Volume 2 Issue 4 pp. 851-862 Fall, 2011


A robust moving average iterative weighting method to analyze the effect of outliers on the response surface design


Mehdi Bashiri and Amir Moslemi
The paper discusses about the effect of outliers and trends on the response surface design fitted to the experiments results. The common way to analyze the response surface is to fit the polynomial regression to the response variable by ordinary least square method and to find the significant controllable variables by ANOVA. In this case, the outliers can have confusing effect on the regression model, which derives the experiment results and lead to wrong interpretation of the data. The proposed moving average iterative method (MAIW) of this paper is a robust approach to decrease the effect of these faulty points by considering the previous data to detect the outliers or detect the probable trends in residuals. The iterative weighting method is used to estimate the coefficients of the regression model and a numerical example illustrates the proposed approach.


DOI: 10.5267/j.ijiec.2011.05.001

Keywords: Response surface design, Ordinary least square, Outliers, Moving average method
References

Bashiri, M., Hejazi, T.H, & Badri, H. (2009). Multiple simulation response surfaces for robust optimization in inventory system, 6th International Industrial Engineering Conference. Tehran

Bertsimas, D. & Shioda, R. (2007).Classification and regression via integer optimization. Operations Research, 55, 252-271.

Bickela, D. R. & Frühwirthb, R. (2006). On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications. Computational Statistics & Data Analysis, 50, 3500-3530.

Cummins, D.J. & Andrews, C.W. (1995).Iteratively reweighted partial least squares: A performance analysis by Monte Carlo simulation. Journal of Chemometrics, 9, 489-507.

Hejazi, T. H., Bashiri, M., Noghondarian, K. & Atkinson, A.C. (2010). Multiresponse optimization with consideration of probabilistic covariates. Quality and Reliability Engineering International, DOI: 10.1002/qre.1133.

Dornheim, H. & Brazauskas, V. (2011). Robust-efficient fitting of mixed linear models: Methodology and theory. Journal of Statistical Planning and Inference, 141, 1422–1435.

Huber, P.J. (1981). Robust Statistics.New York: John Wiley & Sons.

Hund, E., Massart, D. L. & Smeyers-Verbeke, J. (2002). Robust regression and outlier detection in the evaluation of robustness tests with different experimental designs. Analytica Chimica Acta, 463, 53–73.

Kazemzadeh, R. B., Bashiri, M., Atkinson, A. C. & Noorossana, R. (2008). A general framework for multiresponse optimization problems based on goal programming. European Journal of Operational Research, 189, 421-429.

Maronna, R. A., Martin, R. D. & Yohai, V. J. (2006). Robust statistics: Theory and Methods. New York: John Wiley and Sons.

Massart, D. L., Kaufman, L., Rousseeuw, P. J. & Leroy, A. (1986). Least median of squares: a robust method for outlier and model error detection in regression and calibration, AnalyticaChimica Acta,187, 171-179.

Morgenthaler, S. & Schumacher, M.M. (1999). Robust analysis of a response surface design. Chemometrics and intelligent laboratory systems, 47, 127-141.

Nguyena, T. D. & Welsch, R. (2010). Outlier detection and least trimmed squares approximation usingsemi-definite programming. Computational Statistics and Data Analysis, 54, 3212-3226.

Ortiz, M. C., Sarabia, L. A. & Herrero, A. (2006). Robust regression techniques A useful alternative for detection of outlier data. Talanta, 70, 499-512.

Pop, H. F. & Sârbu, C. (1996). A New Fuzzy Regression Algorithm. Analytical Chemistry, 68, 771-778.

Rousseeuw, P. J. (1984). Least median of squares regression, Journal of the American statistical association, 79, 871-880.

Rousseeuw, P. J. & Leroy, A. M. (1987). Robust regression and outlier detection. New York: John Wiley and Sons.

Rousseeuw, P. J., van Driessen, K., (2006). Computing LTS regression for large data sets. Data Mining and Knowledge Discovery, 12, 29-45.

Serneels, S., Croux, C., Filzmoser, P. &. Van Espen, P.J. (2005). Partial robust M-regression, Chemometrics and Intelligent Laboratory Systems, 79, 55-64.

Siegel, A. F. (1982). Robust regression using repeated medians. Biometrika, 69, 242-244.

Wiensa, D. P. & Wu, E. K. H., (2010). A comparative study of robust designs for M-estimated regression models. Computational Statistics and Data Analysis, 54, 1683-1695.

Wisnowskia, J. W., Montgomery D. C. & Simpson, J. R. (2001). A Comparative analysis of multipleoutlier detection procedures in thelinear regression model. Computational Statistics & Data Analysis, 36, 351-382.

Zioutas, G., & Avramidis, A. (2005). Deleting outliers in robust regression with mixed integer programming. Acta Mathematicae Applicatae Sinica, 21, 323-334.