

* Corresponding author
E-mail: vinay@nitc.ac.in (V. V. Panicker)

2018 Growing Science Ltd.
doi: 10.5267/j.ijiec.2017.11.003

International Journal of Industrial Engineering Computations 9 (2018) 491–508

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Development of modified discrete particle swarm optimization algorithm for
quadratic assignment problems

T.G. Pradeepmon, R. Sridharan and Vinay V. Panicker*

Department of Mechanical Engineering, National Institute of Technology, Calicut, India
C H R O N I C L E A B S T R A C T

Article history:
Received August 18 2017
Received in Revised Format
August 25 2017
Accepted November 15 2017
Available online
November 15 2017

 Particle swarm optimization has been established to be one of the efficient algorithms for finding
solutions for continuous optimization problems. The discretized form of particle swarm
optimization, known as the discrete particle swarm optimization is an efficient tool for solving
combinatorial optimization problems and other problems involving discrete variables. In this
paper, a revised version of the discrete particle swarm optimization algorithm is proposed for
solving Quadratic Assignment Problems (QAP). Instead of using the general velocity and
position update procedures in particle swarm optimization algorithms, four different possible
positions are found out for each particle and the best among them is accepted as the updated
position. The algorithm is applied to solve some benchmark instances of QAP taken from QAP
Library and the results show minute deviations from best-known solutions.

© 2018 Growing Science Ltd. All rights reserved

Keywords:
Discrete Particle Swarm
Optimization
Quadratic Assignment problem

1. Introduction

The Quadratic Assignment Problem (QAP) first appeared in literature during 1957 when Koopmans and
Beckman published a paper on the allocation of indivisible resources. The paper discussed two problems
related to the location of economic activities which was interpreted as problems of assigning plants to
locations. Out of the two problems discussed, the first one ignored the cost of transportation between
plants and found to be a linear programming problem. The second problem considered the interplant
transportation hence formulated as a quadratic assignment problem (Koopmans & Beckmann, 1957).
QAP aims to decide on the best placement of a number of facilities (say n) to an equal number (n) of
locations such that the total cost is minimised. The total cost includes the cost of placing facilities in the
respective locations and the cost of transporting materials between the facilities. Consider three matrices,

1. A = (aik), the flow of material between the facilities, where aik is the flow from facility i to facility

k for all i, k {1, …, n},
2. B = (bjl), the distance between the locations, where bjl is the distance between locations j and l for

all j, l {1, …, n}, and

492

3. C = (cij), the cost of placing facilities in locations, where cij is the cost of locating facility i in
location j for all i, j {1, …, n},

The quadratic assignment problem can be defined as to find the permutation π of n facilities so as to
minimize

Since its introduction, the QAP is celebrated for its capability to represent a variety of real-world
applications such as plant layout, backboard wiring on electrical circuits, placement algorithms in VLSI
design, design of control panels and keyboards, hospital and campus layout planning, ordering of runners
in a relay race team, ranking of archaeological data, the analysis of chemical reactions and many more
(Burkard et al., 2009). Many classical combinatorial optimization problems including travelling
salesperson problem, maximum clique problem, and graph partitioning problem etc. can also be
expressed as QAP. Detailed reviews on QAP with application areas and solution methodologies can be
found in Zaied and Shawky (2014) and Loila et al. (2004).

The QAP is proved to be NP-Hard (Garey & Johnson, 1979) in nature and because of its complexity,
there may not be any polynomial time algorithm that can solve the problem. Even small instances of
QAP require considerably large computational time. Obtaining an approximate solution for QAP with a
definite performance is also proved to be very hard (Hassin et al., 2009). The main exact algorithm
approaches for solving QAP are based on a branch-and-bound algorithm, dynamic programming and
cutting plane algorithm. Out of these three methods, only branch-and-bound algorithms guarantee an
optimum solution, that too for problems of size less than n = 30 (Loiola et al., 2007). Thus, the heuristic
and metaheuristic methods become the natural choice of researchers solving QAPs. These algorithms
provide near-optimal solutions within acceptable computational time. The set of benchmark instances
provided by various researchers are used for assessing the performance of these algorithms. Among the
numerous heuristic and metaheuristics algorithms reported in the literature, Genetic Algorithms (GAs)
(Ahmed, 2015a), Simulated Annealing (Misevicius, 2003), Tabu Search (TS) (Czapiński, 2013), Ant
Colony Optimization (ACO) (Hong, 2013), Neural Networks (Uwate et al., 2004), and Iterated Local
Search (Ramkumar et al., 2008) are some of the familiar algorithms that have been successful in solving
QAP, at least to a near optimal solution.

The ability of the searching mechanism in exploring the solution space is important in finding global
solutions of optimization problems. The particle swarm optimization (PSO) algorithm proceeds by
updating the position of particles learning from its inertia, a personal best position attained, local best
particle and global best particle. Thus, PSO is good at searching the solution space globally and locally.
The general PSO is suitable to continuous optimization problems and for resolving combinatorial
optimization problems like QAP, a discrete version of PSO is needed.

A revised version of the Discrete Particle Swarm Optimization algorithm (DPSO) for resolving QAP is
presented in this paper. Different parameters and operators used in the proposed DPSO are adopted from
Pradeepmon et al. (2016), in which Taguchi’s design of experiments method is used for finding the best
combination of parameters and operators for the algorithm. Benchmark instances from QAPLIB are used
during the tests. The DPSO provides good near-optimal solutions for the benchmark instances
considered.

The remainder of the paper is organised as follows: In Section 2, a summary of the solution
methodologies of QAP is given. It outlines the exact as well as heuristic and metaheuristic solution
methods for QAP. In Section 3, the working of classical PSO is explained. Section 4 describes the
proposed algorithm in detail and in Section 5 various parameters and different operators used in DPSO
are explained. Section 6 gives a short illustration of the proposed algorithm considering a small problem.
Section 7 presents the results and related discussions. Finally, Section 8 provides concluding remarks
and areas for further research.

n

i

n

k
kiik

n

i
ii bac

1 1
)()(

1
)(Z

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 493

Notations
 Xi – position vector of ith particle
 xij – jth element in position vector of ith particle
 n – number of decision parameters or number of elements in a vector
 Vi – velocity vector of ith particle
 vij – jth element in velocity vector of ith particle
 Pbesti – personal best position vector of ith particle
 pij – jth element in personal best position vector of ith particle
 m – number of particles in a swarm
 Gbest – global best position
 N – the problem size
 t – iteration number
 Tmax – maximum number of iterations
	 w – inertia weight ranging between [0, 1]
	 c1 and c2 – cognitive and social learning factors, respectively
	 r1 and r2 – random numbers ranging between [0, 1]
 Πt – swarm during iteration number t

t
i – ith particle in the swarm during iteration number t

 λi, εi, δi, γi – inertia, cognition, socio-local and socio-global components of velocity
respectively of ith particle

 Xi(λ), Xi(ε), Xi(ε), Xi(ε) – position of ith particle considering only inertia, cognition, socio-local and
socio-global components of velocity respectively

 – mutation probability

 1, 2 and 3 – crossover probabilities associated with cognition, socio-local and socio-
global crossover operations

 ʘ – operator for incorporating mutation and crossover probabilities.

 – mutation operator for finding position due to inertia

 1, 2 and 3 – crossover operators for finding position due to cognition, socio-local and
socio-global components of velocity respectively

 F(x) – is the fitness function

2. Literature Survey

Since its introduction in 1957 by Koopmans and Beckmann, the QAP has been exploited in a variety of
situations such as Facility Layout Problem, Campus Planning, University Examination Scheduling,
Hospital Layout, Turbine Balancing, Typewriter Keyboard Design, Computer Manufacturing, Printed
Circuit Board (PCB) Assembly, Room Allocation Problem, etc. Its diverse applications and complex
nature made it one of the favourite problems of researchers in the field of operations management. The
QAP is a proven NP-Hard problem and no polynomial time algorithm is currently available which can
solve the problem optimally. This made heuristic and metaheuristic methods popular among researchers
working on QAP. A number of exact, heuristic and metaheuristic algorithms providing exact and near-
optimal solutions of QAP are available in the literature. The exact algorithms are guaranteed to provide
optimal solutions but are limited to solving only small sized problems. The exact methods used for
solving QAPs are Branch-and-Bound (Brixius & Anstreicher, 2000; Clausen & Perregaard, 1997; Hahn
et al., 2001), Cutting plane algorithms (Bazaraa & Sherali, 1982) and Dynamic Programming methods

494

(Urban, 1998). The heuristic algorithms guarantee near-optimal solutions within a short period. But, as
the problem size increases, the gap between the obtained solution and the optimal solution also increases
(Osman & Laporte, 1996; Xia, 2010). The various categories of heuristic methods are construction
methods (Arkin et al., 2001; Fleurent & Glover, 1999), limited enumeration methods (West, 1983) and
improvement methods (Anderson, 1996; Li & Smith, 1995; Misevicius, 2000). The optimal solution is
not guaranteed by using metaheuristic methods, but it promises a near-optimal solution within a short
time, irrespective of the problem size. It is also possible that the obtained solution is the optimal one.

Metaheuristic methods are general purpose generic iterative procedures which guide a heuristic search
toward promising regions in the search space of an optimization problem. They can be implemented for
solving a wide variety of problems with minor modifications to customise them for a particular problem.
These methods are generally classified into single solution methods and population based methods. The
metaheuristic methods include Genetic Algorithm (GA), Simulated Annealing, Ant Colony Optimization
(ACO), Tabu Search, etc. and many hybrid algorithms. Some works have been reported, which employ
GA and its variants for solving QAPs. By using simple GA good results can be found for small instances
of QAP as reported by Tate and Smith (Tate & Smith, 1995). But for larger problems of size above 20,
simple GA is not able to obtain best-known solutions. To overcome this shortcoming a number of
researchers hybridised GA with other methods to obtain good solutions for higher sized instances
(Ahmed, 2015b; Drezner & MisevicIus, 2013; Drezner, 2008; Misevicius & Guogis, 2012; Misevicius,
2004). There are a variety of GA variants available in the literature which has been applied for solving
QAPs (Ahmed, 2015a; Azarbonyad & Babazadeh, 2014; Day et al., 2003; Tosun, 2014; Wu & Ji, 2007).

Burkard and Rendl (1984) were the first to implement Simulated Annealing for solving QAPs and
Connolly (1990) refined it. Further applications of Simulated Annealing for solving QAPs can be found
in (Paul, 2011; Peng et al., 1996; Wilhelm & Ward, 1987). Parallel implementations of Simulated
Annealing for improving the performance (in some cases up to 50-100 times better performance can be
obtained by parallelization) can be found in (Paul, 2012). Performance comparison of Simulated
Annealing with Tabu Search can be found in (Battiti & Tecchiolli, 1994) and it is argued that Simulated
Annealing performs better for a comparatively lower number of iterations. But, when the problem is of
higher complexity, the number of iterations needed increases, and in that case, Tabu Search outperforms
Simulated Annealing. The first implementation of Tabu Search for solving QAP was performed by
Skorin-Kapov (1990). Tabu Searches is the main candidate for the parallelization of algorithms and
hardware implementations for solving QAPs (Czapiński, 2013; Matsui et al., 2004; Talbi et al., 1998;
Wakabayashi et al., 2006; Zhu et al., 2010). Drezner (2005) extended the concentric tabu search by
including more number of possible moves for cracking the QAP. Two extensions are suggested and
tested. James et al. (2009) presented a cooperative parallel tabu search algorithm (CPTS) in which the
information exchange takes place between processors throughout the run of the algorithm.

Gambardella et al. (1999) proposed the first ACO implementation for QAP, in which the ant colony
system is hybridised with a local search (HAS-QAP). See and Wong (2008) provided a broad review of
the notions of ACO, its uses and various ACO algorithms or variants developed for solving QAPs. There
are a number of hybrid metaheuristics and variants of simple algorithms available in the literature. Tseng
and Liang (2006) proposed a hybrid metaheuristic combining the ACO, the GA and a local search method
and the method is called ANGEL. The ANGEL is marked by its two key phases - an ACO phase and a
GA phase. A large number of QAP benchmark instances were tried and the results confirm that the
proposed algorithm is competent enough to achieve the optimal solution with good efficiency. The
Neural Meta-Memes Framework proposed by Song et al. (2011) is a combination of different algorithms
namely Genetic Algorithm, Simulated Annealing, Tabu Search, and Iterated Local Search. The proposed
framework was applied on QAPs with success.

Even though there are a large number of publications on QAP in the last few decades, not many of them
are adopting Particle Swarm Optimization (PSO) as solution methodology. This may be because of the
fact that PSO is mainly used for solving continuous optimization problems. The idea of learning in PSO
is realized by using the notion of Euclidean distance between different solutions. Euclidian distance

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 495

cannot be calculated for combinatorial optimization problems. QAP is a well-known combinatorial
optimization problem and the biggest challenge for the application of PSO to QAP is to establish an
appropriate distance measure. There are some papers which use PSO for hybridising with other methods.
Liu and Abraham (2007) combined fuzzy variable neighbourhood search with PSO and compared the
algorithm with other four algorithms in terms of its performance in solving only a single problem taken
from QAP Library. Mamaghani and Meybodi (2012) hybridised Hill Climbing Approach with PSO and
the performance of the suggested algorithm is matched with other algorithms. The results are promising
with variation from best-known solution as low as one percent. Hong (2013) hybridized ACO with PSO
and compared the results with that obtained for simple ACO for four problems taken from QAP Library.
Hafiz and Abdennour (2016) proposed a probability-based approach and based on this concept, a generic
framework for discretizing PSO is developed. Based on this framework, five PSO variants are discretized
and applied on QAP. There are some hardware implementations of PSO for solving QAP. Szwed et al.
(2015) proposed a PSO algorithm and Szwed and Chmiel (2015) proposed a multi-swarm PSO algorithm
for the QAP to be implemented on OpenCL platform. The parallel implementations of these algorithms
performed better than sequential implementations on low-end devices.

All the available implementations of PSO for solving QAPs are either hybrid methods or are applicable
only to a small set of problems. In this research, we propose a variant of the general PSO applied for
permutations problems, in which, instead of adopting the commonly used velocity and position update
procedures, explores four different possible positions for each particle and the best among them is
accepted as the updated position. This updating procedure enhances the convergence of the algorithm.
Further, the optimal parameter setting of DPSO is determined using Taguchi’s design of experiments
method (Pradeepmon et al., 2016). The suggested DPSO is applied to solve a number of benchmark
problems taken from QAP library.

3. Particle Swarm Optimization

Kennedy and Eberhart (1995) introduced Particle Swarm Optimization (PSO) as a method for optimizing
continuous nonlinear functions. It is derived from the social-psychological theory and simulates the
social behaviour of bird swarming and fish schooling. The PSO is a population based search method,
like Genetic Algorithm (GA), but does not use operations like mutation and crossover. The PSO retains
a swarm (population) of particles (representing possible solutions). Each particle is described by a group
of three vectors denoted as

(Xi, Vi, Pbesti)

where Xi = {xi1, xi2, …, xin} (i = 1, 2, …, m), Vi = {vi1, vi2, …, vin} (i = 1, 2, …, m) and Pbesti = {pi1, pi2,
…, pin} (i = 1, 2, …, m) are vectors representing the position, velocity and personal best position attained
for the ith particle in a swarm with m particles. The particles fly through the search space influenced by
its own velocity (inertia), the best position attained by itself (personal best; Pbest) and the best position
attained by the whole swarm (global best; Gbest = {g1, g2, …, gn}). The movement of particles in the
search space is governed by the velocity and position updating equations as given below:

where t represents the iteration number, w is the inertia weight (coefficient to share the knowledge
represented in the previous velocities with the current velocity) ranging between 0 and 1; c1 and c2 are
called cognitive and social learning factors, respectively; and r1 and r2 are random numbers ranging
between 0 and 1.

During each iteration, the velocity and position of the particles in the swarm are updated using the
velocity and position updating procedures, and the new personal best (Pbest) and global best (Gbest)

 1
1 1 2 2

t t t t t t
ij ij ij ij j ijv wv c r p x c r g x

1 1t t t
ij ij ijx x v

496

values and corresponding particles are identified. The Pbest of each particle in the swarm is modified
using the following criterion.

 1 ≤ i ≤ m

The current Gbest of the swarm is updated as follows:

 1 ≤ i ≤ m

The original PSO algorithms are used for optimizing problems in which the elements of the solution are
continuous real numbers. The PSO has been applied successfully for solving a variety of problems
involving optimization, such as system design, multi-objective optimization (Peng et al., 2013), pattern
recognition, medical field (Asarry et al., 2013, De et al., 2012), signal processing, games, robotic
applications, decision making etc. (Eberhart & Shi, 2001). More details on PSO can be obtained from
Zhang et al. (2015).

Even though the initial implementation of PSO was for continuous optimization problems, later many
discrete adaptations of PSO, known as Discrete Particle Swarm Optimization (DPSO) were used for
solving discrete optimization problems such as the minimum labelling Steiner tree problem (Consoli et
al., 2010), Scheduling (Izakian et al., 2010; Lian et al., 2014), warehouse location problem (Ozsoydan &
Sarac, 2011), Sensor Deployment Problem (Rapai et al., 2008) and p-median problem (Sevkli, 2014).
Various discretization methods for PSO were proposed by Tasgetiren et al. (2006) and Pan et al. (2008).

4. Proposed Discrete Particle Swarm Optimization

In this study, a unique DPSO algorithm is proposed for the QAP. In this novel approach, the separate
velocity vector is avoided, a socio-local component of velocity is also considered for position update of
each particle and the position updating procedure finds four different possible movements of the particle
and the one selected using rank selection method is selected as the updated position.

4.1. Particle representation

The widely accepted permutation representation of QAP is used in this study and thus, each particle is
denoted as a permutation of N integers, where N is the problem size. For example, in a QAP with five
facilities (i.e., N = 5), a feasible solution represented by the permutation {3 4 5 1 2} indicates that third
facility is allotted to the location number one, the fourth facility to location number two and so on. Thus,
the position of each particle is a permutation of N.

4.2. Swarm initialization

In the general PSO, the swarm is represented as , where m is the number of

particles in the swarm (swarm size) and is the ith particle in the swarm Πt during iteration t and

. An initial swarm of random particles with velocity and position is generated and

fitness value of each particle is calculated. The initial position of each particle is assigned as its Pbest
and position of the particle with best fitness value among all particles in the swarm is assigned as the
Gbest. In the proposed algorithm, the velocity vector is avoided and each particle holds only its position
and its personal best, i.e., . Instead of using a velocity vector for a mutation operator

is used for updating the position of the particle based on its inertia. Or in other words, the position vector
itself acts as the velocity vector. This reduces the memory space requirement for execution of the
algorithm.

1

1 1

if () ()

if () ()

t t t
t i i i
i t t t

i i i

X f X f Pbest
Pbest

Pbest f X f Pbest

1

1 1

if () ()

if () ()

t t t
t i i

t t t
i

X f X f Gbest i
Gbest

Gbest f X f Gbest i

1 2[, ,...,]t t t t
m

t
i

[, ,]t t t t
i i i iX V Pbest

[,]t t t
i i iX Pbest

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 497

4.3. Velocity and Position updating

In every iteration, the particles belonging to the swarm move around in the solution space searching for
better positions. The movement of particles to the new positions is influenced by (i) current position, (ii)
velocity, (iii) best position so far attained by the particle, (iv) best position so far attained by particles in
the neighbourhood and (v) the global best position attained by the entire swarm. Thus, the velocity is
influenced by four components namely, inertia component (), cognition component (), socio-local

component () and socio-global component (). In some variants of PSO, the socio-local component

of velocity is omitted. Figure 1 represents the methodology for updating particle position in classic PSO.
Generally, the velocity and position of the particle will get updated using following the following
equations:

where, F1, F2, F3, F4 and F5 are the operators feasible in a permutation space, w is the weight given to
inertia, c1, c2 and c3 are the learning factors for cognition, socio-local and socio-global knowledge.

Fig. 1. Position updating strategy for classic PSO

In the proposed DPSO algorithm, a novel position updating strategy is proposed in which four possible
movements of the particle incorporating four components of velocity taking one at a time are considered.
Thus, there will be four possible positions for the ith particle based on its own inertia (Xi(λ)), cognition
(personal best) (Xi(ε)), local best particle (Xi(δ)) and global best particle (Xi(γ)). Out of these four possible
positions, the one with maximum fitness is selected as the updated position for the particle. Mutation
operations used in Genetic Algorithm are used for finding the position based on inertia and for other
positions crossover operators are used. Figure 2 represents the proposed position updating methodology
used in the DPSO algorithm.

Fig. 2. Position updating strategy for proposed DPSO

t
i

t
i

t
l

t

 1
1 1 2 2 3 3 4

t t t t t
i i i lV w F c F c F c F

 1 1
5 ,t t t

i i iX F X V

498

The four potential positions and the position selected for movement of the particle are obtained as
follows:

 where

 is the mutation probability, 1, 2 and 3 are the crossover probabilities associated with cognition,
socio-local and socio-global crossover operations, is the mutation operator for finding position due to
inertia, 1, 2 and 3 are the crossover operators for finding position due to cognition, socio-local and
socio-global components of velocity respectively and F(x) is the fitness function. The combination of
operators and parameters for the proposed DPSO is borrowed from the work of Pradeepmon et al. (2016),
in which the Taguchi’s robust design method is applied to finding the optimised parameter setting for
DPSO used for solving QAPs.

5. Parameters and Operations in DPSO

The parameters to be decided in the DPSO are mutation probability, crossover probabilities for three
different crossovers, namely, Cognition Crossover, Socio-local Crossover and Socio-Global Crossover,
and the swarm size. The various operations involved in DPSO are position updating strategy, mutation,
cognition crossover, socio-local crossover, and socio-global crossover. A number of different procedures
for these operations are available in the literature. The parameters and operations were selected in
conformance with the values and operations described in Pradeepmon et al. (2016). The selected
operations are explained below.

5.1. Mutation

The mutation operator modifies one or more values at randomly selected locations in randomly selected
members of the population (swarm) with a probability, which normally is low, in agreement with its
biological equivalent. The mutation operator updates the position of a particle based on its inertia thus
moves in the direction of its own velocity. The mutation operators used in this paper is Swap Mutation
(SWM) and is explained in detail.

The swap mutation operator randomly selects two random positions in the parent string and exchanges
the elements in them (Banzhaf, 1990). As an example, let the parent solution string be (1 2 3 4 5 6), and
suppose that the randomly selected positions are second and the fifth. The offspring resulting from swap
mutation is (1 5 3 4 2 6).

Fig. 3. Pseudo code of Swap Mutation

 t t
iiX X

 1 1 ,t t t
i iiX X Pbest

 2 2 ,t t t
i liX X Lbest

 3 3 ,t t t
iiX X Gbest

1 arg max ()t
iX F X () () () (), , ,t t t t

i i i iX X X X X

SWM_pseudo_code
{

1. Select parent for mutation.
2. If rand() <= mutprob do

{
a. Select two random positions c1 and c2 in parent.
b. Exchange or swap the elements in positions c1 and c2 in parent to

obtain offspring.
}
}

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 499

5.2. Crossover

The crossover operator is similar to natural reproduction which allows solutions to exchange information.
Thus, the crossover operator receives two (or more) parent solutions and offspring solutions are produced
from them. Crossover operator is applied to such that the position of the particle is updated to a better
position by sharing knowledge with neighbours. The crossover operators incorporated in this paper are
Position Based Crossover (POX), and Partially Mapped Crossover (PMX). A detailed discussion of each
one of them is given below.

5.2.1. Position Based Crossover (POX)

The position based crossover selects a set of random positions from the parent chromosomes (Syswerda,
1991). In these random positions of one offspring, the genes of other parent are fixed. Further the missing
elements are inserted in the same order as they appear in the parent. For example, consider the two parent
chromosomes P1: (1 2 3 4 5 6) and P2: (3 5 1 6 2 4). The random positions selected are the first, third
and the sixth positions. With this operator the following off-springs are generated: O1: (3 * 1 * * 4) and
O2: (1 * 3 * * 6). Now, to complete O1 and O2, the missing elements are inserted in the same order as
they appear in P1 and P2 respectively. This gives the offspring O1: (3 2 1 5 6 4) and O2: (1 5 3 2 4 6).

Fig. 4. Pseudo code of Position Based Crossover

5.2.2. Partially Mapped Crossover (PMX)

In Partially Mapped Crossover, the ordering information from parents is shared with offspring. It was
proposed by Goldberg and Lingle (1985) in which a substring of one chromosome is mapped onto a
corresponding substring of the other chromosome and the remaining information is exchanged. As an
example, consider the following two chromosomes P1: (1 2 3 4 5 6) and P2 (2 4 6 5 3 1)

The PMX operator selects two random cut points along parents. Let the first cut point be selected between
the first and the second elements, and the second cut point between the fourth and the fifth elements. For
example, (1 | 2 3 4 | 5 6) and (2 | 4 6 5 | 3 1). The substrings between the cut points are then mapped to
each other. In our example mappings are 2<->4, 3<->6, 4<->5. Now the mapping substrings are
exchanged, i.e., the mapping substring of the first parent replaces that of the second offspring, and vice-
versa. In our example, O1: (* | 4 6 5 | * *) and Offspring 2: (* | 2 3 4 | * *). Then, O1 is completed by
copying the remaining elements of P1. If a facility is already present in the offspring it is replaced
according to the mappings. For example, the first element of O1 would be a 1 like the first element of
P1. But the fifth element 5 in P1 is already present in O1. Hence, because of the mapping 5<->4 and 4<-
>2 we choose the fifth element of O1 to be a 2. The sixth element of O1 would be a 6, which is already
present. Because of the mappings 6<->3, it is chosen to be a 3. Hence, Offspring1: (1 | 4 6 5 | 2 3). In the
same way, we get O2: (5 | 2 3 4 | 6 1).

POX_pseudo_code

{

1. Select parent solutions P1 and P2 for crossover from current swarm P(t).
2. Generate two empty strings O1 and O2 for offsprings.
3. Select a set of random positions, R = (r1, r2,…, rn), where n is also a random

number less than the size of the parent.
4. Copy the elements in P2 occupying the positions represented by R to O1.
5. Insert the missing elements in O1 from P1 in the same order as they appear in

P1.
6. Repeat steps 4 and 5 for O2 by exchanging the role of P1 and P2.

}

500

Fig. 5. Pseudo code of Partially Mapped Crossover

5.3. Position Updating Strategy

Once, the possible position of particles based on inertia, cognition, local best and global best are found
out, there are four different possible positions for the same particle. But, the particle can occupy only a
single location and it is selected based on the position updating strategy. The strategy used in this paper
is rank selection method. The rank selection process starts with ranking the swarm in hand and assigning
fitness to each member in the swarm based on the rank of that member. The worst member of the swarm
will get fitness value ‘1’, the second worst will get fitness of ‘2’ and so on, and the best will get a fitness
value ‘N’ (where N is the swarm size). After ranking the swarm, all members have a selection probability
proportional to their fitness value. But this method may lead to slower convergence of the algorithm, as
the fitness of the better members does not differ much from other worse members. The operators and
parameters for the proposed DPSO as selected from Pradeepmon et al. (2016), are given in Table 1.

Table 1
Selected operations and parameters for optimal solution

Sl. No. Factor Level Values
1 Position Updating Strategy (PUS) Rank Selection (RKS),
2 Swarm Size (SMS) 2.5N (N is problem size)
3 Mutation Probability for Inertia (MPI) 0.9
4 Mutation Operator for Inertia (MOI) Swap (SWM)
5 Crossover Probability for Cognition (CPC) 0.9
6 Crossover Operator for Cognition (COC) Position Based (POX)
7 Crossover Probability for Socio-Local (CPL) 0.9
8 Crossover Operator for Socio-Local (COL) Position Based (POX)
9 Crossover Probability for Socio-Global (CPG) 1

10 Crossover Operator for Socio-Global (COG) Partially Mapped (PMX)
11 Termination Criterion (Maximum number of iterations) 100N

PMX_pseudo_code

{
1. Select parent solutions P1 and P2 for crossover from current swarm P(t).
2. Select two cut points c1 and c2 randomly.
3. Generate a mapping M of elements in P1 and P2, between the cut points c1 and c2.
4. Copy the elements of P2 between c1 and c2 to O1.
5. For i = 1 to sizeof(O1)

{
a. if element in position i of O1 is empty

{
i. if the element in position i of P1 is not present in O1

{
1. copy the element in position i of P1 to O1.

}
ii. else

{
1. find the mapping of corresponding element from M and copy it to O1.

}
}

b. else
{

i. i = i + 1.
}

}
6. Repeat steps 5 for O2.

}

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 501

6. Illustration of the Proposed Algorithm

Fig. 6 represents the flow chart of the proposed DPSO algorithm. For a step by step illustration of the
proposed algorithm, we consider a QAP with six facilities. This problem is derived from the benchmark
problems on Dynamic Facility Layout problems provided by Balakrishnan and Cheng (2000). Table 2
gives the distance matrix of the departments and the material handling costs between departments for the
illustration problem.

Fig. 6. Flowchart of proposed DPSO

YES

Evaluate the fitness of each particle
and set Pbest, Lbest and Gbest

Start

Initialize the particles with velocity and position
(Here position itself acts as velocity)

For each particle find

Position based on inertia
(using mutation operation)

Position based on Pbest
(using crossover operation)

Position based on Gbest
(using crossover operation)

Position based on Lbest
(using crossover operation)

Select the updated position
from the four possible positions

using rank selection

Termination
criterion reached

Return the best position
so far achieved

NO

502

Table 2
Data for illustration
Table 2(a) Distance matrix Table 2(b) Flow matrix

 To To
From 1 2 3 4 5 6 From 1 2 3 4 5 6

1 0 1 2 1 2 3 1 0 90 689 194 165 494
2 1 0 1 2 1 2 2 668 0 1324 811 241 206
3 2 1 0 3 2 1 3 631 387 0 125 281 375
4 1 2 3 0 1 2 4 80 495 615 0 222 221
5 2 1 2 1 0 1 5 276 204 1127 490 0 676
6 3 2 1 2 1 0 6 109 409 1780 394 200 0

Step by step illustration of the algorithms is given below.

1. Initialise the parameters.

Swarm Size = 2.5 N

Mutation Probability for Inertia = 0.90

Crossover probability for personal best = 0.90

Crossover probability for neighbourhood best = 0.90

Crossover probability for global best = 1.00

Maximum number of iterations = 100 N

Number of Neighbourhoods = 4

These parameters are selected from Pradeepmon et al. (2016), in which the best combination of
parameters and operations for the proposed DPSO were identified by using Taguchi’s robust
design methodology.

2. Generate an initial random swarm of 2.5N particles and calculate the objective function value as
the material handling cost or transportation cost.

Particle Objective Function

[6 2 4 1 5 3] (24829)
[6 5 1 4 3 2] (22298)
[6 2 4 1 5 3] (24829)
[6 4 5 3 1 2] (23702)
[3 2 5 1 6 4] (23118)
[4 5 6 2 1 3] (21745)
[3 4 1 5 2 6] (25163)
[4 3 2 5 1 6] (22876)
[3 6 4 1 2 5] (23020)
[2 4 6 3 5 1] (24075)
[3 6 1 4 5 2] (23654)
[1 5 4 3 6 2] (22031)
[4 6 5 2 3 1] (20253)
[2 3 1 6 4 5] (22852)
[3 2 6 5 4 1] (23525)

3. Keep the current swarm as the personal best position (pbest) so far visited by each individual.

4. Divide the swarm into 4 groups.

5. Determine the best solution among the members (lbest) in each Neighbourhood.

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 503

Neighbourhood Best OF
[6 5 1 4 3 2] (22298)
[4 5 6 2 1 3] (21745)
[1 5 4 3 6 2] (22031)
[4 6 5 2 3 1] (20253)

6. Determine the best solution (gbest) among the swarm.

[4 6 5 2 3 1] 20253

7. Repeat the step 8 to step 10 till the termination criterion is satisfied

8. For each individual in the swarm find four possible movements by the following operations.

a. Swap mutation of the individual with probability = 0.90

Initial [6 2 4 1 5 3] (24829)

After Mutation [6 1 4 2 5 3] (26893)

b. Position based Crossover with pbest with probability = 0.90
Better of the two offsprings saved
Parents and Offsprings [6 2 4 1 5 3] (24829) (Since the personal best is the same

as the particle)

c. Position based Crossover with lbest with probability = 0.90
Parents [6 2 4 1 5 3] (24829)
 [6 5 1 4 3 2] (22298)
Offsprings [6 5 4 1 3 2] (20911)
 [6 2 5 1 4 3] (25163)
Better of the two offsprings saved [6 5 4 1 3 2] (20911)

d. Partially mapped Crossover with gbest with probability = 1.00
Parents [6 2 4 1 5 3] (24829)
 [4 6 5 2 3 1] (20253)
Offsprings [6 1 5 2 3 4] (22876)
 [3 6 4 1 5 2] (22785)

Better of the two offsprings saved [3 6 4 1 5 2] (22785)

9. Select a movement among the four possible movements using the rank selection procedure and
update the position of the individual as the resultant of the selected movement.

[6 5 4 1 3 2] (20911)

10. Update (pbest), (gbest), and (lbest) using the updated swarm.

11. Once termination condition is reached, the best solution so far obtained is reported.
[4 6 5 2 3 1] (20253)

7. Results and Discussions

The test instances taken from QAP library are solved using the DPSO. In this work, five sets of
benchmark instances, namely, Bur, Had, Kra, Nug, and Rou which are available in QAP Library (Burkard
et al., 1997) are considered. Each of the problems is solved ten times and the best, worst and average
results obtained are reported with corresponding percentage deviation from the best-known solution.
Table 3 presents the results of the experiments carried out.

504

Table 3
Results of the Computational Experiments

Sl. No. Problem Known Min Solution Values Percentage deviation from known min
Min Max Average Min Max Average

1 bur26a 5426670 5434783 5450913 5441457 0.150 0.447 0.272
2 bur26b 3817852 3824420 3831477 3827786 0.172 0.357 0.260
3 bur26c 5426795 5428396 5453273 5436317 0.030 0.488 0.175
4 bur26d 3821225 3821419 3876647 3833711 0.005 1.450 0.327
5 bur26e 5386879 5387320 5435102 5402320 0.008 0.895 0.287
6 bur26f 3782044 3783123 3807692 3792180 0.029 0.678 0.268
7 bur26g 10117172 10118542 10168874 10145949 0.014 0.511 0.284
8 bur26h 7098658 7099677 7181427 7134108 0.014 1.166 0.499
9 had12 1652 1652 1676 1658.2 0.000 1.453 0.375

10 had14 2724 2724 2746 2729.2 0.000 0.808 0.191
11 had16 3720 3720 3740 3723.2 0.000 0.538 0.086
12 had18 5358 5362 5476 5398.6 0.075 2.202 0.758
13 had20 6922 6922 7066 6947.2 0.000 2.080 0.364
14 kra30a 88900 91160 97100 95002 2.542 9.224 6.864
15 kra30b 91420 93160 97460 95054 1.903 6.607 3.975
16 kra32 88700 91570 97340 94523 3.236 9.741 6.565
17 nug12 578 582 604 592.4 0.692 4.498 2.491
18 nug14 1014 1016 1072 1049.6 0.197 5.720 3.511
19 nug15 1150 1164 1190 1174.6 1.217 3.478 2.139
20 nug16a 1610 1630 1744 1677.6 1.242 8.323 4.199
21 nug16b 1240 1240 1338 1291.2 0.000 7.903 4.129
22 nug17 1732 1750 1812 1777.6 1.039 4.619 2.633
23 nug18 1930 1936 2032 1990.6 0.311 5.285 3.140
24 nug20 2570 2570 2718 2655.2 0.000 5.759 3.315
25 nug21 2438 2444 2594 2516.6 0.246 6.399 3.224
26 nug22 3596 3602 3788 3687.2 0.167 5.339 2.536
27 nug24 3488 3578 3740 3649 2.580 7.225 4.616
28 nug25 3744 3766 3920 3853.2 0.588 4.701 2.917
29 nug27 5234 5294 5492 5422.8 1.146 4.929 3.607
30 nug28 5166 5228 5522 5387 1.200 6.891 4.278
31 nug30 6124 6206 6434 6308.4 1.339 5.062 3.011
32 rou12 235528 240038 251196 245918.8 1.915 6.652 4.412
33 rou15 354210 364058 376222 371982.2 2.780 6.214 5.017
34 rou20 725522 738850 768966 756489.4 1.837 5.988 4.268

It is observed that in all the selected problems for computational study, the obtained best solution is
closer to the known optimal solution with a maximum deviation of 3.24%. For most of the problems, the
reported best solution is having a deviation of less than one percent from the best-known solution. Even
in the case of maximum percentage deviation from the optimal solution the value is less than 10%.

The proposed algorithm is a variant of the simple DPSO and hence the results obtained are good when
compared to other algorithms. Out of the 34 problems considered for only four problems the best solution
varies from the best-known solution by a factor of more than 2.0%. For all other problems, the percentage
variation is less than 2.0% with 21 problems reporting less than 1.0% variation from the best-known
solution. For eight problems even the worst solution shows a variation of less than 1.0% from the best-
known solution.

8. Conclusions

Quadratic assignment problem is one of the most complex combinatorial optimization problems. Many
metaheuristic algorithms have been used for solving QAPs. The metaheuristics perform better when
hybridised than when they stand alone. But, this work is an improvement of general DPSO without using
any hybridization and in this work, a modified discrete particle swarm optimization algorithm is proposed
for solving QAPs. The proposed algorithm varies from the original DPSO in terms of the position
updating strategy. In classical DPSO only one updated position is found out incorporating all components

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 505

of information available with the particle. But in the proposed method four different possible positions
are found out by using the four data stored in the particle, one at a time. Out of these four possible
positions, one is selected according to the fitness of the solution represented by the new positions.

The DPSO thus obtained by incorporating the modified position updating procedure is then employed
for solving five sets of QAPs, namely, Bur, Had, Kra, Nug, and Rou, available in QAP library. The
results are listed and the variations are minute with most of the problems giving less than one percentage
deviation from the best-known solution. This paper works with a simple DPSO and an intensification
strategy in the search procedure may increase the efficiency of the algorithm. Further researches,
employing DPSO for hybridization with other methods, can be carried out using the reported
combination of parameters and operations for better results.

References

Ahmed, Z. H. (2015a). A multi-parent genetic algorithm for the quadratic assignment problem.

OPSEARCH, 52(4), 714–732.
Ahmed, Z. H. (2015b). An improved genetic algorithm using adaptive mutation operator for the quadratic

assignment problem. 38th International Conference on Telecommunications and Signal Processing
(TSP), 2015, 1–5. IEEE.

Anderson, E. J. (1996). Mechanisms for local search. European Journal of Operational Research, 88(1),
139–151.

Arkin, E. M., Hassin, R., & Sviridenko, M. (2001). Approximating the maximum quadratic assignment
problem. Information Processing Letters, 77(1), 13–16.

Asarry, A., Zain, M. Z. M., Mailah, M., & Hussein, M. (2013). Suppression of hand tremor model using
active force control with Particle swarm optimization and differential evolution. International Journal
of Innovative Computiong, Information and Control, 9(9), 3759–3777.

Azarbonyad, H., & Babazadeh, R. (2014). A Genetic Algorithm for solving Quadratic Assignment
Problem(QAP). Computing Research Repository, abs/1405.5050.

Balakrishnan, J., & Cheng, C. H. (2000). Genetic search and the dynamic layout problem. Computers
and Operations Research, 27(6), 587–593.

Banzhaf, W. (1990). The “molecular” traveling salesman. Biological Cybernetics, 64(1), 7–14.
Battiti, R., & Tecchiolli, G. (1994). Simulated annealing and tabu search in the long run: A comparison

on QAP tasks. Computer and Mathematics with Applications, 28(6), 1–8.
Bazaraa, M. S., & Sherali, H. D. (1982). On the Use of Exact and Heuristic Cutting Plane Methods for

the Quadratic Assignment Problem. The Journal of the Operational Research Society, 33(11), 991–
1003.

Brixius, N. W., & Anstreicher, K. M. (2000). Solving Quadratic Assignment Problems Using Convex
Quadratic Programming Relaxations. Optimization Methods and Software, 16, 49–68.

Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment Problems. Philadelphia: Society for
Industrial and Applied Mathematics.

Burkard, R. E., Karisch, S. E., & Rendl, F. (1997). QAPLIB – A Quadratic Assignment Problem Library.
Journal of Global Optimization, 10(4), 391–403.

Burkard, R. E., & Rendl, F. (1984). A thermodynamically motivated simulation procedure for
combinatorial optimization problems. European Journal of Operational Research, 17(2), 169–174.

Clausen, J., & Perregaard, M. (1997). Solving Large Quadratic Assignment Problems in Parallel.
Computational Optimization and Applications, 8(2), 111–127.

Connolly, D. T. (1990). An improved annealing scheme for the QAP. European Journal of Operational
Research, 46(1), 93–100.

Consoli, S., Moreno-Pérez, J. A., Darby-Dowman, K., & Mladenovic, N. (2010). Discrete Particle Swarm
Optimization for the minimum labelling Steiner tree problem. Natural Computing, 9(1), 29–46.

Czapiński, M. (2013). An effective Parallel Multistart Tabu Search for Quadratic Assignment Problem
on CUDA platform. Journal of Parallel and Distributed Computing, 73(11), 1461–1468.

506

Day, R. O., Kleeman, M. P., & Lamont, G. B. (2003). Solving the multi-objective quadratic assignment
problem using a fast messy genetic algorithm. Proceedings of Congress Evolutionary Computation
(CEC ’03), 4, 2277–2283.

De, A., Bhattacharjee, A. K., Chanda, C. K., & Maji, B. (2012). Hybrid particle swarm optimization with
wavelet mutation based segmentation and progressive transmission technique for MRI images.
International Journal of Innovative Computing, Information and Control, 8(7), 5179–5197.

Drezner, Z. (2005). The extended concentric tabu for the quadratic assignment problem. European
Journal of Operational Research, 160(2), 416–422.

Drezner, Z. (2008). Extensive experiments with hybrid genetic algorithms for the solution of the
quadratic assignment problem. Computers & Operations Research, 35(3), 717–736.

Drezner, Z., & MisevicIus, A. (2013). Enhancing the performance of hybrid genetic algorithms by
differential improvement. Computers & Operations Research, 40(4), 1038–1046.

Eberhart, R. C., & Shi, Y. (2001). Particle swarm optimization: developments, applications and
resources. Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, 1, 81–86. IEEE.

Fleurent, C., & Glover, F. (1999). Improved Constructive Multistart Strategies for the Quadratic
Assignment Problem Using Adaptive Memory. INFORMS Journal on Computing, 11(2), 198–204.

Gambardella, L. M., Taillard, É. D., & Dorigo, M. (1999). Ant Colonies for the Quadratic Assignment
Problem. The Journal of the Operational Research Society, 50(2), 167–176.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman & Co.

Goldberg, D. E., & Lingle Jr., R. (1985). Alleles, loci, and the traveling salesman problem. In J. J.
Grefenstette (Ed.), Proceedings of the First International Conference on Genetic Algorithms and
Their Applications. Lawrence Erlbaum Associates, Publishers.

Hafiz, F., & Abdennour, A. (2016). Particle Swarm Algorithm variants for the Quadratic Assignment
Problems-A probabilistic learning approach. Expert Systems with Applications, 44, 413–431.

Hahn, P. M., Hightower, W. L., Johnson, T. A., Guignard-Spielberg, M., & Roucairol, C. (2001). Tree
elaboration strategies in branch and bound algorithms for solving the quadratic assignment problem.
Yugoslav Journal of Operational Research, 11(1), 41–60.

Hassin, R., Levin, A., & Sviridenko, M. (2009). Approximating the minimum quadratic assignment
problems. ACM Transactions on Algorithms, 6(1), 18:1–18:10.

Hong, G. (2013). A Hybrid Ant Colony Algorithm for Quadratic Assignment Problem. The Open
Electrical and Electronic Engineering Journal, 7, 51–54.

Izakian, H., Ladani, B. T., Abraham, A., & Snášel, V. (2010). A Discrete Particle Swarm Optimization
Approach for Grid Job Scheduling. International Journal of Innovative Computing, Information and
Control, 6(9), 1–15.

James, T., Rego, C., & Glover, F. (2009). A cooperative parallel tabu search algorithm for the quadratic
assignment problem. European Journal of Operational Research, 195, 810–826.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the IEEE
International Conference on Neural Networks, 1942–1948.

Koopmans, T. C., & Beckmann, M. (1957). Assignment problems and the location of economic activities.
Econometrica, 25, 53–76.

Li, & Smith, J. M. (1995). Theory and Methodology: An algorithm for Quadratic Assignment Problems.
European Journal of Operational Research, 81, 205–216.

Lian, Z., Lin, W., Gao, Y., & Jiao, B. (2014). A Discrete Particle Swarm Optimization Algorithm for
Job-shop Scheduling Problem to Maximizing Production. International Journal of Innovative
Computing, Information and Control, 10(2), 729–740.

Liu, H., & Abraham, A. (2007). A Hybrid Fuzzy Variable Neighborhood Particle Swarm Optimization
Algorithm. Journal of Universal Computer Science, 13.

Loiola, E. M., Abreu, N. M. M. de, Boaventura-Netto, P. O., Hahn, P., & Querido, T. (2007). A survey
for the quadratic assignment problem. European Journal of Operational Research, 176(2), 657–690.

T.G. Pradeepmon et al. / International Journal of Industrial Engineering Computations 9 (2018) 507

Loiola, E. M., Maria, N., Abreu, M., Boaventura-netto, P. O., Hahn, P., & Querido, T. (2004). An
Analytical Survey for the Quadratic Assignment Problem. Council for the Scientific and
Technological Development, of the Brazilian Gov.

Mamaghani, A. S., & Meybodi, M. R. (2012). Solving the Quadratic Assignment Problem with the
modified hybrid PSO algorithm. Proceedings of 6th International Conference on Application of
Information and Communication Technologies (AICT), 1–6.

Matsui, S., Kobayashi, Y., Watanabe, K., & Horio, Y. (2004). Exponential chaotic tabu search hardware
for quadratic assignment problems using switched-current chaotic neuron IC. Proceedings of IEEE
Internationa Joint Conference on Neural Networks, 3, 2221–2225.

Misevicius, A. (2000). An Intensive Search Algorithm for the Quadratic Assignment Problem.
Informatica, 11(2), 145–162.

Misevicius, A. (2003). A Modified Simulated Annealing Algorithm for the Quadratic Assignment
Problem. Informatica, 14(4), 497–514.

Misevicius, A. (2004). An improved hybrid optimization algorithm for the quadratic assignment
problem. Mathematical Modelling and Analysis, 9(2), 149–168.

Misevicius, A., & Guogis, E. (2012). Computational study of four genetic algorithm variants for solving
the quadratic assignment problem. International Conference on Information and Software
Technologies, 24–37. Springer.

Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research,
63(5), 511–623.

Ozsoydan, F. B., & Sarac, T. (2011). A Discrete Particle Swarm Optimization Algorithm for Bi-Criteria
Warehouse Location Problem. Istanbul University Econometrics and Statistics e-Journal, 13(1), 114–
124.

Pan, Q.-K., Tasgetiren, M. F., & Liang, Y.-C. (2008). A discrete particle swarm optimization algorithm
for the no-wait flowshop scheduling problem. Computers and Operations Research, 35(9), 2807–
2839.

Paul, G. (2011). An efficient implementation of the simulated annealing heuristic for the quadratic
assignment problem. Computing Research Repository, abs/1111.1353.

Paul, G. (2012). A GPU implementation of the Simulated Annealing Heuristic for the Quadratic
Assignment Problem. Computing Research Repository, abs/1208.2675.

Peng, H., Zhang, Z., Wang, J., & Shi, P. (2013). Audio watermarking framework using multi-objective
particle swarm optimization. International Journal of Innovative Computing, Information and
Control, 9(7), 2789–2800.

Peng, T., Huanchen, W., & Dongme, Z. (1996). Simulated Annealing for the Quadratic Assignment
Problem: A further study. Computers and industrial Engineering, 31(3/4), 925–928.

Pradeepmon, T. G., Panicker, V. V., & Sridharan, R. (2016). Parameter Selection of Discrete Particle
Swarm Optimization Algorithm for the Quadratic Assignment Problems. Procedia Technology, 25,
998–1005.

Ramkumar, A. S., Ponnambalam, S. G., Jawahar, N., & Suresh, R. K. (2008). Iterated fast local search
algorithm for solving quadratic assignment problems. Robotics and Computer-Integrated
Manufacturing, 24(3), 392–401.

Rapai, M. R., Kanovi, Ž., & Jelici, Z. D. (2008). Discrete particle swarm optimization algorithm for
solving optimal sensor deployment problem. Journal of Automatic Control, 18(1), 9–14.

See, P. C., & Wong, K. Y. (2008). Application of ant colony optimisation algorithms in solving facility
layout problems formulated as quadratic assignment problems: a review. International Journal of
Industrial and Systems Engineering, 3(6), 644–672.

Sevkli, F. Mehmet Mamedsaidov Ruslan Camci. (2014). A novel discrete particle swarm optimization
for p-median problem. Journal of King Saud University - Engineering Sciences, 26(1), 11–19.

Skorin-Kapov, J. (1990). Tabu search applied to the quadratic assignment problem. ORSA Journal on
Computing, 2(1), 33–45.

Song, L. Q., Lim, M. H., & Ong, Y. S. (2011). Neural meta-memes framework for managing search
algorithms in combinatorial optimization. IEEE Workshop on Memetic Computing (MC), 2011, 1–6.

508

Syswerda, G. (1991). Schedule Optimization Using Genetic Algorithms. In L. Davis (Ed.), Handbook of
Genetic Algorithms. New York, NY: Van Nostrand Reinhold.

Szwed, P., & Chmiel, W. (2015). Multi-swarm PSO algorithm for the Quadratic Assignment Problem: a
massive parallel implementation on the OpenCL platform. arXiv preprint arXiv:1504.05158.

Szwed, P., Chmiel, W., & Kadłuczka, P. (2015). OpenCL Implementation of PSO Algorithm for the
Quadratic Assignment Problem. Artificial Intelligence and Soft Computing, 223–234. Springer.

Talbi, E. G., Hafidi, Z., & Geib, J.-M. (1998). A parallel adaptive tabu search approach. Parallel
Computing, 24(14), 2003–2019.

Tasgetiren, M. F., Liang, Y.-C., Sevkli, M., & Gencyilmaz, G. (2006). Particle swarm optimization and
differential evolution for the single machine total weighted tardiness problem. International Journal
of Production Research, 44(22), 4737–4754.

Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers
and Operations Research, 22(1), 73–83.

Tosun, U. (2014). A New Recombination Operator for the Genetic Algorithm Solution of the Quadratic
Assignment Problem. Procedia Computer Science, 32(0), 29–36.

Tseng, & Liang, S. C. (2006). A Hybrid Metaheuristic for the Quadratic Assignment Problem.
Computational Optimization and Applications, 34, 85–113.

Urban, T. L. (1998). Solution procedures for the dynamic facility layout problem. Annals of Operations
Research, 76(0), 323–342.

Uwate, Y., Nishio, Y., Ueta, T., Kawabe, T., & Ikeguchi, T. (2004). Performance of Chaos and Burst
Noises Injected to the Hopfield NN for Quadratic Assignment Problems. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E87-A(4), 937–943.

Wakabayashi, S., Kimura, Y., & Nagayama, S. (2006). FPGA implementation of tabu search for the
quadratic assignment problem. Proceedings of IEEE International Conference on Field
Programmable Technology (FPT 2006), 269–272.

West, D. H. (1983). Algorithm 608: Approximate Solution of the Quadratic Assignment Problem. ACM
Transactions on Mathematical Software, 9(4), 461–466.

Wilhelm, M. R., & Ward, T. L. (1987). Solving Quadratic Assignment Problems by ‘Simulated
Annealing. IIE Transactions, 19(1), 107–119.

Wu, Y., & Ji, P. (2007). Solving the quadratic assignment problems by a genetic algorithm with a new
replacement strategy. International Journal of Humanities and Social Science, 151–155.

Xia, Y. (2010). An efficient continuation method for quadratic assignment problems. Computers and
Operations Research, 37(6), 1027–1032.

Zaied, A. N. H., & Shawky, L. A. E.-F. (2014). A Survey of the Quadratic Assignment Problem.
International Journal of Computer Applications, 101(6), 28–36.

Zhang, Y., Wang, S., & Ji, G. (2015). A Comprehensive Survey on Particle Swarm Optimization
Algorithm and Its Applications. Mathematical Problems in Engineering, 1–38.

Zhu, W., Curry, J., & Marquez, A. (2010). SIMD tabu search for the quadratic assignment problem with
graphics hardware acceleration. International Journal of Production Research, 48(4), 1035–1047.

© 2018 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

