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 This paper discusses an integrated model of batch production and maintenance scheduling on a 
deteriorating machine producing multiple items to be delivered at a common due date. The model 
describes the trade-off between total inventory cost and maintenance cost as the increase of 
production run length. The production run length is a time bucket between two consecutive 
preventive maintenance activities. The objective function of the model is to minimize total cost 
consisting of in process and completed part inventory costs, setup cost, preventive and corrective 
maintenance costs and rework cost. The problem is to determine the optimal production run 
length and to schedule the batches obtained from determining the production run length in order 
to minimize total cost. 
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1. Introduction 
 

Delay in delivering order in a manufacturing company to consumer can be caused by several factors, 
such as no coordination between production and maintenance divisions in the manufacturing system, 
among others. It may cause in the following conditions. First, the operation of a busy machine has to be 
stopped as the scheduled maintenance activity should be started. Second, the machine could break down 
if the scheduled maintenance activity is not conducted.   

A real example is well described by the following case. Company X gets some orders of machinery works 
in large quantities from its partner industries. It processes the orders in batches with constant sizes 
determined by the production division. Meanwhile, the maintenance division carries out any machine 
repair only when a failure of the machine occurs (reactive maintenance). Late delivery orders to 
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230  
consumers cannot be avoided if machine repair time takes long time because of machine breakdown or 
the busy machine should be stopped for maintenance. This condition frequently occurs.  

It could be drawn some roots of problems, namely, firstly, the maintenance department has not yet applied 
a preventive maintenance system, although the data of machine failure times, intervals between failures, 
and the cost of each failure have been well recorded. Secondly, the production department schedules 
batches with constant sizes, whereas according to Dobson et al. (1987, 1989), Halim and Ohta (1993, 
1994) and Yusriski et al. (2015), inconstant batch sizes bring to a better flow time. Thirdly, the data 
shows that machine failures occur in the busy time of production, so that the failures decrease the 
productivity of shop floor. 

Several literatures on maintenance, such as Barlow and Prochan (1965), Sherwin and Bossche (1993), 
Ebeling (1997), Rigdon and Basu (2000), and Jiang and Murthy (2008) discuss the theories on reliability, 
maintainability, and cost optimization for maintenance scheduling activities. It could be noted that the 
literatures do not take production scheduling into account in their discussions.  

Some research that integrate batch production scheduling and maintenance scheduling are Lee and 
Rosenblatt (1987), Wang and Sheu (2001), Tseng (1996), Ben-Daya and Noman (2006), Lin and Hou 
(2005), Chelbi et al. (2008), Elferik and Ben-Daya (2010), Fitouhi and Nourelfath (2012) and Suliman 
and Jawad (2012). The researchers discuss models considering a deteriorating machine, single item, 
discrete product types, and decision on the number and size of the batches and also an optimal 
maintenance time as affected by trade off of setup cost, quality cost, restoration cost, inventory holding 
cost, and reward cost. The researchers did not consider due date in their discussion. 

This research deals with integrating model of batch scheduling and maintenance scheduling on a single 
deteriorating machine that produces a number of parts of multiple items to be delivered on  a common 
due date. The model decision variables are the number and schedule of preventive maintenance, the 
length of interval between two successive preventive maintenances (production run), number and 
schedule of batches in each production run. The model objective is to minimize total cost consisting of 
the holding cost of the work in process, the holding cost of finished parts, setup cost, preventive 
maintenance cost, corrective maintenance cost, and rework cost. 

2. Inventory holding cost formulation for in-process batch and completed batch for multiple items 
processed on single machine 
The inventory holding cost concept in this model is developed from Halim and Ohta (1994) having 
developed in process and completed part inventory holding costs for just in time (JIT) environment. The 
model objective has considered due date and it has accommodated the condition that all parts do not need 
to arrive at the shop at time zero simultaneously but at the times when the production process is stated.  
Suppose an order with p types of items. Let q1, q2, ..., qp as quantity of each type of the items. All parts 
will be processed on a single machine. Each part requires only a process to complete the operation with 
processing time t1, t2, ..., tp respectively. All parts will be delivered on a common due date d. The parts 
are processed in batches. A machine that used in the processing parts is a deteriorating machine with 
increasing failure rate Weibull. Let 𝐿𝐿�𝑖𝑖𝑘𝑘𝑘𝑘� stand for a batch scheduled in ith position in the kth production 
run with part type-j, 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘� for quantity of batch 𝐿𝐿�𝑖𝑖𝑘𝑘𝑘𝑘�, s for setup time required before any batch to be 
processed, c1j for unit inventory holding cost of finished part type-j per unit part per time unit and c2j  for 
unit inventory holding cost of the work in process part type-j per unit part per time unit, where j = 1, 2, 
…, p. 
2.1 Inventory Holding Cost in a Production Run 
Zahedi et al. (2014) discussed integrated batch production and maintenance scheduling for single item 
processed on a single machine. For a multiple items case, parts with different types could be processed 
in the same production run. Accordingly, the inventory holding cost formulation will follows the 
formulation for single item processed on single machine with g production runs with no preventive 
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maintenance (PM) interval and the number of production runs becomes a number of the type of items 
with set g = p (See Fig. 1).   
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 0               𝐵𝐵[𝑁𝑁1𝑝𝑝]  𝐵𝐵[11𝑝𝑝]              𝐵𝐵[𝑁𝑁12] 𝐵𝐵[112]          𝐵𝐵[𝑁𝑁11]             𝐵𝐵[211]          𝐵𝐵[111]    𝑑𝑑 
 

Fig. 1. Batches position in multiple items single machine with single production run  
in total actual flow time criteria 

Assuming that each production run is considered as an item with no PM intervals and the number of runs 
becomes a number of the type of items, then the total inventory holding cost for single production run 
for multiple items single machine can be formulated as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[1,𝑝𝑝] = 𝑐𝑐11 ∑ �∑ �𝑡𝑡1𝑄𝑄[𝑙𝑙11] + 𝑠𝑠�𝑖𝑖11
𝑙𝑙11=1 �𝑄𝑄[(𝑖𝑖+1)11]

𝑁𝑁11−1
𝑖𝑖11=1    

                + 𝑐𝑐11+𝑐𝑐21
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖11]
2𝑁𝑁11

𝑖𝑖11=1 + 𝑐𝑐21−𝑐𝑐11
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖11]
𝑁𝑁11
𝑖𝑖11=1   

                +∑ [𝑝𝑝
𝑗𝑗=2 𝑐𝑐1𝑗𝑗 ∑ �∑ �𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙1𝑘𝑘� + 𝑠𝑠�𝑖𝑖1𝑘𝑘

𝑙𝑙1𝑘𝑘=1
� 𝑄𝑄[(𝑖𝑖+1)1𝑘𝑘]

𝑁𝑁1𝑘𝑘−1
𝑖𝑖1𝑘𝑘=1

      

                + 𝑐𝑐1𝑘𝑘+𝑐𝑐2𝑘𝑘
2

𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖1𝑘𝑘�
2𝑁𝑁1𝑘𝑘

𝑖𝑖1𝑘𝑘=1
+ 𝑐𝑐2𝑘𝑘−𝑐𝑐1𝑘𝑘

2
𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖1𝑘𝑘�

𝑁𝑁1𝑘𝑘
𝑖𝑖1𝑘𝑘=1

   

                + 𝑐𝑐1𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖1𝑘𝑘�
𝑁𝑁1𝑘𝑘
𝑖𝑖1𝑘𝑘=1

(∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙1𝑘𝑘� + 𝑠𝑠)𝑖𝑖1𝑘𝑘−1
𝑙𝑙1𝑘𝑘=1

+ ∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚1(𝑘𝑘−1)� + 𝑠𝑠))]
𝑁𝑁1(𝑘𝑘−1)
𝑚𝑚1(𝑘𝑘−1)=1

  (1) 

2.2 Inventory Holding Cost in Two Production Runs  
Let q parts be divided into N1j batches in first production run and N2j batches in the second production 
run, where the sizes of each batch are Q[ikj] (i = 1, 2, ..., Nk, k = 1, 2 and j = 1, 2, …, p). If the planning 
horizon consists of two preventive maintenance intervals, the condition can be shown in Fig. 2.  
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 0  𝐵𝐵[𝑁𝑁2𝑝𝑝] − 𝑠𝑠           𝐵𝐵[𝑁𝑁22] − 𝑠𝑠 𝐵𝐵𝑃𝑃𝑃𝑃[2]  𝑇𝑇𝑃𝑃𝑃𝑃[2]    𝐵𝐵[𝑁𝑁12] − 𝑠𝑠           𝐵𝐵[𝑁𝑁12] − 𝑠𝑠  𝑑𝑑 

 
Fig. 2. Batches position in multiple items single machine with 

two production runs in total actual flow time criteria 

In the same way with single production run, the total inventory holding cost for the first production run 
ToIC [1]  is the same as ToIC[1,p] (Eq. (1)) and the total inventory holding cost for the second production 
run can be formulated as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[2] = 𝑐𝑐11 ∑ �∑ �𝑡𝑡1𝑄𝑄[𝑙𝑙21] + 𝑠𝑠�𝑖𝑖21
𝑙𝑙21=1 �𝑄𝑄[(𝑖𝑖+1)21]

𝑁𝑁21−1
𝑖𝑖21=1    

              + 𝑐𝑐11+𝑐𝑐21
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖21]
2𝑁𝑁21

𝑖𝑖21=1 + 𝑐𝑐21−𝑐𝑐11
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖21]
𝑁𝑁21
𝑖𝑖21=1    
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              +∑ [𝑝𝑝
𝑗𝑗=2 𝑐𝑐1𝑗𝑗 ∑ �∑ �𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙2𝑘𝑘� + 𝑠𝑠�𝑖𝑖2𝑘𝑘

𝑙𝑙2𝑘𝑘=1
� 𝑄𝑄[(𝑖𝑖+1)2𝑘𝑘]

𝑁𝑁2𝑘𝑘−1
𝑖𝑖2𝑘𝑘=1

   

              + 𝑐𝑐1𝑘𝑘+𝑐𝑐2𝑘𝑘
2

𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖2𝑘𝑘�
2𝑁𝑁2𝑘𝑘

𝑖𝑖2𝑘𝑘=1
+ 𝑐𝑐2𝑘𝑘−𝑐𝑐1𝑘𝑘

2
𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖2𝑘𝑘�

𝑁𝑁2𝑘𝑘
𝑖𝑖2𝑘𝑘=1

    

   + 𝑐𝑐1𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖2𝑘𝑘�
𝑁𝑁2𝑘𝑘
𝑖𝑖2𝑘𝑘=1

[∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙2𝑘𝑘� + 𝑠𝑠)𝑖𝑖2𝑘𝑘−1
𝑙𝑙2𝑘𝑘=1

+ ∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚2(𝑘𝑘−1)� + 𝑠𝑠)
𝑁𝑁2(𝑘𝑘−1)
𝑚𝑚2(𝑘𝑘−1)=1

  

   + 𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖1𝑘𝑘� + 𝑠𝑠��]𝑁𝑁1𝑘𝑘
𝑖𝑖1𝑘𝑘=1

                       (2) 

Then 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[2,𝑝𝑝] = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[1] + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[2] is  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[2,𝑝𝑝] = ∑ [𝑐𝑐112
𝑘𝑘=1 ∑ �∑ �𝑡𝑡1𝑄𝑄[𝑙𝑙𝑘𝑘1] + 𝑠𝑠�𝑖𝑖𝑘𝑘1

𝑙𝑙𝑘𝑘1=1 � 𝑄𝑄[(𝑖𝑖+1)𝑘𝑘1]
𝑁𝑁𝑘𝑘1−1
𝑖𝑖𝑘𝑘1=1    

               + 𝑐𝑐11+𝑐𝑐21
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖𝑘𝑘1]
2𝑁𝑁𝑘𝑘1

𝑖𝑖𝑘𝑘1=1 + 𝑐𝑐21−𝑐𝑐11
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖𝑘𝑘1]
𝑁𝑁𝑘𝑘1
𝑖𝑖𝑘𝑘1=1        

               +∑ [𝑝𝑝
𝑗𝑗=2 𝑐𝑐1𝑗𝑗 ∑ �∑ �𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠�𝑖𝑖𝑘𝑘𝑘𝑘

𝑙𝑙𝑘𝑘𝑘𝑘=1
� 𝑄𝑄[(𝑖𝑖+1)𝑘𝑘𝑘𝑘]

𝑁𝑁𝑘𝑘𝑘𝑘−1
𝑖𝑖𝑘𝑘𝑘𝑘=1

   

               + 𝑐𝑐1𝑘𝑘+𝑐𝑐2𝑘𝑘
2

𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
2𝑁𝑁𝑘𝑘𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘=1
+ 𝑐𝑐2𝑘𝑘−𝑐𝑐1𝑘𝑘

2
𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�

𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

        

    + 𝑐𝑐1𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

[∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠)𝑖𝑖𝑘𝑘𝑘𝑘−1
𝑙𝑙𝑘𝑘𝑘𝑘=1

+ ∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚𝑘𝑘(𝑘𝑘−1)� + 𝑠𝑠)
𝑁𝑁𝑘𝑘(𝑘𝑘−1)
𝑚𝑚𝑘𝑘(𝑘𝑘−1)=1

  

      + (𝑘𝑘 − 1)𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖𝑛𝑛𝑘𝑘� + 𝑠𝑠��]𝑁𝑁𝑛𝑛𝑘𝑘
𝑖𝑖𝑛𝑛𝑘𝑘=1

𝑘𝑘−1
𝑛𝑛=1 ]                   (3) 

2.3 Inventory Holding Cost in Three Production Runs 
If the planning horizon consists of three preventive maintenance intervals and three production runs, the 
condition can be shown in Fig. 3. Let q parts be divided into N1j batches in the first production run, N2j 
batches in the second production run, and N3j batches in the third production run, where the sizes of each 
batch are Q[ikj] (i = 1, 2, ..., Nk, k = 1, 2, 3 and    j = 1, 2, …, p).  
 

               Production run[3]                          Production run[2]                             Production run[1] 
 
 
 
 

                           …                                                  …                                                     … 
 

 0  𝐵𝐵[𝑁𝑁3𝑝𝑝] − 𝑠𝑠            𝐵𝐵[𝑁𝑁31] − 𝑠𝑠  𝐵𝐵𝑃𝑃𝑃𝑃[3]𝑇𝑇𝑃𝑃𝑃𝑃[3]               𝐵𝐵[𝑁𝑁21] − 𝑠𝑠  𝐵𝐵𝑃𝑃𝑃𝑃[2]𝑇𝑇𝑃𝑃𝑃𝑃[2]                   𝐵𝐵[𝑁𝑁11] − 𝑠𝑠     𝑑𝑑 = 𝐵𝐵𝑃𝑃𝑃𝑃[1]                 
 

Fig. 3. Batches position in multiple items single machine with 
three production runs in total actual flow time criteria 

In the same way with two production runs, the total inventory holding cost for the first production run 
ToIC [1]  is the same as ToIC[1,p] (Eq. (1)) and the total inventory holding cost for the second production 
run is the same as  Eq. (2). The total inventory holding cost for the third production run can be formulated 
as follows: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[3] = 𝑐𝑐11 ∑ �∑ �𝑡𝑡1𝑄𝑄[𝑙𝑙31] + 𝑠𝑠�𝑖𝑖31
𝑙𝑙31=1 �𝑄𝑄[(𝑖𝑖+1)31]

𝑁𝑁31−1
𝑖𝑖31=1    

             + 𝑐𝑐11+𝑐𝑐21
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖31]
2𝑁𝑁31

𝑖𝑖31=1 + 𝑐𝑐21−𝑐𝑐11
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖31]
𝑁𝑁31
𝑖𝑖31=1        

             +∑ �∑ �𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙3𝑘𝑘� + 𝑠𝑠�𝑖𝑖3𝑘𝑘
𝑙𝑙3𝑘𝑘=1

� 𝑄𝑄[(𝑖𝑖+1)3𝑘𝑘]
𝑁𝑁3𝑘𝑘−1
𝑖𝑖3𝑘𝑘=1

   

             + 𝑐𝑐1𝑘𝑘+𝑐𝑐2𝑘𝑘
2

𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖3𝑘𝑘�
2𝑁𝑁3𝑘𝑘

𝑖𝑖3𝑘𝑘=1
+ 𝑐𝑐2𝑘𝑘−𝑐𝑐1𝑘𝑘

2
𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖3𝑘𝑘�

𝑁𝑁3𝑘𝑘
𝑖𝑖3𝑘𝑘=1

         

𝑁𝑁[11] 

batches 

 

 

 

 

𝑁𝑁[1𝑝𝑝] 

batches 

 

 

 

 

𝑁𝑁[21] 

batches 

 

 

 

 

𝑁𝑁[2𝑝𝑝] 

batches 

 

 

 

 

𝑁𝑁[3𝑝𝑝] 
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𝑁𝑁[31] 
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             +𝑐𝑐1𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖3𝑘𝑘�
𝑁𝑁3𝑘𝑘
𝑖𝑖3𝑘𝑘=1

[∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙3𝑘𝑘� + 𝑠𝑠)𝑖𝑖3𝑘𝑘−1
𝑙𝑙3𝑘𝑘=1

+ ∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚3(𝑘𝑘−1)� + 𝑠𝑠)
𝑁𝑁3(𝑘𝑘−1)
𝑚𝑚3(𝑘𝑘−1)=1

   

             +2 𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖1𝑘𝑘� + 𝑠𝑠�� + ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖2𝑘𝑘� + 𝑠𝑠��]𝑁𝑁2𝑘𝑘
𝑖𝑖2𝑘𝑘=1

𝑁𝑁1𝑘𝑘
𝑖𝑖1𝑘𝑘=1

   (4) 

Then 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[3,𝑝𝑝] = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[1] + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[2] + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[3] is 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[3,𝑝𝑝] = ∑ [𝑐𝑐113
𝑘𝑘=1 ∑ �∑ �𝑡𝑡1𝑄𝑄[𝑙𝑙𝑘𝑘1] + 𝑠𝑠�𝑖𝑖𝑘𝑘1

𝑙𝑙𝑘𝑘1=1 � 𝑄𝑄[(𝑖𝑖+1)𝑘𝑘1]
𝑁𝑁𝑘𝑘1−1
𝑖𝑖𝑘𝑘1=1    

               + 𝑐𝑐11+𝑐𝑐21
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖𝑘𝑘1]
2𝑁𝑁𝑘𝑘1

𝑖𝑖𝑘𝑘1=1 + 𝑐𝑐21−𝑐𝑐11
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖𝑘𝑘1]
𝑁𝑁𝑘𝑘1
𝑖𝑖𝑘𝑘1=1        

               +∑ [𝑝𝑝
𝑗𝑗=2 𝑐𝑐1𝑗𝑗 ∑ �∑ �𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠�𝑖𝑖𝑘𝑘𝑘𝑘

𝑙𝑙𝑘𝑘𝑘𝑘=1
� 𝑄𝑄[(𝑖𝑖+1)𝑘𝑘𝑘𝑘]

𝑁𝑁𝑘𝑘𝑘𝑘−1
𝑖𝑖𝑘𝑘𝑘𝑘=1

   

               + 𝑐𝑐1𝑘𝑘+𝑐𝑐2𝑘𝑘
2

𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
2𝑁𝑁𝑘𝑘𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘=1
+ 𝑐𝑐2𝑘𝑘−𝑐𝑐1𝑘𝑘

2
𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�

𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

        

    + 𝑐𝑐1𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

[∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠)𝑖𝑖𝑘𝑘𝑘𝑘−1
𝑙𝑙𝑘𝑘𝑘𝑘=1

+ ∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚𝑘𝑘(𝑘𝑘−1)� + 𝑠𝑠)
𝑁𝑁𝑘𝑘(𝑘𝑘−1)
𝑚𝑚𝑘𝑘(𝑘𝑘−1)=1

  

      +(𝑘𝑘 − 1)𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖𝑛𝑛𝑘𝑘� + 𝑠𝑠��]𝑁𝑁𝑛𝑛𝑘𝑘
𝑖𝑖𝑛𝑛𝑘𝑘=1

𝑘𝑘−1
𝑛𝑛=1 ]                   (5) 

By considering any changes taking place in each production run then the total holding cost for multiple 
items processed on single machine for g production runs and g PM intervals (see Fig. 4) will become Eq. 
(6). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝑔𝑔,𝑝𝑝] = ∑ [𝑐𝑐11
𝑔𝑔
𝑘𝑘=1 ∑ �∑ �𝑡𝑡1𝑄𝑄[𝑙𝑙𝑘𝑘1] + 𝑠𝑠�𝑖𝑖𝑘𝑘1

𝑙𝑙𝑘𝑘1=1 � 𝑄𝑄[(𝑖𝑖+1)𝑘𝑘1]
𝑁𝑁𝑘𝑘1−1
𝑖𝑖𝑘𝑘1=1    

                + 𝑐𝑐11+𝑐𝑐21
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖𝑘𝑘1]
2𝑁𝑁𝑘𝑘1

𝑖𝑖𝑘𝑘1=1 + 𝑐𝑐21−𝑐𝑐11
2

𝑡𝑡1 ∑ 𝑄𝑄[𝑖𝑖𝑘𝑘1]
𝑁𝑁𝑘𝑘1
𝑖𝑖𝑘𝑘1=1     

                +∑ [𝑝𝑝
𝑗𝑗=2 𝑐𝑐1𝑗𝑗 ∑ �∑ �𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠�𝑖𝑖𝑘𝑘𝑘𝑘

𝑙𝑙𝑘𝑘𝑘𝑘=1
� 𝑄𝑄[(𝑖𝑖+1)𝑘𝑘𝑘𝑘]

𝑁𝑁𝑘𝑘𝑘𝑘−1
𝑖𝑖𝑘𝑘𝑘𝑘=1

   

                + 𝑐𝑐1𝑘𝑘+𝑐𝑐2𝑘𝑘
2

𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
2𝑁𝑁𝑘𝑘𝑘𝑘

𝑖𝑖𝑘𝑘𝑘𝑘=1
+ 𝑐𝑐2𝑘𝑘−𝑐𝑐1𝑘𝑘

2
𝑡𝑡𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�

𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

        

     + 𝑐𝑐1𝑗𝑗 ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

[∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠)𝑖𝑖𝑘𝑘𝑘𝑘−1
𝑙𝑙𝑘𝑘𝑘𝑘=1

+ ∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚𝑘𝑘(𝑘𝑘−1)� + 𝑠𝑠)
𝑁𝑁𝑘𝑘(𝑘𝑘−1)
𝑚𝑚𝑘𝑘(𝑘𝑘−1)=1

  

       + (𝑘𝑘 − 1)𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖𝑛𝑛𝑘𝑘� + 𝑠𝑠��]𝑁𝑁𝑛𝑛𝑘𝑘
𝑖𝑖𝑛𝑛𝑘𝑘=1

𝑘𝑘−1
𝑛𝑛=1 ].                   (6) 

 
            Production run[𝑔𝑔]                      Production run[2]                      Production run[1]  

 
 
 

                     …                  …                 …                                        …         
 

 0  𝐵𝐵[𝑁𝑁𝑔𝑔𝑝𝑝] − 𝑠𝑠           𝐵𝐵[𝑁𝑁𝑔𝑔1] − 𝑠𝑠             𝐵𝐵[𝑁𝑁2𝑝𝑝] − 𝑠𝑠          𝐵𝐵[𝑁𝑁21] − 𝑠𝑠    𝐵𝐵𝑃𝑃𝑃𝑃[3]𝑇𝑇𝑃𝑃𝑃𝑃[3]               𝐵𝐵[𝑁𝑁11] − 𝑠𝑠  𝑑𝑑 = 𝐵𝐵𝑃𝑃𝑃𝑃[1] 
 

Fig. 4. Batches position in multiple items single machine with g production runs  
in total actual flow time criteria 

3. ROCOF Function (Jiang & Murthy, 2008) 
ROCOF (rate of occurrence of failures) characterizes the probability that a failure occurs in the interval 
[t,t+δt]. The ROCOF is given by an intensity function 

𝜆𝜆(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙
𝛿𝛿𝛿𝛿→0

𝑃𝑃{𝑁𝑁(𝑡𝑡 + 𝛿𝛿𝑡𝑡) −𝑁𝑁(𝑡𝑡) ≥ 1}
𝛿𝛿𝑡𝑡

 
(7) 
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234  
where N(t) is the number of failures in the interval [0,t). In an assumption that the probability of two or 
more failures in the interval [t,t+δt] is zero as δt –› 0, then the intensity function is equal to the derivative 
of the conditional expected number of failures, so that 

𝜆𝜆(𝑡𝑡) =
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐸𝐸{𝑁𝑁(𝑡𝑡)} 

(8) 

If the failures are minimally repaired and the time to repair is negligible, then ROCOF function 𝜆𝜆(𝑡𝑡) =
𝑟𝑟(𝑡𝑡), where 𝑟𝑟(𝑡𝑡) is the failure rate function. The cumulative ROCOF function is given by 

𝛬𝛬(𝑡𝑡) = �𝜆𝜆(𝑡𝑡)𝑑𝑑𝑡𝑡
𝛿𝛿

0

   
(9) 

A ROCOF function that has been used extensively is the Weibull ROCOF. The cumulative ROCOF (or 
the expected total number of failures) is given by the function 

𝛬𝛬(𝑡𝑡) = �
𝑡𝑡
𝛼𝛼�

𝛽𝛽
, 

(10) 

with scale parameter 𝛼𝛼 and shape parameter 𝛽𝛽. 
Let a system (machine) with a Weibull failure time distribution has a shape parameter of β = 1.69 and a 
scale parameter α = 2,857.14, then by ROCOF cumulative function, it can be estimated the first, the 
second, and so on for failure times. The failure times can be written as follows:   

If 𝛬𝛬(𝑡𝑡) = �𝛿𝛿
𝛼𝛼
�
𝛽𝛽

= 1 then t = 2,857.14.  

If 𝛬𝛬(𝑡𝑡) = �𝛿𝛿
𝛼𝛼
�
𝛽𝛽

= 2 then t = 4,305.82.  

If 𝛬𝛬(𝑡𝑡) = �𝛿𝛿
𝛼𝛼
�
𝛽𝛽

= 3 then t = 5,473.33.  

If 𝛬𝛬(𝑡𝑡) = �𝛿𝛿
𝛼𝛼
�
𝛽𝛽

= 4 then t = 6,489.03. 

From the calculation above, it can be estimated the time interval between machine failure times, where 
the time between failures of the machine is decreasing over time. It indicates that the machine has 
increasing failure rate characteristic or the machine is a deteriorating machine.  

4. Estimation of non-conforming parts 
This research proposes a policy that PM is carried out before an expected first failure time based on 
cumulative ROCOF function. Based on the policy assumed that the length of the second, the third and so 
on until gth production run less than or equal the first failure time. In model formulation, length of the 
first production run (from due date) less than a common due date d to accommodate that the model will 
let the machine produce non-conforming parts if the cost of rework for non-conforming parts less than 
the cost of PM and to accommodate if the problem consists of only one production run. Probability of 
defect parts on in control state p1 and probability of defect part on out of control state p2, where p2 > p1.  

An example of a condition for a case of two production runs and two PMs is shown in Fig. 5. In the 
second production run there is no non-conforming part, because the out-of-control state takes place only 
in the first production run, so that the number of non-conforming parts for k = 2 can be formulated as 
follows: 

𝑀𝑀2 = 𝑝𝑝1𝑥𝑥 number of parts processed in interval [𝐵𝐵�𝑁𝑁2𝑝𝑝� − 𝑠𝑠 𝑇𝑇[121] ]    
      + 𝑝𝑝1𝑥𝑥 number of parts processed in interval [𝐵𝐵�𝑁𝑁1𝑝𝑝� − 𝑠𝑠,𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼]  
      + 𝑝𝑝2𝑥𝑥 number of parts processed in interval [𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼, 𝑇𝑇[111] ]. (11) 

In the same way with two production run, the total non-conforming parts for g production runs can be 
formulated as follows: 
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𝑀𝑀𝑔𝑔 = ∑ 𝑝𝑝1𝑥𝑥 number of parts processed in interval [𝐵𝐵�𝑁𝑁𝑘𝑘𝑝𝑝� − 𝑠𝑠,𝑇𝑇[1𝑘𝑘1] ]
𝑔𝑔
𝑘𝑘=2    

      + 𝑝𝑝1𝑥𝑥 number of parts processed in interval [𝐵𝐵�𝑁𝑁1𝑝𝑝� − 𝑠𝑠,𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼]  
      + 𝑝𝑝2𝑥𝑥 number of parts processed in interva [𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼 ,𝑇𝑇[111] ]. (12) 

 
                 Production run[2] 

 
 
 

 
 

                          … 
 

 
 

  Production run[1] 
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 0  𝐵𝐵[𝑁𝑁2𝑝𝑝] − 𝑠𝑠           𝐵𝐵[𝑁𝑁22] − 𝑠𝑠 𝐵𝐵𝑃𝑃𝑃𝑃[2]  𝑇𝑇𝑃𝑃𝑃𝑃[2]    𝐵𝐵[𝑁𝑁12] − 𝑠𝑠           𝐵𝐵[𝑁𝑁11] − 𝑠𝑠  𝑑𝑑 
    

     𝐵𝐵[𝑁𝑁2𝑝𝑝] − 𝑠𝑠         C[121]    𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠                          𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼   C[111] 
 

              ≤  α 
   

 
              p1 

  
       p1                                  p2 

 

Fig. 5. A condition for two production runs and two PM’s with expected machine  
failure time based on cumulative ROCOF 

5. Model Formulation and Algorithm  
5.1 Model Formulation 
In order to formulate the integrated batch production and maintenance scheduling model, we use 
following notations. 

Parameters  

q : total number of parts scheduled 
qj  : number of part type-j, where j=1,2,…, p 
tj       : unit processing time of part type-j  
s  : unit setup time  
c1j  : unit inventory holding cost of finished part type-j per unit part per time unit  
c2j   : unit inventory holding cost of the work in process part type-j per unit part per time  

  unit 
cPM : unit preventive maintenance (PM) cost 
r  : unit corrective maintenance (CM) cost 
p1j : probability of defect parts on in control state of part type-j  
p2j : probability of defect parts on out of control state of part type-j 
d : a common due date 

Decision Variables  

𝐿𝐿�𝑖𝑖𝑘𝑘𝑘𝑘�  : batch scheduled in ith position in the kth production run with part type-j, where  
  ikj = 1, 2, …, Nkj, k = 1, 2, …, g, j=1,2,…, p 

𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�  : number of part in batch 𝐿𝐿�𝑖𝑖𝑘𝑘𝑘𝑘� 
Nkj : number of batch on kth production run with part type-j  
𝐵𝐵[𝑖𝑖𝑘𝑘𝑘𝑘] : beginning time of batch 𝐿𝐿[𝑖𝑖𝑘𝑘𝑘𝑘] 
𝑇𝑇[𝑖𝑖𝑘𝑘𝑘𝑘] : completion time of batch 𝐿𝐿[𝑖𝑖𝑘𝑘𝑘𝑘] 
Mk : number of defect part if planning horizon consists of k production runs 
M : total number of defect part in planning horizon 

𝑁𝑁[11] 

batches 

 

 

 

 

𝑁𝑁[12] 

batches 

 

 

 

 

𝑁𝑁[1𝑝𝑝] 

batches 

 

 

 

 

𝑁𝑁[1𝑝𝑝] 

batches 

 

 

 

𝑁𝑁[21] 

batches 

 

 

 

 

𝑁𝑁[22] 

batches 

 

 

 

 

𝑁𝑁[2𝑝𝑝] 

batches 
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𝑋𝑋[𝑖𝑖𝑘𝑘𝑘𝑘]  = �
1, if Q�𝑖𝑖𝑘𝑘𝑘𝑘� ≠ 0,
0, if Q[𝑖𝑖𝑘𝑘] = 0.  , ikj = 1, 2, …, Nkj, k = 1, 2, …, g, j=1,2,…, p   

The Objective Function 

TC : the total cost consisting of inventory cost in process and complete inventory costs,  
  setup cost, preventive and corrective maintenances cost and rework cost. 

We adopt some assumptions in formulating these models, as follow: 

1. This integrating model for multiple items single stage process, 
2. Setup time is not depending on number of parts in batches or kind of items, 
3. Batch position number and preventive maintenance number are counted from due date  
    direction (backward approach), 
4. The same load force for machine in setup time and in processing time, 
5. The machine cannot interrupted as long as production run, 
6. Batch size value is in real positive. 

Using those defined notations and based on those assumptions, the integrated batch production and 
maintenance scheduling to minimize production and maintenance costs on a deteriorating machine in 
just in time environment for multiple items single machine (Model [MISM]) can be expressed as a mix-
integer-non-linear programming as follows: 

Model [MISM] 

Minimize 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝑔𝑔,𝑝𝑝] + 𝑔𝑔 𝑐𝑐𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑠𝑠 ∑ ∑ 𝑁𝑁𝑘𝑘𝑗𝑗
𝑝𝑝
𝑗𝑗=1

𝑔𝑔
𝑘𝑘=1 + 𝐸𝐸(𝑅𝑅) + 𝐸𝐸(𝑊𝑊)  (13) 

subject to: 

∑ ∑ ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

= 𝑞𝑞 𝑝𝑝
𝑗𝑗=1

𝑔𝑔
𝑘𝑘=1   (14) 

∑ ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

= 𝑞𝑞𝑗𝑗 , for 𝑗𝑗 = 1, 2, … ,𝑝𝑝 𝑔𝑔
𝑘𝑘=1    (15) 

𝐵𝐵�𝑖𝑖1𝑘𝑘� + ∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙1𝑘𝑘� + 𝑠𝑠𝑋𝑋�𝑙𝑙1𝑘𝑘�)
𝑖𝑖1𝑘𝑘
𝑙𝑙1𝑘𝑘=1

   

    +∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚1(𝑘𝑘−1)� + 𝑠𝑠𝑋𝑋�𝑚𝑚1(𝑘𝑘−1)�)
𝑁𝑁1(𝑘𝑘−1)
𝑚𝑚1(𝑘𝑘−1)=1

= 𝑑𝑑, for 𝑗𝑗 = 1, 2, … , 𝑝𝑝, 𝑘𝑘 = 1             (16) 

𝐵𝐵�𝑖𝑖𝑘𝑘𝑘𝑘� + ∑ (𝑡𝑡𝑗𝑗𝑄𝑄�𝑙𝑙𝑘𝑘𝑘𝑘� + 𝑠𝑠𝑋𝑋�𝑙𝑙𝑘𝑘𝑘𝑘�)
𝑖𝑖𝑘𝑘𝑘𝑘
𝑙𝑙𝑘𝑘𝑘𝑘=1

   

   +∑ (𝑡𝑡(𝑗𝑗−1)𝑄𝑄�𝑚𝑚𝑘𝑘(𝑘𝑘−1)� + 𝑠𝑠𝑋𝑋�𝑚𝑚𝑘𝑘(𝑘𝑘−1)�)
𝑁𝑁𝑘𝑘(𝑘𝑘−1)
𝑚𝑚𝑘𝑘(𝑘𝑘−1)=1

   

   +(𝑘𝑘 − 1)𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ ∑ ��𝑡𝑡𝑗𝑗𝑄𝑄�𝑖𝑖𝑛𝑛𝑘𝑘� + 𝑠𝑠𝑋𝑋�𝑖𝑖𝑛𝑛𝑘𝑘���
𝑁𝑁𝑛𝑛𝑘𝑘
𝑖𝑖𝑛𝑛𝑘𝑘=1

𝑘𝑘−1
𝑛𝑛=1 , for 𝑗𝑗 = 1, 2, … ,𝑝𝑝, 𝑘𝑘 = 2, 3, … ,𝑔𝑔      (17) 

∑ ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘𝑘𝑘=1

 𝑝𝑝
𝑗𝑗=1  ≤  𝑑𝑑, for 𝑘𝑘 = 1                   (18) 

∑ ∑ 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�
𝑁𝑁𝑘𝑘𝑘𝑘
𝑖𝑖𝑘𝑘=1

 𝑝𝑝
𝑗𝑗=1   ≤  𝛼𝛼, for 𝑘𝑘 = 2, 3, … ,𝑔𝑔                  (19) 

𝐵𝐵𝑃𝑃𝑃𝑃[1] = 𝑑𝑑,  

𝑇𝑇𝑃𝑃𝑃𝑃[1] = 𝑑𝑑 + 𝑡𝑡𝑃𝑃𝑃𝑃,  

𝐵𝐵𝑃𝑃𝑃𝑃[𝑘𝑘] = 𝐵𝐵[1𝑘𝑘1] + 𝑡𝑡1𝑄𝑄[1𝑘𝑘1], for 𝑘𝑘 = 2, 3, … ,𝑔𝑔,  

𝑇𝑇𝑃𝑃𝑃𝑃[𝑘𝑘] = 𝐵𝐵[1𝑘𝑘1] + 𝑡𝑡𝑃𝑃𝑃𝑃, for 𝑘𝑘 = 2, 3, … ,𝑔𝑔                                                                              (20) 

𝑁𝑁𝑠𝑠 + �𝑑𝑑
𝛼𝛼
� 𝑡𝑡𝑃𝑃𝑃𝑃 + ∑ 𝑡𝑡𝑗𝑗𝑞𝑞𝑗𝑗 𝑝𝑝

𝑗𝑗=1 ≤ 𝑑𝑑  (21) 
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𝑔𝑔 = �
𝑑𝑑
𝛼𝛼

 � 
(22) 

𝑀𝑀𝑘𝑘 = ∑ 𝑝𝑝1𝑥𝑥 number of parts processed in interval [𝐵𝐵�𝑁𝑁𝑙𝑙𝑝𝑝� − 𝑠𝑠,𝑇𝑇[1𝑙𝑙1] ]𝑘𝑘
𝑙𝑙=2    

            + 𝑝𝑝1𝑥𝑥 number of parts processed in interval [𝐵𝐵�𝑁𝑁1𝑝𝑝� − 𝑠𝑠,𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼]  

+ 𝑝𝑝2𝑥𝑥 number of parts processed in interval [𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼 ,𝑇𝑇[111] ] (23) 

𝐸𝐸(𝑀𝑀) =  𝑀𝑀𝑘𝑘 , for 𝑘𝑘 =  1, 2, … ,𝑔𝑔 (24) 

𝐸𝐸(𝑊𝑊)  =  𝑐𝑐𝑤𝑤 𝐸𝐸(𝑀𝑀) (25) 

𝑛𝑛𝐶𝐶𝑃𝑃 = ��
𝑑𝑑 −  (𝐵𝐵[𝑁𝑁1𝑝𝑝] − 𝑠𝑠 + 𝛼𝛼 )

𝛼𝛼
�
𝛽𝛽

� 
(26) 

𝐸𝐸(𝑅𝑅) = 𝑐𝑐𝑟𝑟 𝑛𝑛𝐶𝐶𝑃𝑃 (27) 

𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘� ≥ 0, for 𝑙𝑙𝑘𝑘𝑗𝑗 = 1, 2, … ,𝑁𝑁𝑘𝑘𝑗𝑗 , 𝑘𝑘 = 1, 2, … ,𝑔𝑔, 𝑗𝑗 = 1, 2, … , 𝑝𝑝 (28) 

𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘� ≤ 𝑋𝑋�𝑖𝑖𝑘𝑘𝑘𝑘� 𝑞𝑞𝑗𝑗 , for 𝑙𝑙𝑘𝑘𝑗𝑗 = 1, 2, … ,𝑁𝑁𝑘𝑘𝑗𝑗 ,𝑘𝑘 = 1, 2, … ,𝑔𝑔, 𝑗𝑗 = 1, 2, … ,𝑝𝑝   (29) 

𝑁𝑁𝑘𝑘𝑗𝑗 ≥ 0, for 𝑘𝑘 = 1, 2, … ,𝑔𝑔, 𝑗𝑗 = 1, 2, … ,𝑝𝑝 (30) 

𝑋𝑋�𝑖𝑖𝑘𝑘𝑘𝑘� = �
1, 𝑗𝑗𝑙𝑙𝑘𝑘𝑗𝑗 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘� ≠ 0,
0, 𝑗𝑗𝑙𝑙𝑘𝑘𝑗𝑗 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘� = 0 , 𝑙𝑙𝑘𝑘𝑗𝑗 = 1, 2, … ,𝑁𝑁𝑘𝑘𝑗𝑗 ,𝑘𝑘 = 1, 2, … ,𝑔𝑔, 𝑗𝑗 = 1, 2, … ,𝑝𝑝 

 
(31) 

Eq. (13) declares an objective function of Model [MISM]. Eqs. (14-15) state the material balance in the 
shop, where the number of parts in all batches must be equal to the total number of parts that will be 
scheduled and the number of parts in all batches with type-j must be equal to total number of type-j 
scheduled. Eqs. (16-17) state the beginning time of each batch on the first run and the next runs 
respectively. Eqs. (18-19) state the length of the first run and the next runs (backward approach) 
respectively. Eq. (20) represents a set of constraints for the beginning and the next of the PM times, with 
assumption that 1st PM in schedule or the last PM in processing (backward approach) after all batches 
has been completed at a common due date d to ensure the machine in as good as new condition for the 
next order. Eq. (21) states the sum of possible all setup time, PM time and processing time not exceed 
the common due date d. Eq. (22) states an estimation of upper bound for number of production run. Eq. 
(23) states the estimation of non-conforming parts for each run. Eqs. (24-25) state the estimation of total 
non-conforming parts and total rework cost for non-conforming parts respectively. Eqs. (26-27) state the 
possible number of CM action with cumulative Weibull ROCOF and the expected cost of CM action 
respectively. Eq. (28) states non-negativity of batch size. Eq. (29) states a batch size of type-j less or 
equal to all parts type-j that will be scheduled. Eq. (30) states the existence of the number of batches with 
type-j in each production run and Eq. (31) states a binary constraint that each batch will have 𝑋𝑋[𝑖𝑖𝑘𝑘𝑘𝑘] = 1 
for non-empty batches, and 𝑋𝑋[𝑖𝑖𝑘𝑘𝑘𝑘] = 0 for empty batches. 

5.2 Heuristic 
The model was a mixed integer quadratic category that contains some integer variables and binary 
variables, so that analytic search solution could not be used for the model because the analytic search 
requires all variables are continuous and differentiable (Winston, 2004). The algorithm starts by solving 
the Model [MISM] with relaxation of the corrective maintenance cost and the rework cost for non-
conforming parts. After having obtained a production schedule, estimate the expected number of non-
conforming parts and the expected number of CM. Next, compute estimated rework cost and estimated 
corrective maintenance cost, and then compute total cost. This step is done for two, three and so on 
number of batches until an increasing total cost is found. Write the best total cost for one production run 
and one PM. This process is carried out for two production runs with two PMs until the best total cost is 
found for two production runs with two PM. Continue the process up to g production runs with g PMs. 
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The algorithm solution is the minimization of all the best total costs for every possible number of 
production runs. Then, write all decision variables for the best algorithm solution.  

Characteristic of the Model [MISM] will have near similar aspect to the single item single machine 
(Zahedi et al. (2014)), except it applied to multiple items case. Halim and Ohta (1993) suggested the type 
of items that are scheduled with non-decreasing ratio (backward sequence)  𝛿𝛿𝑘𝑘𝑞𝑞𝑘𝑘+𝑠𝑠

𝑞𝑞𝑘𝑘
 for j = 1, 2, ..., p or 

type of item with smaller ratio scheduled in advance in backward sequence, because the schedule will 
minimize the total actual flow time.  

Algorithm [MISM] 

Step-1. Compute 𝑇𝑇 = ∑ 𝑞𝑞𝑗𝑗  𝑡𝑡𝑗𝑗
𝑝𝑝
𝑗𝑗=1 . Go to Step-2. 

Step-2. Set the length of the expected first failure time based on cumulative Weibull ROCOF  
             function as α. Go to Step-3.   
Step-3. A problem is said as feasible if and only if the total processing time with one setup  

for every item type and minimum possible PM time doesn’t exceed the due date d,  
otherwise the problem is not feasible for a model or if ∑ (𝑠𝑠 + 𝑞𝑞𝑗𝑗  𝑡𝑡𝑗𝑗) +𝑝𝑝

𝑗𝑗=1

             (�
∑ (𝑠𝑠+𝑞𝑞𝑘𝑘  𝛿𝛿𝑘𝑘)𝑝𝑝
𝑘𝑘=1

α
 � − 1)𝑡𝑡𝑃𝑃𝑃𝑃 ≤ 𝑑𝑑, then the problem is feasible; Continue to Step-4.  

Otherwise the problem is not feasible and then STOP. 
Step-4. Sort all items type with non-decreasing ratio   𝛿𝛿1𝑞𝑞1+𝑠𝑠𝑞𝑞1

≤ 𝛿𝛿2𝑞𝑞2+𝑠𝑠
𝑞𝑞2

≤ ⋯ ≤ 𝛿𝛿𝑝𝑝𝑞𝑞𝑝𝑝+𝑠𝑠
𝑞𝑞𝑝𝑝

 . Write  

the new items type as j = 1, 2, ... p. Go to Step-5. 
Step-5. Compute g with Eq. (22) and compute N with Eq. (21). For simplification  
             of the model, set N = Nkj, where k = 1, 2,…, g, j = 1, 2,…, p. Go to Step-6. 
Step-6. Estimate the production run position for every type of items by observing the  
             following ratios: 

             𝑠𝑠+𝛿𝛿𝑝𝑝𝑞𝑞𝑝𝑝
α

+ 𝑠𝑠+𝛿𝛿𝑝𝑝−1𝑞𝑞𝑝𝑝−1
α

+  … + 𝑠𝑠+𝛿𝛿1𝑞𝑞1
α

,     (32) 

             go to Step-7. 
Step-7. Substitute the values of g, Nkj, p1j, p2j, qj, tj, s, d, 𝑡𝑡𝑃𝑃𝑃𝑃 to the Model [MISM] and set  
             every item type as a batch or set X[ikj] = 1 for ikj = 1, k = 1, j = 1,2,…,p and set  
             X[ikj] = 0 otherwise. Go to Step-8. 
Step-8. Solve Model [MISM] with relaxing of the constraints of Eqs. (23-27). Compute  
             estimated rework cost by Eq. (25) and estimated restoration cost by Eq. (27), and  
             computes a total cost to find TC, write TC[111] = TC . Go to Step-9. 
Step-9. Set k = 1. Go to Step-10. 
Step-10. Set j = 1. Go to Step-11. 
Step-11. Check whether item type-j is on the kth production run. 

- If item type-j is on the kth production run, go to Step -12.  
- Otherwise, if item type-j is not on the kth production run, set k = k + 1, go back to Step-

10.  
Step-12. Set ikj = 2. Go to Step -13. 
Step-13. Set X[ikj] =1 and add X[ikj] =1 to the Model [MISM]. Go to Step-14. 
Step-14. Solve Model [MISM] with relaxing of the constraint of Eqs. (23-27). Compute  
             Estimated rework cost by Eq. (25) and estimated restoration cost by Eq. (27), and  
             compute a total cost to find TC, write TC[ikj] = TC. Go to Step-15. 
Step-15. Observe whether TC[ikj] <  TC[(i-1)kj]. 
 - if TC[ikj] <  TC[(i-1)kj], observe whether ikj = Nkj, 
  - if ikj = Nkj, go to Step-16. 
  - otherwise, set ikj = ikj + 1, go back to Step-12.   

 - otherwise, write TC[k]*=TC[(i-1)kj] and write all of TC*- related decision    
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   variables, go to Step -17. 
Step-16. Write TC[k]* = TC[ikj] and write all of TC[k]*-related decision variables,  
             go to Step-17. 
Step-17. Observe whether j= p, 
 - if j= p, go to Step-18, 
 - otherwise, set j = j +1, go back to Step-10. 
Step-18. Observe whether k = g, 
 - if k = g, go to Step-25, 
 - otherwise, go to Step-19. 
Step-19. Set k = k +1, go to Step-20. 
Step-20. Set ikj = 2, go to Step-21. 
Step-21. Set X[ikj] = 1 and add X[ikj] = 1 to the Model [MISM]. Go to Step-22. 
Step-22. Solve Model [MISM] with relaxing of the constraint of Eqs. (23-27). Compute  
             estimated rework cost by Eq. (25) and estimated restoration cost by Eq. (27), and  
             compute a total cost to find TC, write TC[i(k+1)j] = TC. Go to Step-23. 
Step-23. Observe whether TC[i(k+1)j] <  TC[k]*, 
 - if TC[i(k+1)j] <  TC[k]*, go to Step-24. 
 - otherwise, set ikj = ikj +1, go back to Step-12. 
Step-24. Observe whether k = g, 
 - if k = g, go to Step-25, 
 - otherwise, set k = k +1, go to Step-9. 
Step-25. Write {TC[k]*, k = 1, 2, …,g} as a set of the best solutions for every possible  

 number of production run. 
Step-26. The best solution of Algorithm [MISM] is Minimum {TC[k]*, k = 1, 2, …,g}. Write  
             all values of decision variables and then STOP. 

5.3 Numerical Experience  
To clarify how the proposed algorithm work, the following an example is given. 

MISM Problem 
Suppose a problem of multiple items single machine integrated batch production scheduling and 
maintenance scheduling with three types of items has the following parameters: 

The total number of parts q = 200 unit parts, number of parts 1st type q1 = 80, number of parts 2nd type q2 
= 50, number of parts 3rd type q3 = 70. Setup time between batches s = 10 minutes. The unit processing 
time for 1st type, 2nd type, 3rd type are t1 = 20, t2 = 10, t3 = 30 in minutes respectively. The length of PM 
action (in constant assumption) tPM = 60 minutes = 1 / μ. Constant repair rate μ = 1/60. The shape 
parameter of Weibull distribution β = 1.69 and scale parameter α = 2,857.14 estimated from machine 
failure times data. A common dute date d = 5.000. The unit inventory holding cost of finished parts for 
1st type, 2nd type, 3rd type are c11 = 0.20, c12 = 0.40, c13 = 0.30 in US$ per unit part per minute. The unit 
inventory holding cost of in process parts for 1st type, 2nd type, 3rd type are c21 = 0.10, c22 = 0.10, c23 = 
0.10 in US$ per unit part per minute. The unit cost for a PM action is cPM = US$ 30. The unit cost for a 
CM (CM minimal repair) is cr = US$ 120. The unit cost for setup time is cs = US$ 3. The unit rework 
cost for 1st type, 2nd type, 3rd type are cw1 = 100, cw2 = 100, cw3 = 100 in US$ per unit part. 

The computational steps to solve the problem are the followings. 

Step-1 and Step-2 yield T = ∑ 𝑞𝑞𝑗𝑗 𝑡𝑡𝑗𝑗  
𝑝𝑝
𝑗𝑗=1 = 4,200 and α = 2,857.14. 

Step-3. Calculate ∑ (𝑠𝑠 + 𝑞𝑞𝑗𝑗  𝑡𝑡𝑗𝑗) + (� 𝑇𝑇
𝛼𝛼

 � − 1)𝑡𝑡𝑃𝑃𝑃𝑃
𝑝𝑝
𝑗𝑗=1  = 4,350 < d = 5,000, then the problem is feasible for 

the Model [MISM]. 
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Step-4. Sort 3 item types with non-decreasing ratio as  𝛿𝛿2𝑞𝑞2+𝑠𝑠
𝑞𝑞2

= 10.20 ≤  𝛿𝛿1𝑞𝑞1+𝑠𝑠
𝑞𝑞1

 = 20.13 ≤ 𝛿𝛿3𝑞𝑞3+𝑠𝑠
𝑞𝑞3

 = 30.14. 
Then the new sequence in backward sequencing is 2nd type, 1st type and 3rd type, so j = 1 (2nd type), j = 
2 (1st type) and j = 3 (3rd type), and problem data in the model as Table 1.  

Table 1  
Data problem for Model [MISM] 

j Type of item c1j c2j tj qj 
1 2 0.4 0.1 10 50 
2 1 0.2 0.1 20 80 
3 3 0.3 0.1 30 70 

 

Step-5. Set g = 2 and Nkj = �
𝑑𝑑−(�𝑇𝑇𝑥𝑥�−1)𝛿𝛿𝑃𝑃𝑃𝑃−𝑇𝑇

𝑠𝑠
� = 74, where k = 1, 2, j=1, 2, 3. 

Step-6. Calculate the estimation of the production run position of each type of item to pay attention to 

the following ratios, 
𝑠𝑠+𝛿𝛿3𝑞𝑞3

𝛼𝛼
 + 𝑠𝑠+𝛿𝛿2𝑞𝑞2

𝛼𝛼
 + 𝑠𝑠+𝛿𝛿1𝑞𝑞1

𝛼𝛼
 = 0.85 + 0.65 + 0.21.  

That is the first production run (backward) will be occupied respectively by j = 1, j = 2 and j = 3, whereas 
the second production run will be occupied only by item j = 3. The ratios will prove the upper bound of 
number of production run is g = 2 as shown in Fig. 6.  
Step-7. Substitute the values of g, Nkj, p1j, p2j, qj, tj, s, d, 𝑡𝑡𝑃𝑃𝑃𝑃 to the Model [MISM] and set every item 
type as a batch or set X[ikj] = 1for ikj = 1, k = 1, j = 1, 2,…,p and set X[ikj] = 0 otherwise. Go to Step-8. 
 

                          Production run[2]                                  Production run[2]                             
 

 

 

 

  0                                                                                                                                  d = 5000 

Fig. 6. Occupation of the items in each production run 

Step-8. Yields TC[111] = 289,368.00. The complete result of Step-8 is shown in Table 2 and Fig. 7. 

Table 2  
Result Step-8 Algorithm [MISM] for the problem 

Batch size 𝑄𝑄�11𝑘𝑘�  Number of non- confor
ming parts, 

𝑀𝑀1 

Number of C
M, 

𝑁𝑁𝐶𝐶𝑃𝑃 

𝑇𝑇𝑇𝑇[111]  

𝑄𝑄[113] 𝑄𝑄[112] 𝑄𝑄[111] 

70 50 80 69.14 1 289,368.00 

 
Step-9 to Step-24, for k = 1 yield the best solution TC[1]* = 146,841.30. The decision variables of the 
best solution for 1st looping are shown in Table 3. 
The 2nd looping. 
Step-9 to Step-24, for k = 2, yield the best solution TC[2]* = 142,071.60. The decision variables of the 
best solution for 2nd looping are shown in Table 4. 
Step-25. Yields {TC[k]*, k = 1, 2, …,g} = {146,841.30, 142,071.60}  
Step-26. Yields TC = Min {146,841.30, 142,071.60} = 142,071.60. The complete solution is shown in 
Table 5 and Fig. 8. 
 

 

 

s      2nd type 

 

 

 

s    1st type 

 

 

 

s    3rd type 

 

 

 

type  rd3          s 
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Production run[1] 

 

 

 
 

     0            770.00                        2,880.00               3,400.00                      5,000.00                                  
 

                                                  2,857.14 = α                                      1,382.86 
                                                                                             CM[1]                     PM[1]  

Fig. 7. The Gantt-Chart for Step-8 Algorithm [MISM] for the problem 

Table 3  
The decision variable of the best solution for 1st looping (k = 1) 

Number of batch  Number of  
non-conforming part

s, M1 

Number of C
M, n𝐶𝐶𝑃𝑃 

𝑇𝑇𝑇𝑇[1]
∗  

j = 3 j = 2 j = 1 

 
12 

 
10 

 
14 

 
78.64 

 
2 

 
146,841.30 

 
Table 4  
The decision variable of the best solution for 2nd looping (k = 2) 

Number of batch Number of  non
- conforming p

arts, M2 

Number of 
CM, n𝐶𝐶𝑃𝑃 

 

𝑇𝑇𝑇𝑇[2]
∗  Production run[2] Production run[1] 

j = 3 j = 3 j = 2 j = 1 

 
1 

 
1 

 
10 

 
14 

 
0 

 
0 

 
142,071.60  

 
Table 5  
The complete solution of Algorithm [MISM] for the problem 

Batch size 𝑄𝑄�𝑖𝑖𝑘𝑘𝑘𝑘�   
M 

 

n𝐶𝐶𝑃𝑃  

 
TC Production run[2] Production run[1] 

j = 3 j = 3 j = 2 j = 1 

𝑄𝑄[123] = 57.00 𝑄𝑄[113] =13.00 
 

𝑄𝑄[112] = 5.72 
𝑄𝑄[212] = 5.56 
𝑄𝑄[312] = 5.40 
𝑄𝑄[412] = 4.24 
𝑄𝑄[512] = 5.08 
𝑄𝑄[612] = 4.92 
𝑄𝑄[712] =4.76 
𝑄𝑄[812] = 4.60 
𝑄𝑄[912] = 4.44 
𝑄𝑄[1012] = 4.28 

𝑄𝑄[111]  = 6.13 
𝑄𝑄[211]  = 6.07 
𝑄𝑄[311]  =  6.00 
𝑄𝑄[411]  = 5.94  
𝑄𝑄[511]  = 5.88 
𝑄𝑄[611]  = 5.81 
𝑄𝑄[711]  = 5.75 
𝑄𝑄[811]  = 5.68 
𝑄𝑄[911]  = 5.62 
𝑄𝑄[1011]  = 5.55 
𝑄𝑄[1111]  = 5.49  
𝑄𝑄[1211]  = 5.42 
𝑄𝑄[1311]  = 5.36  
𝑄𝑄[1411]  = 5.30 

0 0 142,071.60 

 

s 𝑄𝑄[111] = 80 

  

 

s     𝑄𝑄[112] = 50 

 

 

s       𝑄𝑄[113] = 70 
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                      Production run[2]                                   Production run[1] 

 

 

              ... 

 
      0                        490.00           2,200    2.260                                  4,857.95           4,877.33     5,000   5,060 
                                                     𝐵𝐵𝑃𝑃𝑃𝑃[2]   𝑇𝑇𝑃𝑃𝑃𝑃[2]                                                                            𝐵𝐵𝑃𝑃𝑃𝑃[1] 𝑇𝑇𝑃𝑃𝑃𝑃[1]  
 
                              1,720.00 < α                                                   2,740.00 < α 

Fig. 8. Gantt-Chart of the solution of Algorithm [MISM] for the problem 

5.4 A Comparison between Model Solution and the Practice  
Company X processes an order with constant size of 10 parts for every batch and machine maintenance 
is performed only when a failure of the machine occurs (reactive maintenance). If the example case is 
scheduled with constant batch then 200 parts will be divided into 20 batches. The 20 batches are inserted 
into the Model [MISM] then the total cost for the constant batch size is US$ 152,300.76 (see Table 6). 
While the method developed will provides total cost of US$ 142,071.60. The method developed in this 
paper will provide cost efficiency of at least 7.2 %. Other losses that might occur in this practice are the 
machine failures occur during production activity in progress and late delivery orders to consumers 
cannot be avoided if machine maintenance time takes long time because of machine breakdown. These 
losses will be the opportunity costs to the company.  

Table 6  
The decision variable of the best solution for constant batch  

Number of batch Number of  no
n- conforming 

parts, 𝑀𝑀2 

Number o
f CM, 𝑛𝑛𝐶𝐶𝑃𝑃 

 
𝑇𝑇𝑇𝑇[2]

∗  Production run[2] Production run[1] 
j = 3 j = 3 j = 2 j = 1 

6 1 5 8 0 0 152,300.76  
 
5.5 Sensitivity Analysis 
Sensitivity analysis of important parameters of the Model [MISM] is shown in Table 7. It   shows the 
increasing of completed parts inventory holding cost (c1j) will decrease number of batches in the best 
total cost and the total cost will increases fast. The increasing of in process inventory holding cost (c2j) 
will increase number of batches in the best total cost. The increasing of both PM unit cost (cPM) and setup 
unit cost (cs) did not change number of batches in the best total cost, except in increasing total cost value.  
   

6. Conclusion 
 

The model integrates batch scheduling and maintenance scheduling to minimize total cost consisting of 
inventory holding cost, setup cost, maintenance costs and rework cost for non-conforming parts. The 
problem in the model is divided into two, i. e., to determine batch production schedule and the second is 
to determine the expected number of corrective maintenance and the expected number of non-conforming 
parts obtained from determining the production schedule. 

The solution is to accommodate a trade off in the following two things. An increase in the number of 
batch (length of production run) up to a certain limit will minimize the total inventory holding cost. 
Meanwhile, an increase in the length of production run will imply on an increase in the number of non-
conforming parts and in number of corrective maintenance.  

 
 

 

s     𝑄𝑄[111] 

 

 

s    𝑄𝑄[211] 

 

 

 

s    𝑄𝑄[113] 

 

 

 

s       𝑄𝑄[123] 

 

 

 



Z. Zahedi et al. / International Journal of Industrial Engineering Computations 7 (2016) 
 

243 

Table 7  
Sensitivity analysis for Model [MISM] 

 
The change of parameters 

Number of batch in each run  
N* 

 
M 

 
𝑛𝑛𝐶𝐶𝑃𝑃 

 
TC* 

 
𝑅𝑅𝑅𝑅𝑛𝑛[2] 𝑅𝑅𝑅𝑅𝑛𝑛[1] 
Item-3 Item-3 Item-2 Item-1 

𝑐𝑐𝑖𝑖𝑗𝑗 = original values, j =1,2,3 1 1 10 14 26 0.00 0 142,071.60 
𝑐𝑐𝑖𝑖𝑗𝑗 = twice of original values 1 1  9 13 24 0.00 0 164,811.20 
𝑐𝑐𝑖𝑖𝑗𝑗 = three times of original values 1 1 9 12 23 0.00 0 197,465.30 
𝑐𝑐𝑖𝑖𝑗𝑗  = four times of original values 1 1 8 12 22 0.00 0 211,072.50 
𝑐𝑐2𝑗𝑗  = original values 1 1 10 14 26 0.00 0 142,071.60 
𝑐𝑐2𝑗𝑗  = twice of original values 1 1 11 16 29 1.45 1 150,942.80 
𝑐𝑐2𝑗𝑗 = three times of original values 1 1 13 17 32 4.45 1 159,494.00 
𝑐𝑐2𝑗𝑗 = four times of original values 1 2 14 18 35 7.45 1 167,527.20 
𝑐𝑐𝑃𝑃𝑃𝑃 = original values 1 1 10 14 26 0.00 0 142,071.60 
𝑐𝑐𝑃𝑃𝑃𝑃 = twice of original values 1 1 10 14 26 0.00 0 142,131.60 
𝑐𝑐𝑃𝑃𝑃𝑃 = three times of original values 1 1 10 14 26 0.00 0 142,191.60 
𝑐𝑐𝑃𝑃𝑃𝑃 = four times of original values 1 1 10 14 26 0.00 0 142,251.60 
𝑐𝑐𝑠𝑠 = original values 1 1 10 14 26 0.00 0 142,071.60 
𝑐𝑐𝑠𝑠 = twice of original values 1 1 10 14 26 0.00 0 142,149.60 
𝑐𝑐𝑠𝑠 = three times of original values 1 1 10 14 26 0.00 0 142,227.60 
𝑐𝑐𝑠𝑠 = four times of original values 1 1 10 14 26 0.00 0 142,305.60 
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