The cutting force data was captured using the Kistler 9257BA Dynamometer. Data obtained from the Kistler 
amplifier was monitored closely by a laptop. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Machining Setup 
 

3.2 Dataset for Artificial Neural Network Training 
MATLAB, which stands for ‘MATrix LABoratory’, is a powerful programming language used in scientific computing. 
When it pertains to data analysis, algorithm development, and model creation, MATLAB has significant advantages over 
other programming languages. The Neural Network toolbox in MATLAB R2021a was used to build and train the ANN 
model. The NN toolbox in MATLAB offers algorithms, trained models, and a graphical user interface to construct, train, 
test, and simulate shallow neural networks (one hidden layer) or deep neural networks (several hidden layers). The perfor-
mance factor is taken into consideration when designing neural networks, which streamlines complicated issues. For ANN 

Factors Level 1 Level 2 Level 3 
Cutting Speed (m/min) 45 73 101 

Feed Rate (mm/rev) 0.11 0.18 0.25 
Depth of Cut (mm) 0.25 0.5 0.75 
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training, the data collected using experimental cutting force with MQL was considered. Since the data was an L27 orthog-
onal array, it was adequate to train a neural network model. The.csv (comma separated values) file format is being used by 
MATLAB to smoothly import external data into matrix format.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Structure of Cutting Force Prediction Model based on ANN  
 

3.3 Hidden Layers and Number of Neurons 
The input layer and the output layer are separated by layers that are termed as ‘hidden layers’. The hidden layer establishes 
a relationship with the input and output layer using a combination of weights and biases. They serve as the basis for 
the trained data but are inaccessible to users. More data is needed for more hidden layers as the number of weights associ-
ated with each node grows consequently. Because of this, there are more calculations to be performed, which takes longer 
time. A two-layered neural network was subsequently suggested for ANN training. The method suggested by Master based 
on the geometric pyramid rule was used to calculate the number of neurons for an ANN with two hidden layers (Rachmat-
ullah et al., 2020). The number of neurons can be calculated as follows: 
 

r = ∛(n/m) (1) 
 
here, 

            n is the number of input features 
            m is the number of outputs 

Also, 
 

Nh1 = mr2 (2) 
Nh2 = mr (3) 

     
here, 

           Nh1 is the number of neurons in hidden layer 1 
           Nh2 is the number of neurons in hidden layer 2 
 

Using the dataset for training ANN model, we get 
 

r = ∛ (3/27) = 0.48074  
Nh1 = 27*(0.48074)2 = 6.24 ≈ 6 neurons  
Nh2 = 27*(0.48704) = 12.98 ≈ 12 neurons  

 
To approximate the number of neurons, values have been truncated. Six and twelve neurons will constitute the first and 
second layers of the two-layer neural network respectively. 
 

 
 

 
 
 
 

 
Fig. 6. NN Training Model 
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3.4 Neural Network Architecture 
The Levenberg-Marquardt algorithm entails nonlinear least squares programming with an unconstrained or unbounded con-
strained problem for locating minima. Due to the storage of specific matrices, this technique takes more memory, but it 
converges faster than other algorithms. It works effectively for handling nonlinear regression problems (Alaneme George 
& Mbadike Elvis, 2019). Because of their ability to self-learn from examples rather than using a user-defined algorithm, 
feedforward artificial neural networks are employed in a wide range of applications. They are capable of recognizing and 
responding to patterns that are similar but not identical to the trained data. The only issue with this approach is that there is 
no certainty that it would work successfully for the specific subject at hand (Benardos & Vosniakos, 2007). The feedforward 
network consists of sigmoid neurons in one or more layers, followed by a layer of linear neurons on the output. The prior 
layer provides inputs to the subsequent layers. Levenberg-Marquardt backpropagation technique was used as the training 
function in MATLAB programming to create an ANN based on a feedforward neural network. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 7. NN developed in MATLAB 
 

The data was divided into a training set, validation, and testing clusters in the ratio 7:1.6:1.4. The training set refers to the 
real dataset that we utilize to train the model. A trained model is evaluated using the validation set, which offers a true 
reflection of the model fit. This dataset has no effect on how the model trains. Once the model has been fully trained, the 
test set is used to assess the model and provide its fitting based on the selected samples. A neural network's behavior can be 
graded using performance functions. The performance measurement for the network is the mean squared error (MSE). By 
determining the MSE with the lowest value, the trained NN performance is measured. 
 
4. Results and Discussion 
 
The two-layer feed-forward neural network's results were analyzed. Fig. 7 illustrates the effectiveness of the network used 
to train the samples for the cutting force prediction model. The validation performance value of 0.44871 was attained at 
epoch 6 and these values were obtained after 9 epochs. The linear fit of the actual data to the predicted data is depicted in 
Fig. 8. The MSE and Pearson's R-value for the trained model were 0.27907 and 0.99826, respectively. The MSE measure-
ment indicates the deviation in statistical models. It considers the average squared difference between the values that were 
predicted and those that were found experimentally. Its value increases in proportion to the model error. A measurement of 
how strongly two variables are correlated linearly is determined by Pearson's correlation coefficient (R value). A perfect 
linear relationship between the variables is indicated by an R-value of 1, while an R-value of 0 denotes the lack of any linear 
relationship. 
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Fig. 8 Validation Performance using ANN Fig. 9.  Regression Plots for NN Model 

 
 

Table 2  
Errors obtained in NN Model 

 Cutting Force (N)     Cutting Force (N)   
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1 160.083 160.076 -0.0074 -0.00462  15 152.326 152.3181 -0.0079 -0.00519 
2 164.123 164.087 -0.0359 -0.02187  16 145.178 145.3195 0.1415 0.09747 
3 168.635 168.553 -0.0819 -0.04857  17 149.655 150.4151 0.7601 0.5079 
4 152.321 154.569 2.2478 1.4757  18 153.123 152.1814 -0.9416 -0.61493 
5 157.539 157.533 -0.0058 -0.00368  19 139.298 139.3326 0.0346 0.02484 
6 160.121 160.039 -0.082 -0.05121  20 144.654 144.701 0.047 0.03249 
7 165.964 165.888 -0.0766 -0.04615  21 147.872 147.9478 0.0758 0.05126 
8 166.121 166.888 -0.0957 -0.05761  22 141.221 141.2818 0.0608 0.04305 
9 169.567 169.431 -0.1363 -0.08038  23 144.651 144.6672 0.0162 0.0112 
10 142.234 142.277 0.0425 0.02988  24 146.656 146.6263 -0.0297 -0.02025 
11 144.387 144.387 0 0  25 142.567 142.1463 -0.4207 -0.29509 
12 147.126 147.065 -0.0611 -0.04153  26 145.221 145.2289 0.0079 0.00544 
13 145.124 144.550 -0.5746 -0.39594  27 148.765 148.7645 -0.0005 -0.00034 
14 149.293 149.943 0.6501 0.043545       

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Comparison Plot between Experimental and NN Predicted Cutting Force 
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A detailed representation of predicted values and their associated errors is depicted in Table 2. The minimum error was 
found to be 0 suggesting a perfect fit of actual and predicted result at cutting speed of 73 m/min, feed rate of 0.11 mm/rev 
and depth of cut of 0.5 mm. The maximum error is observed to be 2.2478 with a percentage error of 1.4757 %. The mean 
absolute error (MAE) was calculated as 0.246. It evaluates accuracy for continuous variables. The average of the absolute 
errors is known as MAE. The absolute difference between the experimental value and the value that was predicted using 
NN is known as the absolute error. Without taking the direction of error into account, the MAE alerts us about the average 
size of the forecast inaccuracy. Figure (9) shows the graph of prediction using NN model against the experimental cutting 
force. A negligible difference is observed between both the models.  
 
 

 

 

 

Fig. 10 Cutting Force Prediction Model based on ANN 

Based on the trained dataset, a cutting force prediction model is developed. The model was generated in the command 
window of MATLAB. Cutting force, feed rate, and depth of cut are all inputs that the user will be required to enter. The 
trained neural network would then be used to calculate the cutting force. During MQL machining, this model can be used 
to estimate the cutting forces. Optimal cutting conditions can be retrieved using the NN prediction model. Increasing the 
input dataset's row count will improve the model's predictive capabilities. Consequently, a large amount of manufacturing 
data trained using NN can be used to provide a superior prediction model. 

 
5. Conclusion 
 
A machine learning-based model to predict cutting forces during turning operation was presented in this research. The 
findings can be summarized as: 

i.       Artificial neural network model was developed successfully for minimum quantity lubrication. Data obtained using 
the Taguchi method was used for training the model. 

ii.     It can be observed from the results that the cutting parameters have a significant effect on cutting force. The cutting 
force decreases with increase in either cutting speed or feed rate, but increases with increase in depth of cut.  

iii.    Most of the errors were observed around the range of 0.06452 with close to 15 occurrences. The trained model was 
able to predict cutting forces with high accuracy.  

iv.    Overfitting of the curve is the occurrence of error when the training set is reduced to a very tiny amount, but it 
increases when the network is exposed to newer inputs. The overfitting was avoided by training the model in minimal 
time.  

v.      The developed prediction model would save the time and expenses incurred in performing experimental calcula-
tions.    
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