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 This paper presents the implementation of an efficient modified genetic algorithm for solving 
the multi-traveling salesman problem (mTSP). The main characteristics of the method are the 
construction of an initial population of high quality and the implementation of several local 
search operators which are important in the efficient and effective exploration of promising 
regions of the solution space. Due to the combinatorial complexity of mTSP, the proposed 
methodology is especially applicable for real-world problems. The proposed algorithm was 
tested on a set of six benchmark instances, which have from 76 and 1002 cities to be visited. In 
all cases, the best known solution was improved. The results are also compared with other 
existing solutions procedure in the literature. 
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1. Introduction 
 

The mTSP problem can be viewed from the perspective of two well-known problems: i) as a 
generalization of the Travelling Salesman Problem (TSP), where a set of routes is assigned to m salesmen 
who all start from and return to a home city, and ii) as a special case of the vehicle routing problem 
(VRP), in which customers are considered unitary demands and every travelling salesman only visits a 
predetermined number of cities. Thus, the mTSP can also be utilized for solving several types of VRPs 
and all formulations and solution approaches for the VRP are valid for the mTSP.  
 
Although the VRP and TSP have been widely discussed in the literature, the research on the mTSP is 
limited. Moreover, few papers in the literature address the mTSP through efficient population-based 
algorithms. The main motivation for formulating a population methodology lies in the ease of integration 
with multi-objective strategies, which allow introducing practical aspects, such as profit, fuel 
consumption and environmental impact, among others. Therefore, it becomes relevant to develop and 
implement an effective and robust optimization methodology based on population.  
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The main contributions of this paper are as follows: 1) An effective population algorithm is proposed; 2) 
different heuristic strategies that improve the quality of the initial population are presented; and 3) six 
local search operators are integrated into the methodology, with which a modified and improved version 
of the Genetic Algorithm presented by Chu and Beasley (1997) is obtained. 
The obtained results demonstrate the efficiency of the improved method with respect to those reported 
in the literature. 
 
The rest of the paper will proceed as follows. In Section 2, the literature of the mTSP is reviewed. In 
Section 3, the problem is defined, and the mathematical model is formulated. Section 4 describes the 
proposed algorithm. Results are reported in Section 5, and conclusions and perspectives are discussed in 
Section 6. 
 
2. Literature review 
 
While in specialized literature the work related to TSP and VRP are abundant and numerous instances 
and test systems are presented, relatively few studies are found on mTSP with which comparisons can be 
made regarding the best known solutions. In Bektas (2004), a complete review of the state of the art 
solutions that includes aspects of the mathematical formulation and solution procedures is presented. The 
author makes an interesting analysis of applications and connections with other problems, where the 
mTSP is associated with many applications such as, scheduling of print press (Gorenstein, 1970; Carter 
& Ragsdale, 2002), bank crew (Svestka & Huckfelt, 1973), interview (Gilbert & Hofstra, 1992), 
photographer team (Zhang et al., 1999), security service (Calvo & Cordone, 2003) and hot rolling (Tang 
et al., 2000), school bus routing (Angel et al., 1972), work force planning, workload balancing (Okonjo, 
1988), mission planning for mobile robots can be found in Brumitt and Stentz (1998); Yu et al. (2002); 
Sariel et al. (2009) and inspection task-rescue scenarios, in which possible victims have to be identified 
(Faigl et al., 2005). 
 
Likewise, several methodologies have been raised to solve the mTSP, such as heuristic and metaheuristic 
algorithms, neural network-based methods, ant systems and exact techniques. The mTSP is very time 
consuming due to its NP-hard nature. Therefore, heuristic algorithms are the preferred method. In this 
regard, Russell (1977) proposes a technique denominated as mTOUR heuristic that consists of two stages: 
cluster first-route second. In that work, the extended version of the Lin Kernighan algorithm (1973) is 
used for routing. Sze and Tiong (2007) perform a comparison between the Nearest Neighbor Algorithm 
(NNA) and Genetic Algorithm (GA) for solving the mTSP. The results obtained by the NNA are superior 
to the GA in terms of performance and computing time. However, a conventional GA was used in that 
case. 
 
In a more recent work, Sedighpour et al. (2011) present an effective GA for solving the mTSP, in which 
the 2-Opt local search algorithm is used for improving solutions. In the aforementioned work, 6 
benchmark instances from the TSPLIB (Reinelt, 2014) are used and, in all but four instances, the best 
known solution was improved. 
 
Zhou and Li (2010) solve the mTSP problem by a modified GA. A greedy strategy is implemented to 
create the initial population, and the mutation operator is combined with the local search strategy 2−Opt, 
which allows one to quickly determine quality neighboring solutions and accelerates the convergence of 
the algorithm. 
 
Chen et al. (2011) propose a genetic algorithm in which new mutation and recombination operators are 
suggested within a codification technique named two-part chromosome, representing the solution to the 
mTSP. This type of encoding takes into account the sequence and number of cities that must be visited 
by each traveling salesman. 
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The work presented by Junjie and Dingwei (2006) applies an Ant Colony Optimization (ACO) to the 
mTSP with capacity constraints. The ACO tests several standard problems from TSPLIB, finding 
competitive solutions in reasonable computation times. However, for large instances, the algorithm does 
not reach the best known solution. Similarly, in Seidighpour et al. (2011), the results obtained by ACO 
are taken for comparison with those obtained in this paper. 
 
A hybrid two-stage algorithm is presented by Yousefikhoshbakh and Seidighpour (2012); in the first 
stage, the mTSP is solved by the so-called sweep algorithm and in the second stage by so-called elite ant 
colony optimization in conjunction with a local search strategy 3-Opt to improve the solution found in 
the first stage. Six instances of the TSPLIB library are resolved showing the development and 
competitiveness of the algorithm. 
 
Song et al. (2003) propose an extended simulated annealing, which is an open system, and this gives rise 
for perturbation schemes according to the problem-augmented TSP or mTSP. The entropy constraints are 
combined with an energy function to equally distribute the salesmen’s workload. Further, that algorithm 
can solve the problem without any transformation into the standard form as proposed in Bellmore and 
Hong (1974) and GuoXing (1995). 
 
Exact techniques have been explored to solve the problem. Initially, Laporte and Nobert (1980) solve 
mTSP without sub-tour elimination constraints. These restrictions are only included when an integer 
solution is found, whereby a labeling process is performed in order to verify if any subtour constraint has 
been violated. If a subtour is found in the solution, then the restrictions for each subtour are included in 
the problem, and a re-optimization is performed. The integrality is obtained using Gomory’s cutting 
planes. The methodology is able to find optimal solutions for instances of size less than or equal to 100 
cities. 
 
3. Problem definition and mathematical model 
 
The mTSP is NP-hard in the strong sense and is commonly formulated as an integer programming model 
that considers a complete directed graph ( ),G V E where E is the set of edges and { }0 . . . V n=  is the vertex 
set and corresponds to the cities; whereas vertex 0 corresponds to the depot. Graph G must be strongly 
connected and is generally assumed to be complete. D  Is the matrix formed with the nonnegative metric 
cost 

ij
d associated with each edge (i, j)∈ E . The metric cost can represent cost, distance or time. 

ij
x  Is 

defined as a binary variable associated with each edge (i, j)∈ E that takes the value 1 if edge (i, j) belongs 
to the optimal solution and takes the value 0 otherwise. In the mTSP, the cost matrix satisfies the triangle 
inequality, meaning , ,;ik kj ijd d d i j k V∀ ∈+ ≥ . Therefore, given a set of cities where m salesmen and a metric 
cost are located, the objective of the mTSP is to determine a tour for each salesman such that:  
 

• The total tour cost is minimized. 
• All of the routes must start and end at the depot. 
• Each city must be visited exactly once by only one salesman. 

 
Starting from a model based on a two-index vehicle flow formulation, the mTSP model may be defined 
as: 
 

min ij ij
i V j V

d x
∈ ∈
∑∑  (1) 

s.t  
{ }1, \ 0ij

i V
x j V

∈

= ∀ ∈∑  (2) 
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{ }1, \ 0ij
j V

x i V
∈

= ∀ ∈∑  (3) 

0i
i V

x m
∈

=∑  (4) 

0 j
j V

x m
∈

=∑  (5) 

{ }( ) \ 0 ,ij
i S j S

x r S S V S
∉ ∈

≥ ∀ ⊆ ≠ ∅∑∑  (6) 

{ }0,1 ; ,ijx i j E∈ ∀ ∈  (7) 
The indegree and outdegree Constraints (2) and (3) impose that exactly one edge enters and leaves the 
vertex associated with each city, respectively. Constraints (4) and (5) ensure that exactly m salesmen 
leave from and return to the depot. The so-called capacity-cut constraints (6) impose both the connectivity 
of the solution and the maximum number of nodes that can be visited by any salesman. In fact, they 
indicate that each cut ( \ , )V S S  defined by a customer set S is crossed by a number of edges not smaller 
than ( )r S (minimum number of salesmen needed to serve set S ). Alternatively, a family of equivalent 
constraints may be obtained by considering the subtour elimination constraints proposed for the TSP by 
Miller et al. (1960). 
 

{ }1 , \ 0 ,i j iju u px p i j V i j− + ≤ − ∀ ∈ ≠  (8) 

where \ 0u Vi ∈ , is an additional continuous variable representing the number of cities that salesman i  has 
not visited yet and p is the maximum number of nodes that can be visited by any salesman. The above 
mathematical model (2) - (7) can be implemented in commercial solvers to obtain exact solutions of the 
mTSP only for small-sized instances (approximately less than 100 cities). Given n is the number of cities 
to be visited and m the total number of salesmen, the total number of possible routes covering all cities 
is given by ( )1 !/ 2m n − . Due to its high computational complexity, solving even moderate-sized mTSPs 
takes unreasonable computational time. The approximate approach never guarantees an optimal solution 
but provides a near optimal solution in an acceptable computational time. 
 
4. Methodology: Modified Chu-Beasley Genetic Algorithm (MCBGA) 
 
In this section, a modified genetic algorithm based on the Chu and Beasley (1997) approaches is 
proposed. The first part of the MCBGA requires a completely diverse initial population where every 
chromosome is unique. A tournament selection is performed to choose two parent solutions from the 
initial population. The chosen two are used for a special crossover adapted to the mTSP. The resulting 
child solutions from the crossover operator are converted into individual routes. The objective function 
is evaluated for each chromosome, and the one with the best score is chosen to undergo a mutation 
process. The mutation process is different from the traditional mutation. This is an improvement step. 
This stage includes some inter and intra-route heuristics. Finally, a new individual enters into the 
population. The process is performed iteratively until a convergence point. Each of these steps is 
presented in detail in the following sub-sections: 
 
4.1. Codification 
 
Let n be the number of cities to be visited and m the number of traveling salesmen available to visit all 
cities. Let { }1 2, ,..., ,...,i mC c c c c=  be a set of size m , where ic is the number of cities contained in cluster iTSP . 

Thus, iTSP  is a permuted set of cities that have to be connected through a feasible route for the traveling 
salesman i such that \ 0iTSP V⊆ . In general, the representation of a feasible solution∏ to the mTSP is 
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encoded by a chromosome that contains all cities to be visited (n-th order permutation), as shown in 
Expression (9). 
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The number of cities in a cluster i , i ic TSP= , has a lower limit 

min
c and an upper limit

max
c , as shown in 

Eq. (10). 
 

min maxic TSP c≤ ≤  (10) 
 
The limit 

max
c  is an input parameter of the problem, while the limit 

min
c , which represents the minimum 

number of cities that each salesman must visit, is calculated by the following equation: 
 

min 1min

n
c

TSP
=

+

 
 
 

, (11) 

 
where minTSP represent the minimum number of salesmen needed to cover all cities and is calculated as: 

min
max

P
n

TS
c

=  
  

 (12) 

 
4.2. Initial population  
 
The initial population is obtained from N approximated solutions of the traditional TSP considering the 
following: a) the complete set of cities except the deposit and b) a different starting city in each solution 
process. This strategy allows N sequences or permutations of cities called Giant Tours. Using this 
sequence as a starting point, the generation of high quality individuals is achieved, which can be 
explained by the fact of being incorporated within each solution ∏  several arcs for which the objective 
function is highly sensitive. The steps to build the individuals of the initial population are as follows: 
 

• Each giant tour is built considering three heuristics: the nearest neighbor (Gutin et al., 2002), the 
heuristic methods for TSP of Christofides (1976) and Lin and Kernighan (1973). Initially, a 
percentage of the population (30% in this case) is formed with the sequences obtained by the 
nearest neighbor method considering different starting cities. Another percentage of the 
population (30 % in this case) is generated using Christofides heuristics involving different 
starting cities on the Eulerian graph. It should be noted that this process begins with the 
construction of a Minimum Spanning Tree (MST) on the complete graph ( ),G V E . From an 
Eulerian graph, the MST is constructed by pairing the vertices of odd degree of the MST, and, as 
a final step, a Hamiltonian graph is constructed from the Eulerian graph. Finally, the remaining 
percentage of the population is obtained from a solution resulting by applying LKH. This solution 
is slightly modified through exchanges between genes in order to obtain the remaining individuals 
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of the population. It should ensure a diverse population. 

• The giant tour is divided into m clusters, where the number of cities of each cluster is chosen 
randomly, ensuring compliance with Constraint (10) resulting in 1m − routes. The route m is 
formed by the cities that have yet to be allocated according the order established on each 
chromosome. 

• Each chromosome is evaluated according to Equation (1) in order to obtain the initial value of 
the objective function. 

 
4.3. Selection and crossover 
 
Tournament-selection is used to select individuals who will be submitted to crossover under a given 
probability

c
ρ . Goldberg and Deb (2004) indicate that tournament selection has the best convergence 

properties and computational complexity when compared with other selection operators presented in the 
literature. 
 
Being a permutation-based encoding, the application of the crossover operator requires some care. A 
constraint of the problem is that all cities are visited only once. This implies that two genes on the 
chromosome cannot have the same value. Different strategies can be applied to prevent infeasible 
sequences, such as Partially Mapped Crossover (PMX) (Goldberg & Lingle, 1985), Order Crossover 
(OX) (Oliver et al., 1987), Order Crossover #2 (OX2) (Syswerda, 1991), Position Based Crossover 
(PBX) (Syswerda, 1991) and Cycle Crossover (CX) (Oliver et al.,1987). In this paper, the PMX method 
is used. 
 
4.4. Local-search 
 
The offspring obtained so far is subjected to mutation under a given probability _m. The mutation process 
is based on the application of neighborhood structures seeking to improve each of the routes obtained 
after application of the crossover operator. The upgrading steps applied are neighborhood structures 
known as inter-routes and intra-routes. 
 

4.4.1. Inter-route structures 
 

Five neighborhood structures involving inter-routes movements are applied (Subramanian et al. 2012), 
each of which is described below: 

• Shift (1; 0), city pk is transferred from route TSPi to route TSPj. 
• Shift (2; 0), two adjacent cities pk and pk+1, are transferred from route TSPi to route TSPj . 
• Swap (1; 1), a permutation is performed between city pk from route TSPi and city pl from route 

TSPj. 
• Swap (2; 1), two adjacent cities pk and pk+1 from route TSPi are permuted with city pl from route 

TSPj. 
• Swap (2; 2), two adjacent cities pk and pk+1 from route TSPi are permuted with two adjacent cities 

pl and pl+1 from route TSPj. 
 

4.4.2. Intra-route structure 
 
The local search algorithm 2-Opt is used as the intra-route neighborhood structure, which consists of 
removing two nonadjacent edges E (pk; pk+1) and E (pl; pl+1) belonging to the same route TSPi, and then 
two arcs E’ (pk; pk+1) and E’ (pl; pl+1) are added so that a new route TSP´i is created. 
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Inter and intra-route neighborhood structures are applied in the order in which they were described and 
applied exhaustively, in order to choose the feasible movement to improve to a greater extent the value 
of the objective function and thus accelerate convergence to quality solutions. 
 
4.5. Population substitution 
 

When a new individual is obtained by the genetic operators of selection, recombination and mutation, an 
evaluation is necessary to determine whether that individual can be part of the population. The steps for 
population substitution are as follows: 
 

• Verify that the objective function value of the new individual is less than the value of the objective 
function of the worst individual in the current population. 

• Verify that the new individual does not exist in the current population.  
If the two conditions described above are met, then the new individual enters the population replacing 
the individual of lower quality. The general methodology structure is presented in Algorithm 1. 
 
Data: Instance size n, population size N, probability 𝜌𝜌𝑚𝑚 and 𝜌𝜌𝑐𝑐, maximum cities per route 

maxc , P←  { } . 
Result: Feasible optimal solution Π  to the the mTSP 
while P n≠  do  
 P ←   P ∪  chromosomes from nearest neighbor, Christo_des algorithm and Lin-

Kernighan heuristic; 
end  
Calculate the minimum of routes TSPmin according to (12); 
Calculate the minimum of cities per route cmin according to (11); 

 

for 1..i N←  do  
 Randomly split each chromosome with route size between minc  and maxc ; 
end  
while ⌐ stopping criteria (the fitness of the best solution has converged or a maximum 
number of generations has been reached ) do 

 

 1 2,p p ← tournament-selection (P); 
 if ( 1 2p p≠  ) and ( () crand ρ≤ ) then 
 h ←Crossover( 1 2,p p ); 
 else 
 h ← 1p ; 
 end 
 if  ( () mrand ρ≤ ) then 
 h ← local-search ( h ); 

Place h  into the population; 
generation ++ 

 else 
 Place h  into the population; 

generation ++ 
 end 
end  
return The best solution ( P )  

 
Algorithm 1. MCBGA Pseudo code 
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5. Computational results 
 
In order to demonstrate the effectiveness of the proposed methodology tests on six standard instances of 
the library TSPLIB (Reinelt, 2014) are carried out, and the results obtained are compared to the results 
obtained by the algorithms ACO (Junjie & Dingwei, 2006) and MGA (Seidighpour et al. 2011). The 
instances used in the tests are referred to as pr76, pr152, pr226, pr299, pr436 and pr1002. 
The proposed algorithm is implemented in the programming environment Matlab 2010a on a PC Core 2 
Duo with 3 GHz, 4 GB RAM Memory and Windows 7. 
The MCBGA is characterized by an intensive neighborhood search. For this reason, the tests were 
conducted with a mutation rate of ρm = 0.9. The crossover rate used was ρc = 1.0. 
Table 1 shows a comparison between the results obtained by algorithm MCBGA and ACO and MGA 
algorithms. The best solution found for each instance and the average value of the objective function 
after 10 runs of the algorithm are reported. The amount of travel agents used (m); the maximum number 
of cities (cmax) and the total number of cities to visit (n) are also reported.  
The proposed algorithm finds better solutions for six instances used in this work with respect to the 
results reported in the literature for the same six instances (Seidighpour et al., 2011; Junjie & Dingwei, 
2006), reflecting the effectiveness of the proposed methodology. 
 
Table 1  
Comparison of results of the algorithms MCBGA, ACO and MGA 

Instance n Cmax 
MCBGA ACO MGA 

Best Avg T [s] m Best Avg T [s] m Best Avg T [s] m 
pr76 76 20 153774 157666,6 1,8 4 178597 180690 19 5 157444 160574 43 5 
pr152 152 40 119938 128768,8 11,07 4 130953 136341 41 5 127839 133337 91 5 
pr226 226 50 157239 160836,4 17,63 5 167646 170877 62 5 166827 178501 195 5 
pr299 299 70 71081 73192,8 35,65 5 82106 83845 65 5 82176 85796 363 5 
pr436 436 100 136809 140436,6 80 5 161955 165035 95 5 173839 183698 623 5 
pr1002 1002 220 313561 318778,8 465,7 5 382198 387205 186 5 427269 459179 2892 5 

 
The new best solutions found are presented below: 
 
Instance pr76: 4 routes, cost 153774. 
 
23 22 24 46 45 44 48 47 69 68 70 67 50 49 53 54 42 43 27 26; 
21 25 55 56 57 58 59 60 41 61 62 63 64 73 72 71 65 66 51 52; 
28 33 34 40 39 38 18 37 36 35 32 29 30 31 19 20 5 4; 
2 3 6 7 8 9 10 12 11 17 16 15 13 14 74 75 76. 
 
Instance pr152: 4 routes, cost 119938. 
 
35 49 50 76 74 75 73 51 78 46 52 53 72 71 70 69 54 45 44 55 56 68 67 66 65 57 43 42 58 59 64 63 62 
61 60 41 15 2 16; 
3 14 4 13 5 12 6 11 7 10 8 9 17 18 40 19 21 20 22 23 39 24 25 26 27 28 38 29 30 31 32 33 37 34; 
79 114 117 140 139 141 142 143 138 137 118 119 136 135 144 145 146 134 133 120 121 132 131 147 
148 149 130 129 122 123 128 127 151 150 152 126 125 124 77 48; 
47 92 93 94 95 116 115 96 91 97 98 99 90 80 113 100 89 81 101 102 103 88 82 112 111 104 87 105 106 
107 110 109 108 85 84 86 83 36. 
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Instance pr226: 5 routes, cost 157239. 
 
74 75 76 77 78 79 80 81 82 83 84 85 86 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 
132 130 131 129 127 128 126 110 109 108 107 106 104 105 103 70 69 68 71 72;  
212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 
188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 143 142 148 149 147 64 
67 13; 
87 95 96 89 88 97 98 90 91 99 100 92 93 101 102 94 137 144 146 145 138 139 140 141 150 170 169 
168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 41 43 47 46 49; 
9 10 14 15 18 19 20 21 22 23 24 25 26 27 29 30 34 35 37 38 39 40 42 44 45 36 48 33 32 31 28 50 51 52 
53 54 55 56 57 58 59 60 61 62 63 65 17 16 12 8;  
2 3 4 5 6 7 11 66 136 135 134 133 213 214 215 216 217 218 219 220 221 222 223 224 225 226 73. 
 
Instance pr299: 5 routes, cost 71081. 
 
3 7 88 90 89 91 86 94 97 96 95 98 83 84 99 100 102 82 81 79 80 76 78 77 75 72 73 74 71 69 70 67 68 
105 64 65 107 62 63 66 33 34 29 28 27 26 25 24 23 21 18 17 16 15 13 12 11 10 9 8 5 6 2; 
19 20 22 30 31 32 35 36 38 37 42 40 41 43 45 46 44 47 48 49 50 51 52 53 54 56 55 116 114 115 117 119 
118 121 122 120 180 181 182 183 184 185 256 186 253 252 255 261 260 254 257 258 259 262 264 263 
266 265 267 268 248 249 244 247 243 237 236 134 136 92; 
14 85 87 101 103 168 167 197 240 242 196 193 192 191 194 195 170 169 174 172 128 109 108 106 110 
61 59 60 39 57 58 112 111 113 123 127 126 124 125 175 177 176 178 187 189 179 171 173 190 188 250 
251 245 246 270 269 271 239 241 238 272 273 274 235 234 198 164 163 162 139; 
4 142 141 140 161 138 137 135 133 132 129 104 130 131 165 166 201 199 200 202 228 203 229 231 
230 233 232 277 276 275 279 278 281 282 283 280 284 285 286 219 221 222 209 220 224 223 226 225 
227 299 206 205 204 207 208 210 211 160 159 158 157 144 145 146; 
92 142 212 211 217 215 216 286 287 288 290 289 291 292 294 293 296 295 297 214 213 155 154 153 
152 151 150 149 148 146 147. 
 
Instance pr436: 5 routes, cost 136809. 
 
4 6 7 8 9 10 11 12 13 14 15 16 17 32 31 30 29 28 27 26 64 25 23 21 22 24 65 66 67 20 19 18 68 69 70 
71 72 88 89 90 91 104 105 106 107 144 146 112 111 75 61 60 59 58 79 80 81 82 56 55 48 47 44 43 45 
46; 
49 42 86 224 223 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 210 211 
212 213 214 215 216 217 218 219 220 221 191 184 192 183 193 194 195 196 197 198 199 200 201 202 
203 205 206 172 173 174 204 175 176 177 178 179 180 181 182 154 155 156 157 158 159 160 161 162 
163 134 135 136 137 138 139 140 141 142 152 153 151 150 143 108 74 73 63 62 33 34 35 36 37 40 5; 
39 77 76 109 113 114 116 118 119 121 122 101 120 117 115 103 102 92 93 94 100 95 96 97 98 99 125 
123 124 126 127 129 128 130 131 132 133 167 165 164 166 169 168 170 171 207 208 209 251 253 252 
255 254 316 315 317 318 319 320 321 322 323 324 325 326 327 328 329 331 332 330 303 302 304 305 
306 307 308 309 310 311 312 313 314 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 
271; 
41 38 57 78 87 110 147 148 145 185 190 222 272 301 273 274 275 276 277 278 279 294 295 296 297 
298 299 300 333 334 335 336 337 338 339 360 370 361 362 363 364 365 366 367 368 369 378 385 386 
387 388 401 400 402 404 405 417 418 428 429 431 416 415 419 420 421 414 406 407 413 412 423 422 
432 433 430 427 424 426 425 410 411 409 408 403 434 438 437 436 435 439 284 344 343 342 281 230 
187 54 50; 
51 53 189 188 225 231 232 280 285 286 287 340 288 289 290 291 292 293 359 357 358 356 355 354 
352 353 351 350 349 347 348 346 345 376 377 379 389 390 380 374 375 381 391 392 399 398 396 397 
393 395 394 384 382 383 372 371 373 341 282 229 283 228 227 226 186 149 85 84 83 52 2 3. 
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Instance pr1002: 5 routes, cost 313561. 
 
75 77 93 90 92 91 98 97 96 95 136 135 134 133 100 101 102 128 129 130 131 132 137 138 139 140 141 
142 152 151 150 149 148 144 143 145 146 147 126 127 125 124 123 122 121 257 258 259 256 255 254 
253 249 250 247 248 260 261 262 246 245 244 243 251 252 995 153 154 155 156 164 165 166 169 168 
167 163 162 158 157 185 159 160 161 172 171 170 173 174 175 176 177 178 179 180 181 184 183 182 
996 203 204 206 205 207 210 209 208 200 199 198 201 202 196 197 194 195 187 186 241 242 240 238 
239 188 189 193 192 190 191 237 236 235 233 234 221 219 218 217 212 211 213 216 215 214 220 222 
223 224 225 226 227 228 229 230 232 231 263 264 265 266 267 268 269 271 270 272 273 274 275 276 
277 278 279 280 281 282 301 302 303 304 113 112 114 115 116 118 106 105 994 107 108 109 307 308 
309 310 311 312 45 44 43 42 41 50 51 53 52 54 73 71; 
74 80 83 84 48 47 46 306 305 991 297 298 286 287 288 403 402 408 409 411 412 413 414 415 417 416 
410 407 406 405 421 422 420 418 419 426 425 424 423 464 463 462 461 460 458 457 456 432 433 446 
444 443 442 440 438 439 441 632 631 630 629 611 610 609 608 607 606 605 604 603 602 601 599 597 
596 595 594 593 592 591 559 560 558 557 556 555 554 553 552 551 550 548 542 543 544 541 539 540 
545 546 547 549 562 561 563 564 565 519 518 520 521 517 516 567 566 568 570 569 514 515 523 522 
525 524 530 529 526 527 528 536 537 538 535 533 534 532 531 999 510 511 512 509 508 507 506 505 
504 503 502 501 498 499 500 489 488 487 513 485 486 490 491 495 496 497 494 493 492 484 483 482 
481 998 580 579 571 572 573 574 590 589 588 576 575 578 577 581 582 583 584 585 449 448 450 451 
452 453 455 454 475 474 473 471 472 476 477 478 479 480 470 469 468 467 120 117 119 104 103 99 
94 76; 
79 78 89 87 110 111 283 284 428 429 430 431 997 434 447 445 795 796 797 798 799 800 804 805 806 
809 810 811 812 820 821 822 825 824 823 819 818 814 813 841 815 816 817 828 827 826 829 830 831 
832 833 834 835 836 837 840 839 838 1002 859 860 862 861 863 866 865 864 856 855 854 857 858 
852 853 850 851 843 842 897 898 896 894 895 844 845 849 848 846 847 893 892 891 889 890 877 875 
874 873 868 867 869 872 871 870 876 878 879 880 881 882 883 884 885 886 888 887 919 900 901 902 
918 917 916 904 903 906 905 909 910 911 912 915 914 913 777 776 778 779 780 781 783 782 803 802 
801 787 794 793 788 786 785 784 758 757 756 789 790 791 792 751 752 753 754 755 747 746 748 750 
749 733 734 735 738 744 745 743 742 741 740 739 737 736 730 731 732 616 615 614 613 612 627 628 
626 625 992 633 634 635 636 637 638 639 640 641 373 372 371 370 369 377 376 375 374 437 436 435 
427 404 86 88; 
82 85 300 299 285 466 465 459 586 587 598 600 808 807 1001 908 907 899 920 921 922 923 924 925 
927 926 928 929 930 931 932 933 934 935 936 937 938 939 957 958 959 960 769 767 766 768 770 771 
772 773 775 774 762 761 760 759 1000 763 764 765 702 703 704 705 697 698 699 700 701 969 968 
967 966 965 964 963 962 961 993 953 954 956 955 940 941 942 943 944 945 946 947 948 952 951 949 
950 977 978 979 976 973 974 975 980 982 981 972 971 970 987 986 985 983 984 990 989 988 684 683 
685 686 687 682 676 675 677 674 671 670 669 672 673 678 679 681 680 688 689 690 691 692 693 694 
695 696 706 707 709 708 710 713 711 712 723 722 721 715 714 716 717 718 720 719 668 667 666 665 
664 663 726 725 724 728 729 727 620 619 618 617 624 623 621 622 649 650 651 648 645 646 647 652 
654 653 644 643 642 659 658 657 655 656 662 661 660 356 355 357 358 359 354 348 347 349 346 343 
342 327 313 49 81; 
341 344 345 350 351 353 352 360 361 362 363 364 365 366 367 368 378 379 381 380 382 385 383 384 
395 394 393 387 386 388 389 390 392 391 340 339 338 337 336 335 398 397 396 400 401 399 292 291 
290 289 296 295 293 294 321 322 323 320 317 318 319 324 326 325 316 315 314 331 330 329 328 334 
333 332 28 27 29 30 31 26 20 19 21 18 15 14 13 16 17 22 23 25 24 32 33 34 35 36 37 38 39 40 58 57 55 
56 72 70 69 68 67 66 65 59 60 61 62 64 63 12 11 10 9 8 7 6 4 3 5 2. 
 
6. Conclusion 
 
In this paper, a genetic algorithm modified to solve the mTSP has been presented. In order to examine 
the efficiency of the algorithm, tests on six instances of literature ranging from 76 to 1002 cities were 
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made. The algorithm found better solutions for all instances used with respect to the values reported by 
Seidighpour et al. (2011) and Junjie and Dingwei (2006). Similarly, the average solutions after 10 run of 
the algorithm, for each instance, are less than the average reported solutions. The results show that the 
efficiency of the proposed algorithm, which combines technique initialization and neighborhood 
structures, provide good quality solutions at each iteration of the algorithm. 
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