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 Permutation flow shop scheduling problems have been an interesting area of research for over 
six decades. Out of the several parameters, minimization of makespan has been studied much 
over the years. The problems are widely regarded as NP-Complete if the number of machines is 
more than three. As the computation time grows exponentially with respect to the problem size, 
heuristics and meta-heuristics have been proposed by many authors that give reasonably accurate 
and acceptable results.  The NEH algorithm proposed in 1983 is still considered as one of the 
best simple, constructive heuristics for the minimization of makespan. This paper analyses the 
powerful job insertion technique used by NEH algorithm and proposes seven new variants, the 
complexity level remains same. 120 numbers of problem instances proposed by Taillard have 
been used for the purpose of validating the algorithms. Out of the seven, three produce better 
results than the original NEH algorithm. 
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1. Introduction 

 
A flow shop scheduling problem (FSP) with n jobs and m machines has been a topic of research since 
1950.  Hejazi and Saghafian (2005) define the scheduling problem as “an effort to specify the order and 
timing of the processing of the jobs on machines, with an objective or objectives”. Pinedo (2012) provides 
a vast literature about the scheduling theory, definitions, problems and tutorials. Among the many 
parameters that are being optimized, the makespan optimization is the choice of a good number of 
researchers in recent years. In permutation flow shop scheduling (PFSP), the total number of possibilities 
is n!, where n is the number of jobs to be scheduled. The problem is NP-Complete for more than 3 
machines (Garey et al., 1976).  In earlier days, Gantt charts (Gantt, 1919) were popular in scheduling 
which are still used by shop floor personnel for smaller problems. Many exact solutions have been 
proposed and analyzed by the researchers over the past decades. Most of them are based on branch and 
bound algorithm (example: Land & Doig, 1960) or mathematical/ computer programming (example: Yin 
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et al., 2010). The computation time grows exponentially with the size of the problem and hence, heuristics 
that yield reasonably accurate and acceptable results are more popular in this area.  
 
Johnson’s (1954) algorithm reported optimal makespan for two machines, n number of jobs in a 
permutation flow shop problem. Since then, so many simple heuristics have been proposed over the 
years. The CDS algorithm proposed by Campbell et al. (1970) is the extension of Johnson’s algorithm 
which selects the minimum makespan out of the (m-1) enumerations. The NEH algorithm proposed by 
Nawaz et al. (1983) uses the powerful job insertion technique after arranging the jobs in the descending 
order of their total processing times. It selects the first two jobs as the initial partial sequence and other 
jobs are inserted one by one from the third job to obtain a final optimal makespan and its corresponding 
sequence. It has been generally agreed that the NEH algorithm is regarded as one of the best available 
simple, constructive heuristics even today. The complexity level and the quality of a few earlier simple 
heuristics were studied in detail by Taillard (1990) and it was concluded that the NEH algorithm is a 
better one for different sizes of problems varying from 9 to 50 jobs. Framinan et al. (2003) considered 
twenty two different approaches and eight different sorting criteria, totaling 176 approaches for every 
objective function. Additionally, for every objective function, the RANDOM choice of a sequence was 
considered. The processing times were drawn between 1 to 99 time units. It was concluded that for the 
makespan optimization, the NEH-insertion approach which selects the first two jobs as the initial partial 
initial sequence is a clear winner. A study conducted by Kalczynski and Kamburowski (2007) also 
reaffirms this conclusion.  
 
The SPIRIT algorithm of Widmer and Hertz (1989) is also a constructive heuristic based on the well- 
known traveling salesman problem. A few other constructive heuristic algorithms such as Rajendran 
(1993), Gajpal and Rajendran (2006) also use the powerful insertion technique of NEH to obtain the 
optimal sequence of jobs.  Improvements have been performed on the NEH algorithm over the years to 
minimize the makespan as well as the computing time. The NEH heuristic algorithm itself has been an 
interesting area of research for many researchers. Many variants and improvements have been suggested 
over the last three decades. A few claims have been proved to be false also.  
 
Sarin and Lefoka (1993) showed that their proposed algorithm was more effective when the number of 
machines is fewer than 100; but, NEH is better for larger number of machines. The performance of NEH 
algorithm was improved by improving the sorting step by Xiao-ping et al. (2004). Dong et al. (2008) 
ordered the jobs by the sums of the average processing time and the standard deviations of processing 
times to achieve the improvement. The Min-Max algorithm developed by Ronconi (2004) addresses the 
makespan minimization PFSP with no buffers. He found that the heuristic yields better results than the 
NEH algorithm for larger problems. Chakraborty and Laha (2007) modified the NEH algorithm using 
population-based technique and compared the results with NEH and HFC heuristic (Koulamas, 1998). 
They claimed that their algorithm outperforms NEH and HFC for the tested problem instances. The 
performance of the HFC algorithm is reported to outperform the NEH for non-permutation schedules. 
 
Based on the concept of Johnson's algorithm, Kalczynski and Kamburowski (2008) proposed a new 
priority order combined with a simple tie-breaking method that leads to a heuristic that outperformed the 
NEH algorithm for all the problem sizes. Liu et al. (2012) proposed two new techniques to improve the 
NEH algorithm. The running time is reduced by introducing block properties and tie break rules to obtain 
solutions with smaller makespan. Singhal et al. (2012) considered the first four jobs from the sorted list 
and based on a parameter k, better partial sequences are considered for further job insertion. They claimed 
that the results are better than the NEH algorithm. However, the claim is not supported by rigorous 
validation except one numerical example and it is similar to the algorithm proposed by Chakraborty and 
Laha. Semančo and Modrák (2012) proposed one MOD approach for solving the PFSP. It uses the 
difference between the sums of processing times for each machine as a pair-splitting strategy to make 
two groups of the matrix of n-job and m-machine. Johnson’s rule was used in the last step to get the 
minimum makespan. MOD’s average relative percentage deviation for all the 120 Taillard’s problems 
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was reported as 6.88%, which is inferior to that of the NEH. Ancău (2012) proposed two variants of 
heuristic algorithms to solve the permutation flow shop scheduling problem. The first algorithm is a 
constructive greedy heuristic which builds the optimal schedule of jobs on the basis of a selective-greedy 
process. The second algorithm is a modified version of the first algorithm, based on the iterative 
stochastic start. 
 
Baskar and Xavior (2013) considered the first and last jobs, middle two jobs and the last two jobs as the 
initial partial sequences and analyzed the performance using Taillard (1993) instances. Initial sequencing 
of jobs is based on non-increasing order of their total processing times as proposed by NEH. Fernandez-
Viagas and Framinan (2014) presented a new tie-breaking mechanism based on an estimation of the idle 
times of the different subsequences in order to pick the one with the lowest value of the estimation. The 
computational experiments carried out by them showed that this mechanism outperforms the existing 
ones, both for the NEH and the iterated greedy algorithms for different CPU times.  
 
Ribas and Mateo (2010) proposed two tools to improve the performance of NEH based heuristics. The 
first tool uses the reversibility property and the second one is a new tie-breaking strategy to use with the 
insertion phase of the NEH heuristic. They analyzed five initial solution procedures for both the 
problems. The algorithm recently proposed by Gupta and Chauhan (2015) performs better than many 
simple heuristics like Palmer, CDS and RA algorithms; but, could not perform better than the NEH 
algorithm. The solutions have been further improved by meta-heuristics. The results obtained from 
simple heuristics like NEH are mostly used as the candidate solution by these meta-heuristics to refine 
the solution further. Many meta-heuristics based on Simulated Annealing can be found in Osman and 
Potts (1989), Ogbu and Smith (1990) and Ishibuchi et al. (1995). Meta-heuristics based on Tabu Search 
techniques (Example: Nowicki & Smutnicki, 1996) and Evolutionary algorithms (Example: Reeves, 
1995; Caraffa et al., 2001; Onwubolu & Davendra, 2006; Sayadi et al., 2010; Erdogmus, 2010) are also 
available in the literature.  
 
2. NEH Heuristic Algorithm 

 
NEH algorithm proposed by Nawaz et al. (1983) is widely accepted as one of the best simple heuristics 
for makespan minimization in permutation flow shop scheduling problems. The algorithm essentially 
consists of three steps. (i) All the jobs are scheduled in non-increasing order of their total processing 
times (ii) First two jobs are considered as an initial partial sequence (iii) Remaining jobs are inserted one 
by one starting from the third job at the place, which minimizes the partial makespan among the possible 
options. Total number of sequences to be enumerated is [n (n+1) /2 – 1] and hence, the complexity level 
is ∂ (n3m). All the three components contribute to the efficient performance of the algorithm. Many initial 
sequences have been considered by other researchers in step (i) of NEH algorithm and the performances 
have been analyzed. (Example: Nagano & Moccellin, 2002; Pour, 2001).  
 
Ruiz and Maroto (2005) carried out an exhaustive review of eighteen constructive and improvement 
heuristics that include the Johnson (1954), Palmer (1965), CDS (1970), Gupta (1971), RA (1977) and 
NEH  (1983) heuristics. They concluded that the NEH algorithm is one of the best simple algorithms 
available up to 2005 outperforming many meta-heuristics. For validating the algorithms, they have used 
Taillard (1993) benchmark problems. The reported average % increase for the NEH algorithm over the 
best known solution for the 120 problem instances was 3.33 %. The Palmer, Gupta and Hundal and 
Rajgopal (1988) algorithms make use of a slope index assigned to each job. These heuristic algorithms 
sort the list of jobs using that weight as a sort key to create a feasible schedule. 
  
3. Proposed Variants 

 
Initial arrangement of the jobs may be based on any parameter and many researchers have tried in 
different ways to have a better initial sequencing. Also, the choice of initial partial sequence is numerous. 
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The NEH algorithm selects the first two jobs after arranging them in non-increasing order of their total 
processing times. Out of the three steps in NEH algorithm, only the third step, that is, the job insertion 
technique is considered and the following variants listed in Table 1 are analyzed in this paper. Only two 
cases of initial arrangement of jobs are considered, (i) arranging them in non-increasing order of their 
total processing times and (ii) taking the data as it is without any sorting. The reason being, the purpose 
is to analyze the power of the job insertion technique. The initial sequence has been selected in many 
ways and the final sequence is constructed using the job insertion technique. Let, 
 
OSEQ – The sequence of the jobs in original data 
PSEQ – The sequence of the jobs after arranging them in non-increasing order of total processing times 
n – Number of jobs 
m – Number of machines 
 
Table 1  
Variants of NEH algorithm 

S.No Algorithm Initial Sequence Further Job Insertion 
1 NEH First two jobs from PSEQ Other jobs one by one from PSEQ 
2 NEHAB1 Job nos. [7, 14] if n=20; [17, 34] if n=50; [34, 68] if 

n=100; [67, 134] if n=200 and [167, 334] if n=500 from 
OSEQ 

Other jobs one by one from PSEQ 

3 NEHAB2 Job nos. [1, 11] if n=20; [1, 26] if n=50; [1, 51] if n=100; 
[1, 101] if n=200 and [1, 251] if n=500 from OSEQ 

Other jobs one by one from PSEQ 

4 NEHAB3 First two jobs from OSEQ Other jobs one by one from 
OSEQ 

5 NEHAB4 Job nos. [1, 11] if n=20; [1, 26] if n=50; [1, 51] if n=100; 
[1, 101] if n=200 and [1, 251] if n=500 from PSEQ 

Other jobs one by one from PSEQ 

6 NEHAB5 Job nos. [10, 11] if n=20; [25, 26] if n=50; [50, 51] if 
n=100; [100, 101] if n=200 and [250, 251] if n=500 from 
OSEQ 

Other jobs one by one from PSEQ 

7 NEHAB6 Job nos. [7, 14] if n=20; [17, 34] if n=50; [34, 68] if 
n=100; [67, 134] if n=200 and [167, 334] if n=500 from 
PSEQ 

Other jobs one by one from PSEQ 

8 NEHAB7 Job nos. [7, 14] if n=20; [17, 34] if n=50; [34, 68] if 
n=100; [67, 134] if n=200 and [167, 334] if n=500 from 
OSEQ 

Other jobs one by one from 
OSEQ 

 
 
4. Results and Discussion 

 
The algorithms are coded in MATLAB R2008a and run in an i5 PC with 4 GB RAM. For validating the 
algorithms, the 120 numbers of Taillard (1993) benchmark instances have been used. They are grouped 
into 12 sets of 10 problems each with varying sizes having 20, 50, 100, 200 and 500 jobs and 5, 10 and 
20 machines. The lower bounds are available in the Taillard paper itself and the known upper bounds as 
of April 2005 (www.mistic.heig-vd.ch/taillard/problems.dir/ordonnancement,dir/flowshop.dir/best_lb_up.txt) were 
taken from the website. The obtained makespan are reproduced in Table 2. The performance measure 
being considered for the analysis purpose is:  
 
% increase in Makespan from the known upper bound (Relative Deviation, RD),  
                            = (Makespan obtained- Known Upper Bound) x 100) / Known Upper Bound. 
 
The average % increase in Makespan from the known upper bound (Relative Deviation, RD), are 
computed and presented Table 3. 
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Table 2  
Makespan for different Algorithms using Taillard Problems 

m/c × Job UB NEH NEHAB1 NEHAB2 NEHAB3 NEHAB4 NEHAB5 NEHAB6 NEHAB7 
 1278 1286 1286 1299 1310 1299 1300 1297 1297 
 1359 1365 1367 1365 1383 1383 1377 1383 1383 
 1081 1159 1139 1140 1132 1150 1123 1139 1141 
 1293 1325 1337 1314 1355 1364 1314 1315 1354 
5×20 1235 1305 1244 1250 1277 1244 1305 1305 1283 
 1195 1228 1212 1229 1224 1231 1234 1236 1237 
 1234 1278 1280 1251 1276 1269 1266 1251 1253 
 1206 1223 1224 1278 1248 1223 1221 1257 1239 
 1230 1291 1270 1291 1263 1278 1253 1245 1258 
 1108 1151 1153 1151 1131 1151 1161 1153 1153 
 1582 1680 1655 1631 1665 1680 1631 1623 1658 
 1659 1729 1729 1735 1753 1776 1729 1729 1767 
 1496 1557 1541 1550 1602 1566 1574 1570 1583 
 1377 1439 1439 1441 1465 1424 1443 1452 1437 
10×20 1419 1502 1515 1493 1503 1502 1505 1498 1511 
 1397 1453 1473 1447 1515 1434 1487 1474 1520 
 1484 1562 1550 1581 1529 1527 1541 1523 1557 
 1538 1609 1585 1663 1635 1605 1599 1583 1619 
 1593 1647 1644 1652 1645 1647 1646 1678 1668 
 1591 1653 1683 1639 1670 1634 1639 1635 1662 
 2297 2410 2397 2422 2479 2402 2402 2394 2446 
 2099 2150 2160 2126 2167 2184 2159 2163 2175 
 2326 2411 2382 2407 2512 2405 2403 2398 2449 
 2223 2262 2281 2240 2278 2280 2240 2264 2283 
20×20 2291 2397 2397 2367 2341 2367 2363 2383 2435 
 2226 2349 2281 2337 2354 2328 2357 2343 2279 
 2273 2362 2348 2356 2386 2338 2356 2393 2350 
 2200 2249 2249 2257 2314 2273 2265 2282 2283 
 2237 2320 2299 2320 2387 2330 2320 2349 2384 
 2178 2277 2235 2296 2289 2277 2276 2300 2297 
 2724 2733 2733 2733 2729 2733 2733 2733 2744 
 2834 2843 2882 2843 2933 2843 2843 2882 2925 
 2621 2640 2630 2638 2709 2640 2647 2630 2676 
 2751 2782 2782 2832 2778 2804 2812 2811 2805 
5×50 2863 2868 2868 2868 2891 2868 2868 2897 2891 
 2829 2850 2840 2863 2873 2841 2850 2841 2882 
 2725 2758 2745 2763 2751 2753 2753 2767 2736 
 2683 2721 2698 2688 2725 2707 2710 2713 2739 
 2552 2576 2575 2574 2613 2574 2574 2574 2596 
 2782 2790 2786 2793 2794 2789 2786 2798 2791 
 2991 3135 3151 3156 3194 3176 3178 3117 3140 
 2867 3032 3012 3038 3046 3024 3013 3097 3028 
 2839 2986 2987 2987 3077 2973 2995 3009 3156 
 3063 3198 3136 3139 3202 3177 3147 3203 3218 
10×50 2976 3160 3097 3129 3142 3153 3144 3174 3149 
 3006 3178 3184 3172 3154 3165 3165 3177 3139 
 3093 3277 3291 3289 3239 3277 3310 3265 3296 
 3037 3123 3196 3185 3170 3153 3168 3171 3167 
 2897 3002 3062 3078 3062 3079 3035 3029 3032 
 3065 3257 3229 3276 3263 3209 3294 3232 3285 
 3850 4082 4078 4044 4099 4044 4069 4122 4078 
 3704 3921 4009 4011 4029 4021 3869 3865 4047 
 3640 3927 3882 3890 3882 3852 3894 3887 3907 
 3723 3969 3936 3942 4037 3934 3991 3966 3991 
20×50 3611 3835 3879 3860 3878 3865 3899 3861 3859 
 3681 3914 3901 3892 3968 3902 3917 3903 3996 
 3704 3952 3897 3958 3986 3949 3936 3952 3939 
 3691 3938 3925 3903 3976 3932 3950 3926 3982 
 3743 3952 3922 3970 3972 3997 3996 4004 3971 
 3756 4079 3991 3953 3958 3991 4069 4028 3964 
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Table 2  
Makespan for different Algorithms using Taillard Problems (Contd…) 

m/c × Job UB NEH NEHAB1 NEHAB2 NEHAB3 NEHAB4 NEHAB5 NEHAB6 NEHAB7 
 5493 5519 5519 5582 5527 5560 5552 5552 5533 
 5268 5348 5348 5341 5326 5348 5348 5329 5350 
 5175 5219 5219 5220 5262 5253 5208 5201 5247 
 5014 5023 5023 5021 5028 5023 5049 5023 5022 
 5250 5266 5266 5261 5298 5261 5267 5267 5263 
5×100 5135 5139 5141 5139 5192 5139 5139 5139 5192 
 5246 5259 5259 5266 5340 5289 5292 5270 5304 
 5094 5120 5108 5113 5137 5105 5131 5126 5151 
 5448 5489 5489 5489 5514 5489 5500 5489 5504 
 5322 5341 5349 5349 5357 5342 5346 5346 5382 
 5770 5846 5881 5866 5920 5864 5893 5894 5882 
 5349 5453 5421 5478 5550 5431 5466 5431 5533 
 5676 5824 5752 5756 5841 5775 5756 5834 5810 
 5781 5929 5986 5982 6112 5958 5988 5929 6086 
10×100 5467 5679 5621 5639 5672 5717 5693 5687 5628 
 5303 5375 5365 5366 5447 5347 5376 5369 5468 
 5595 5704 5718 5719 5712 5713 5744 5678 5739 
 5617 5760 5740 5761 5829 5789 5762 5729 5808 
 5871 6032 6013 6040 6037 6018 6014 6009 6063 
 5845 5918 5903 5903 5925 5920 5909 5928 6041 
 6202 6541 6582 6574 6631 6586 6505 6603 6581 
 6183 6523 6524 6494 6502 6516 6571 6622 6534 
 6271 6639 6628 6632 6583 6656 6664 6603 6609 
 6269 6557 6590 6624 6687 6572 6609 6608 6572 
20×100 6314 6695 6645 6721 6720 6640 6612 6658 6692 
 6364 6664 6741 6670 6772 6696 6741 6742 6716 
 6268 6632 6567 6657 6605 6628 6623 6564 6657 
 6401 6739 6774 6744 6869 6778 6791 6723 6846 
 6275 6677 6563 6655 6636 6560 6614 6617 6737 
 6434 6677 6762 6710 6741 6771 6727 6734 6785 
 10862 10912 10942 10942 11033 10952 11032 10954 10988 
 10480 10716 10735 10722 10728 10660 10640 10702 10770 
 10922 11025 11028 11048 11172 11062 11098 11027 11175 
 10889 11057 11057 11057 11057 11057 11057 11057 10954 
10×200 10524 10645 10623 10617 10689 10636 10658 10654 10693 
 10329 10458 10458 10460 10559 10530 10439 11449 10626 
 10854 10989 10991 11039 11053 10967 10991 11005 11003 
 10730 10829 10856 10887 10913 10851 10867 10846 10980 
 10438 10574 10625 10574 10639 10578 10580 10635 10599 
 10675 10807 10870 10811 10946 10773 10822 10823 10927 
 11195 11625 11663 11600 11734 11648 11668 11597 11630 
 11203 11675 11798 11741 11815 11710 11771 11736 11847 
 11281 11852 11858 11806 11848 11766 11810 11848 11831 
 11275 11803 11729 11728 11767 11709 11780 11800 11892 
20×200 11259 11685 11691 11719 11763 11685 11692 11649 11803 
 11176 11629 11679 11657 11699 11759 11725 11661 11709 
 11360 11833 11803 11758 11878 11796 11852 11815 11942 
 11334 11913 11797 11783 11844 11896 11851 11870 11847 
 11192 11673 11646 11619 11767 11688 11651 11625 11733 
 11288 11869 11820 11754 11875 11784 11703 11755 11854 
 26059 26670 26703 26686 26802 26731 26843 26733 26843 
 26520 27232 27238 27258 27255 27144 27276 27312 27292 
 26371 26848 26917 26887 27108 26982 26861 26977 27182 
 26456 27055 26993 26913 27043 26946 26943 26934 26990 
20×500 26334 26727 26784 26887 26953 26813 26957 26830 26900 
 26477 26992 26941 27157 27079 27083 27030 27074 27104 
 26389 26797 26746 26702 26932 26838 26834 26783 27050 
 26560 27138 27237 27073 27153 27153 27165 27205 27270 
 26005 26631 26618 26652 26924 26584 26586 26602 26734 
 26457 26984 26955 26977 27044 27080 26932 27021 27080 
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Table 3 
Average % increase in Makespan from the known upper bound (Relative Deviation) 

Size NEH (Ref.) NEHAB1 NEHAB2 NEHAB3 NEHAB4 NEHAB5 NEHAB6 NEHAB7 
5×20 3.300288 2.466798 2.94145 3.12553 3.105381 2.797727 3.0305926 3.153593 

10×20  4.601116 4.503733 4.611437 5.632414 4.318363 4.397786 4.1938635 5.613124 
20×20 3.730891 3.028943 3.464978 5.152144 3.73614 3.534852 4.109836 4.595636 
5×50  0.727204 0.639589 0.845576 1.589029 0.693401 0.7814 1.0256895 1.539656 
10×50  5.072897 5.067393 5.418086 5.770844 5.208919 5.408071 5.511376 5.974275 
20×50  6.648051 6.251361 6.261627 7.234613 6.431331 6.707959 6.4955621 7.099907 
5×100  0.527212 0.522582 0.631669 1.020972 0.687648 0.733877 0.5604858 0.957314 

10×100 2.21498 1.994005 2.194672 3.151677 2.23288 2.359485 2.1542496 3.16718 
20×100 5.344636 5.390678 5.561187 5.977305 5.434273 5.520767 5.5521205 5.95049 
10×200 1.230268 1.392741 1.363868 1.957031 1.280906 1.386078 2.3294067 1.892757 
20×200 4.435269 4.37247 4.088959 4.822075 4.334303 4.389163 4.2574951 4.908013 
20×500 2.066128 2.088155 2.11122 2.530346 2.17239 2.200622 2.2164883 2.586686 
Mean 3.324912 3.143204 3.291227 3.996998 3.302995 3.351482 3.4530972 3.953219 
Rank 4 1 2 8 3 5 6 7 

 
In case of the NEH Algorithm, Ruiz reported an average increase of 3.33 % over the best known solution 
for the 120 problem instances. Whereas, the average obtained by the author is 3.3249 %. The CDS, 
Palmer, Gupta and RA heuristics are not considered as the deviations are very high when compared to 
the other heuristics. The average increase is below 4% of all the cases analyzed. Even the NEHAB3 
algorithm that selects the first two jobs as the initial partial sequence from the original data without 
sequencing the jobs initially, reports a deviation less than 4%. Also, the algorithm NEHAB7 that selects 
different jobs initially from the original data reports a deviation of 3.953219 %, which is slightly better 
than NEHAB3. Only, the job insertion technique is used to construct the final schedule from the original 
data. The performances of these two are better than most of the simple heuristics, including that of 
Suliman (2000) in which the reported increase was 6.21 %.  
 
The heuristics analyzed in this paper perform better than a few meta-heuristics also:  
GA Sprit - 7.15 % (Widmer & Hertz, 1989); 
One GA – 4.75 % (Chen et al., 1995);  
One Hybrid GA – 8.92 % (Murata et al., 1996) and  
Another GA – 12.53 % (Ponnambalam et al., 2001). 
 
The individual performances are also analyzed and reported in Table 4 with respect to the number of 
problem instances they report better makespan when compared with the NEH (reference). NEHAB1 
reports better results in case of 57 instances, whereas, NEH reports in 45 problems only. In 18 cases, the 
reported makespan are the same. NEHAB1 reports a mean deviation of 3.143204 %, which is the least 
among the heuristics including the NEH.  
 
Table 4  
Individual Performance based on the Number of Instances  

S.No. Algorithm Self NEH (Ref.) Same Makespan Rank 
1 NEHAB1 57 45 18 1 
2 NEHAB2 49 59 12 5 
3 NEHAB3 26 93 01 8 
4 NEHAB4 53 50 17 2 
5 NEHAB5 47 63 10 6 
6 NEHAB6 52 59 09 4 
7 NEHAB7 28 92 00 7 

 
The rank of NEH is taken as 3 in Table 4. This ranking is different from the one based on the mean 
deviation from the known upper bounds. NEH holds the position of 4 there in Table 3.  In both the cases, 
NEHAB1 that selects the initial partial sequence as the job numbers [7, 14] if n=20; [17, 34] if n=50; 
[34, 68] if n=100; [67, 134] if n=200 and [167, 334] if n=500 from the original data performs extremely 
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better. Other jobs are inserted one by one from the sequence of the jobs after arranging them in non-
increasing order of total processing times. The mean deviations are presented graphically in Fig. 1 to Fig. 
3. 

 
 

Fig. 1. Percent Increase Plot for 5 Machines 

 
Fig. 2. Percent Increase Plot for 10 Machines 

 

 
Fig. 3. Percent Increase Plot for 20 Machines 
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The algorithms perform better in case of 5 machines, 100 jobs; 10 machines, 200 jobs and 20 machines, 
500 jobs problem instances. That is, in the highest number of jobs for a particular number of machines. 
When the percentage deviations are analyzed, it is more than 5 % in case of 10 machines, 50 jobs; 20 
machines, 50 jobs and 20 machines, 100 jobs.   
 
5. ANOVA 
 
One way ANOVA has been carried out at 95% confidence level. The variance analysis has been 
executed using the MINITAB 17® software. 
 

   
Fig.4. Box Plot for the Relative 
Deviations 

Fig. 5. Interval Plot for the Relative 
Deviations 

Fig. 6. One Way Normal Analysis of 
Means for Relative Deviations 

 
The box plot, interval plot and normal analysis of means are shown from Fig. 4 to Fig. 6. The performance 
of NEHAB1 is better than the others. The means of NEHAB3 and NEHAB7 are above the average level. 
These two algorithms do not pre-arrange the jobs in any specific order, but, uses the job insertion 
technique to arrive with the final sequence. However, the performance of these two also better than many 
heuristics proposed over the years, the deviations being below 4 %. This clearly shows the power of the 
job insertion technique in minimizing the makespan in permutation flow shop problems. The output 
produced by the software is reproduced below: 
 
Analysis of Variance 
 
Source      DF   Adj SS  Adj MS  F-Value  P-Value 
ALGORITHM    7    85.54  12.220     2.70    0.009 
Error      952  4308.99   4.526 
Total      959  4394.53 
 
 
Model Summary 
 
      S   R-sq  R-sq(adj)  R-sq(pred) 
2.12750  1.95%      1.23%       0.29% 
 
 
Means 
 
ALGORITHM    N   Mean  StDev      95% CI 
NEH        120  3.325  2.121  (2.944, 3.706) 
NEHAB1     120  3.143  2.037  (2.762, 3.524) 
NEHAB2     120  3.291  2.117  (2.910, 3.672) 
NEHAB3     120  3.997  2.209  (3.616, 4.378) 
NEHAB4     120  3.303  2.052  (2.922, 3.684) 
NEHAB5     120  3.351  2.096  (2.970, 3.733) 
NEHAB6     120  3.453  2.172  (3.072, 3.834) 
NEHAB7     120  3.953  2.209  (3.572, 4.334) 
 
Pooled StDev = 2.12750 
 

The null hypothesis and the alternate are: 
H0: all means are same  
HA: at least one mean is different  
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In the analysis, the F value is high (2.70) and the P value is < 0.05 (0.009) and hence, the Null Hypothesis 
is rejected. The algorithms are statistically different. 
 
6. Interaction and Surface Plots 

 
For validating further, interaction and Surface plots have been drawn using MINITAB17® software for 
the results obtained. The maximum order of terms in the model has been set as 2. 
 

 
 

Fig. 7. Normal Plot of the Standardized Effects 
 
In the analysis, algorithm ‘0’ represents the NEH algorithm, ‘1’ represents the NEHAB1 algorithm and 
so on. According to the Normal Plot of the Standardized Effects (Fig. 7), the factors B (number of 
machines), C (number of jobs) and BC have a significant effect on the response (Relative Deviation) for 
a particular algorithm.  
 
Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 
Model 7 2358.57 336.938 157.55 0.000 
      1-Linear 3 882.81 294.271 137.60 0.000 
         Algorithms 1 5.51 5.515 2.58 0.109 
         No of Machines 1 852.26 852.264 398.51 0.000 
         No of Jobs 1 762.00 762.00 456.30 0.000 
      2-Way Interactions 3 164.13 54.710 25.58 0.000 
         Algorithms*No of Machines 1 0.82 0.824 0.39 0.535 
         Algorithms*No of Jobs 1 0.61 0.609 0.28 0.594 
         No of Machines*No of Jobs 1 163.31 163.307 76.36 0.000 
      3-Way Interactions 1 1.34 1.344 0.63 0.428 
        Algorithms*No of Machines*No of Jobs 1 1.34 1.344 0.63 0.428 
Error 952 2035.97 2.139   
        Lack-of-Fit 88 1070.95 12.170 10.90 0.000 
        Pure Error 864 965.02 1.117   
Total 959 4394.53    
Model Summary      
S R-Sq(sdj) R-sq(pred)    
1.46240 53.67% 53.33%    
 
 

Coded Coefficients 
Term Effect Coef SE Coef T-Value P-Value VIF 
Constant  1.099 0.143 7.68 0.000  
Algorithms 0.702 0.351 0.219 1.61 0.109 9.20 
No of Machines 6.096 3.048 0.153 19.96 0.000 7.33 
No of Job2 -6.686 -3.343 0.177 -18.88 0.000 4.14 
Algorithms*No of Machines -0.289 -0.145 0.233 -0.62 0.535 7.36 
Algorithms*No of Job2 0.289 0.144 0.271 0.53 0.594 9.10 
No of Machines*No of Job2 3.193 1.596 0.183 8.74 0.000 6.87 
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The p-value is small (<0.05, a level of significance) for the factors; the number of machines, the number 
of jobs and the interaction between the number of machines * number of jobs. They have statistically 
significant effect on the response. However, the algorithms and the other interactions are significantly 
different statistically.  
 

 
Fig. 8. Interaction Plot for Relative Deviation 

 
The interaction plot is presented in Fig. 8. For a particular algorithm, the relative deviation is less for the 
combination of less number of machines with a large number of jobs.  
 
The surface plots of relative deviations are shown from Fig. 9 and Fig. 10. The relative deviation is high 
as the number of machines increases. Algorithm 3 (NEHAB3) reports the highest deviations in general 
followed by the Algorithm 7 (NEHAB7). The performance of NEHAB1 is better than the others. 
Similarly, the relative deviation is decreasing with the increase in the number of jobs. This reaffirms the 
analysis of variance.  
 

  
Fig. 9. Surface Plot of Relative Deviation vs No of 
Machines, Algorithms 

Fig. 10. Surface Plot of Relative Deviation vs No of Jobs, 
Algorithms 

 
 
7. Conclusion and Future Work 

 
In this paper, 7 heuristics have been analyzed along with the popular NEH heuristic. The variants are 
obtained by varying the initial partial sequence. Except in two, the jobs are arranged initially in non 
increasing order of their total processing times. The average percentage increase in the makespan from 
the known upper bounds is below 4 % for all the cases which is better than many known simple heuristics. 
Simply changing the initial partial sequence improves the makespan in three algorithms. It is concluded 
that, in addition to selecting the first two jobs as the initial partial sequence, other partial sequences also 
yield better results than the original NEH algorithm. The job insertion technique is the most powerful 
component of the NEH algorithm followed by the initial arrangement of jobs in non increasing order of 
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their total processing times. NEH algorithm has been the most popular among the simple heuristics in 
minimizing the makespan in flow shop scheduling problems. The results obtained using NEH have been 
used by many meta-heuristics to refine the solution further. Many improvement tools have been proposed 
for the NEH over the years. Three algorithms among the seven analyzed in this paper are the simpler 
variants of the NEH with the same complexity level, but yield better results. These may be analyzed 
further to compare the performance still better. Further research includes the application of the 
improvement tools proposed by other researchers for the NEH algorithm in these algorithms also and 
analyzing the effects for different benchmark problem instances.  
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