
 
International Journal of Industrial Engineering Computations 7 (2016) 49–66 

 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
Flow shop scheduling algorithm to optimize warehouse activities 
 

 

 
P. Centobelli*, G. Converso, T. Murino and L.C. Santillo 
 
 
 
Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received April 22  2015 
Received in Revised Format  
July 23 2015 
Accepted July 28  2015 
Available online  
August 1  2015 

 Successful flow-shop scheduling outlines a more rapid and efficient process of order fulfilment 
in warehouse activities. Indeed the way and the speed of order processing and, in particular, the 
operations concerning materials handling between the upper stocking area and a lower forward 
picking one must be optimized. The two activities, drops and pickings, have considerable impact 
on important performance parameters for Supply Chain wholesaler companies. In this paper, a 
new flow shop scheduling algorithm is formulated in order to process a greater number of orders 
by replacing the FIFO logic for the drops activities of a wholesaler company on a daily basis. 
The System Dynamics modelling and simulation have been used to simulate the actual scenario 
and the output solutions. Finally, a t-Student test validates the modelled algorithm, granting that 
it can be used for all wholesalers based on drop and picking activities. 
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1. Introduction 

 
Over the last few years, studies focused on management have dedicated an increasing attention to 
planning tools and especially to simulation techniques relative to the modelling and the analysis of 
complex systems (Tan et al., 2012). Simulations carried out through computer support have gained a 
central role among all the available tools finalized to deepen highly complex (Bagdasaryan, 2011) and 
dynamic managerial systems (Greiner et al., 2014; Accorsi et al., 2014). The complexity is due to the 
difficulty in coordinating the chain that goes from the supplier to the customers, the so-called Supply 
Chain. Each part of it has to operate efficiently and in an integrated manner with the others (Dotoli et al., 
2015). This work is focused on a specific actor of the Supply Chain, the wholesaler. It is a mandatory 
link between the manufacturers and retailers, as, in fact, the latter might benefit of several advantages 
working with a wholesaler as, for instance, the possibility to purchase smaller quantity of products at a 
lower price and to choose among a greater variety of brands. Retailers can also benefit from receiving 
shorter lead times. This is possible because wholesalers buy in bulk from the producer and distribute in 
small quantities to retailers reducing the need for both manufacturer and retailer to hold such large stocks. 
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Therefore, they improve the overall Supply Chain efficiency due to the fact that they own facilities, 
employees, technology, and, systems in place as well as specific skills to manage the inventory. The 
optimization of warehouse operations is a critical aspect to improve efficiency and effectiveness of 
storage system and materials handling operations. However, the optimization of scheduling activities 
concerning the wholesaler operations represents a rather unexplored topic in the literature.  
 
The problem has been studied by a warehouse of an Italian wholesaler company that stocks and 
distributes household cleaning and personal hygiene products. The company was interested in the 
maximization of the number of fulfilled orders and in the contemporary minimization of the orders 
picking lead time. To address this concern a flow shop scheduling algorithm has been built in order to 
optimize both activities, drop and picking, redesigning them through a systemic approach. In this paper, 
we deal with the case of the above mentioned wholesaler enterprise where warehouse analyzed these 
activities coupling is a relevant problem since the picking one, due to the wait of the drop one, is 
unproductive. Hence this unbalance involves a not optimized order picking scheduling.  
 
Dynamic scheduling problems are often handled using dispatching rules (Tang et al., 2005). This study 
focuses on the development of new dispatching rules that incorporate the optimization of dropping and 
picking activities into a sequence decision that minimizes jobs’ makespan and maximizes daily 
employees’ productivity. This study is the first of its kind for developing dispatching rules to address the 
scheduling problem with dynamic buffer. Before getting into details, a brief overview of the paper is 
given. Section 2 presents the existing literature review about the topic. Section 3 explains the problem 
formulation providing algorithms for both drops scheduling and pickings scheduling. In Section 4 data 
have been collected from the analyzed company in order to implement the model shown in Section 5. 
Section 6 gives a model validation. Section 7 proposes an analysis of the simulation results. Finally the 
last section reports the conclusions and highlights the applicability of this model to a wide range of firms 
operating in the distribution channel as wholesalers. 
 
2. Literature review  
 
In literature there are several works focused on scheduling problems on the implementation of limited 
resources when there is a demand during a particular period. In particular the attention will be focused 
on flow-shop problems. Generally, the main objective is the makespan minimization (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = {𝐶𝐶𝑖𝑖}). The 
makespan minimization improves the line production efficiency. Another typical objective is represented 
by the flow time minimization that provides a balanced use of resources and the work-in-progress 
minimization. Matching these two objectives, the production costs decrease.  
 
During the last 50 years, the makespan minimization of flow-shop problems has been discussed by 
several researchers. In particular from the moment that some studies such as the work of Garey et al. 
(1976) have proved that problems with more than two machines are NP-hard, the research has focused 
the attention on the development of new heuristic techniques with the aim to provide a good 
approximation of the optimum solution in short periods. Although at the moment several heuristic 
techniques are available, a global structure that contains all these techniques does not exist. Nevertheless 
some researchers have tried to classify them (e.g., Gupta, 1971; Pinedo, 1995; Lourenço, 1996). For this 
problem there are also numerous articles such as Gupta (1979), King and Spachis (1980) and Park et al. 
(1984). These techniques have different properties for complexity order, calculations time and memory 
requirements. Afterwards some local search method, also known as metaheuristic, were applied to the 
problem and the results were compared with the previous studies. For example, the paper of Widmer and 
Hertz (1991) and Moccellin (1995) contain heuristic techniques that require an initial solution obtained 
from an analogy with the Travelling Salesman Problem (TSP) followed by a tabu search approach that 
may utilize as an initial solution whatever heuristic included in the comparison such as the heuristic of 
Nawaz at al. (1983). In several scientific articles the expression “constructive heuristic” was introduced. 
Although it was an attempt to catalogue some types of heuristic, it is still not much clear when it is 
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possible the use of this definition. On the one hand, Pinedo (1995) defines as constructive the heuristics 
resulting from the composition of simple heuristics, on the other hand, Lourenço (1996) defines a 
constructive heuristic as an algorithm that builds a sequence of jobs and once a decision is made, it is 
never changed. Moreover, Framinan et al. (2004) tried to propose a general structure not only to collect 
the heuristic techniques, but also to match them in order to obtain better solution through composed 
heuristics; that's why the heuristics were classified in fixed functional heuristics, floating functional 
heuristics synthetic functional heuristics. In the first group heuristics already proposed by Palmer (1965), 
Campbell et al. (1970) and Gupta (1971) were considered. In the second one, instead, there were 
heuristics already treated in some studies of Gupta as well as the algorithms MINIT and MINOT (1968) 
and Gupta (1972). In the last group, there was the Gupta's MINMAX heuristic (1972) based before on 
the scheduling of minimum processing time jobs and after on the scheduling of maximum processing 
time jobs. The next effort of Framinan et al. (2002, 2008) was the creation of a general framework to 
collect all the heuristics and not only those finalized to the makespan minimization. However, in this 
general scheme there were not any studies such as the heuristics based on jobs 
composition/decomposition suggested by Ashour (1967), Ashour (1970), Gupta and Maykut (1973). 
Furthermore, the heuristic proposed by Averbakh and Berman (1999) based on the better makespan 
resulting by a random sequence and the same inverse sequence was not included. The treated problem, 
because of its several applications in the reality, can generate some flow shop so-called “hybrid”. As 
written by Johnson (1954) “A hybrid flow shop may generally be defined as a system characterized by 
different types of production processes through which materials flow in one direction”. This type of 
productive system is adopted in different industrial scenarios and practical cases have been treated by 
several authors. Tsubone et al. (1996), Tsubone et al. (1993), Tsubone and Tanaka (1988), Uetake et al. 
(1995) have studied the chemical industries; Tsubone (1975) has studied alimentary industry, while Paul 
(1979) glass industries; Hedge et al. (1991) have studied steelworks; Narasimhan and Panwalker (1984) 
treated a producer of cables. In particular Panwalker (1991) developed rules on minimum deviation (MD) 
and minimum cumulative deviation (CMD) comparing them with Shortest Processing Time (SPT) rule 
and Longest Processing Time (LPT) rule for a hybrid flow shop with one machine during the first phase 
and two during the second one. Moreover, Narasimhan and Mangiameli (1987) used a modified CMD 
rule for a case with more machines in the first phase. 
 
Gupta (1988) suggested a heuristic rule for a case with two machines in the first phase and only one in 
the second phase, while Belarbi and Hindi (1992) presented even a scheduling system for a case with 
more machines in both the phases. Several heuristic algorithms were also suggested for case study with 
identical parallel machines such as Alidaee and Ahmadian (1993), Cao and Bedworth (1992), Gupta and 
Tunc (1991), Guinet (1993), Guinet and Slomon (1996), Hedge et al. (1991), Hodgeson and Wang 
(1991), McMahon and Lim (1993) and So (1990). Smunt et al. (1996) studied different politics of lot-
splitting both stochastic job-shop scenery and stochastic flow-shop scenery using mean flow time and 
standard deviation of flow time as performance measures. Unfortunately, as highlighted by the work of 
Hannen (1994), Uzsoy (1994), Hoogeveen et al. (1996), Huq and Huq (1995), few approaches are 
directly applicable to scheduling problem in which the aggregation of analogue jobs must be considered 
because they are “NP-complete combination problem”. Therefore, it is fundamental the simultaneous 
consideration of lot-sizing and sequencing factors as performed in the studies of Smith-Daniels and 
Ritzman (1988) and Wittrock (1988). The use of a cyclic scheduling has some advantages as well as an 
easier material handling and production area control and an efficient material disposition for the just-in-
time philosophy. 
 
Munier (1996) proposed a cyclic scheduling problem in which a finished ensemble T of works must be 
executed infinite times. He proved that this problem is generally NP-hard, but it becomes polynomial for 
m=2 machines. Kamoun and Sriskandarajah (1993) studied a cyclic scheduling problem for a flow shop 
in which jobs are processed with a repetitive cycle. Furthermore, they showed that the research of planes 
for the maximization of production volume is NP-hard.  Jacobs and Bragg (1988) and Hall (1988) studied, 
through simulations, sequencing and lot-sizing effects on the flow time in a repetitive manufacturing 
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system. Loerch and Muskstadt (1994) proposed an algorithm based on Danzing-Wolfe decomposition 
for a cyclic scheduling. Pinto and Rao (1992) began with bottlenecks identification to develop production 
plans for multi-product flow shop subjected to capacity constraints. Dobson and Yano (1994) presented 
two heuristics to find an almost-optimum sequence that minimizes carrying costs for a cyclic scheduling 
problem. Gelders and Sambandam (1978) developed four heuristics to minimize the weighted sum of 
flow time and of the job tardiness for a problem with m machines. Daniels and Chambers (1990) 
suggested a heuristics procedure for a flow shop problem on m machines in which the makespan, 
subjected to the maximum tardiness, is minimized. Ho and Chang (1991) studied a new heuristic 
technique for a multi-objective flow shop problem: the minimization of the total flow time and machines 
inactivity time. This method was compared to the existing heuristics producing more efficiency solutions. 
Also Rajendran (1994) proposed a heuristic for m machines and it was compared with the Ho and Chang 
(1991) heuristic resulting even superior. In another article Rajendran (1995) suggested another very 
similar study. 
 
Gupta et al. (2001) presented nine heuristics for a flow shop problem with two machines minimizing the 
makespan. The authors showed some cases solvable in a polynomial way and they calculated the 
performance of these heuristics to find approximated solutions. The authors displayed how the 
supplement to the heuristic based on the Branch and Bound algorithm proposed by Nagar et al. (1995) 
gave better results during acceptable computational time. Allahverdi (2004) dealt with a flow shop 
problem and m machines. The aims were the makespan minimization and the maximum tardiness. Two 
approaches were considered: the first one was the objective function minimization subjected to the 
constraint that the tardiness must be less than a specified value; the second one minimized the weighted 
combination of the two objectives without constraints. The author developed a new heuristic technique 
and compared it with the two already existing. The computational results showed how the new heuristic 
was better than the existing algorithms. 
 
Arroyo and Armentano (2004) studied a flow shop that minimized four combinations of objectives such 
as makespan, maximum tardiness, total tardiness and flow time. For the case with two machines the 
heuristics were compared with the B&B algorithms and with Chambers (1990) and Liao et al. (1997) 
heuristics. For the case with m machines the performance was compared with the constructive heuristics 
of Framinan et al. (2002). It resulted better than other approaches. Framinan and Leisten (2008) presented 
another heuristic algorithm for a flow shop with m machines that minimizes makespan and flow time. 
The algorithm used an iterative constructive heuristic with a greedy local research approach. To value 
the efficacy, the authors carried out some experiments to compare it to the simulated annealing multi-
criteria algorithm proposed by Varadharajan and Rajendran (2005). Two variants of the simulated 
annealing algorithm were shown; they were different for the configuration parameters with aim to have 
higher performance than the previous scheduling algorithms for multi-objective flow shop. Braglia and 
Grassi (2009) developed a new heuristic algorithm to solve flow shop problem with m machines that 
minimized makespan and maximum tardiness. This model integrated the heuristic NEH of Nawaz et al. 
(1973) for a flow shop with a single objective through a multi-attribute technique of decision making to 
generate an ensemble of potential solving scheduling. To value the performance they carried out 
comparisons with the genetic algorithm of multi-objective local research proposed by Ishibuchi et al. 
(2003). The new heuristic algorithm appeared superior in term of solution quality and computation time. 
Chandra et al. (2009) studied a flow shop problem with m machines subjected to a due date; the objective 
was the minimization of earliness and tardiness. The authors developed heuristic procedure applicable to 
a wide range of possible due date. For each problem they considered as alternative four due date to value 
the performance. The computational results displayed that the proposed heuristic was better than the 
existing methods and efficient for many real configurations.  
 
Kalczynski and Kamburowski (2007) studied the researches supporting the superiority of NEH  
algorithm and at the end, they confirmed that this algorithm was the best for the resolution of 
Fm|preemp|Cmax problems. Haq and Ramanan (2006) studied a flow shop with m machines using an 
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approach with an artificial neural network to minimize makespan and total flow time. This approach used 
an existing constructive heuristic to find out the sequence. Then, the quality of the sequence was 
improved with some jobs interchanges. Finally, the result was compared with the constructive heuristic 
and the heuristic algorithms were improved. Uysal and Bulkan (2008) studied a flow shop with m 
machines to minimize a combination of makespan and maximum tardiness. They suggested a genetic 
algorithm, a particle swarm optimization and hybrid versions with a research in variable surroundings. 
According to the computational experiments, the particle swarm optimization resulted better than the 
genetic algorithm when the weight of the maximum tardiness was high, vice versa when the weight of 
the makespan was superior. The hybrid versions functioned better than the pure versions, but they had a 
higher computational time. Eren and Güner (2008) improved a previously proposed approach. They 
implemented a modified NEH algorithm, the tabu search, the random search and the earliest due date 
problems until 20 jobs, the extended model was applicable to problems with until 2500 jobs. Moreover, 
the heuristic method based on tabu search resulted better than others in term of quality solution. Gupta 
et al. (2002) proposed local search heuristics and three metaheuristic, simulated annealing and tabu 
search for flow shop problem with two machines aimed to the makespan minimization and secondary 
objectives such as total flow time, weighted flow time and weighted total tardiness. The authors analyzed 
also the effects of the parameters. In the computational experiments, these algorithms appeared better 
than the existing heuristics. 
 
Although the previous research dealt with the flow shop problems concerning warehouse scheduling 
activities, there is still a need to investigate the effect of integrated activities in a systemic approach. 
Another difference between our method and the related works, in which this issue is solved considering 
the main problems separately, lies in the solution approach used. In this work, wholesaler warehouse 
activities relate their critical role from the manufacturer to the final points of sale implementing static 
and dynamic buffer that can be algorithmically integrated. It also shows a proven implementation 
methodology and provides a computer simulation testbed. We consider the warehouse composed of two 
buffers, a static buffer and a dynamic buffer. The first one is dedicated to the stock of products; while in 
the second one, the required products ready to be picked and delivered are stocked. Drop activity allows 
to move material from the static buffer to the dynamic one, meanwhile picking activities empty it. This 
paper focus on the optimization of the dynamic buffer activities simultaneously (Fig. 1). 
 

 
 +                                                       + 
 
 
 + +  
 

 + 
 

       - 
                                                                                                                             + 
               +                                               + 

 
Fig. 1. Dynamic buffer: Causal Loop Diagram framework 

3. Problem environment 

3.1. Problem description 

In this section, we describe the main characteristics of the warehouse we are working with. The southern 
Italian company we analyzed stocks and distributes household cleaning and personal hygiene products. 
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Warehouse activities start each day at 09.00 am and conclude in the late afternoon at 06.00 p.m. (single 
shift from 9.00 am to 6 pm). In the morning, the orders of retailers are processed, pallets are prepared 
and moved to the dispatch area at which the truck is parked. Each truck has to deliver the items to one or 
more shops; so each truck load encompasses one or more orders. Order picking begins with pallets 
lowering into a drop buffer that is vertically below the picking location. Then the picking operations are 
carried out according to customer orders and hence pallets loading optimization. Lowering and picking 
operations are carried out by two different forklift truck operators. Picking operations begin only when 
the required products of the processing order are in the drop area. This sequence of operations made by 
each single forklift truck operators group represents a single task to be accomplished. The sequencing of 
picking operations is previously set, and products should be picked according to their weight, where the 
heaviest products must be collected before the lightweight ones.  

 
 

  
1. 
 
 
 
 2. 
 3. 
 
 
 
 
 
 5. 
 
 
 
 
 
 4. 
 
 
 
 

 
Fig. 2. Order dispatching process 

 

Orders are processed according to the FIFO logic, without considering the decoupled activities for pallets 
lowering to the drop area and order picking operations. Furthermore drop activity lasts long than picking 
one, hence the inefficiency of the warehouse system: working group of order picking activity is 
unproductive. In Fig. 2 the dispatching order process has been represented. In order to obtain a system 
model which allows representing the warehouse activities optimization, the sequencing is optimized 
using a dynamic buffer among these activities. We simulate two different scenarios, by first using the 
SPT and the LPT priority rule for the scheduling of lowering activities. We simulate two different 
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scenarios, by using firstly the SPT and secondly the LPT priority rule for the scheduling of lowering 
activities. 
 
3.2 Terminology and algorithm 
 
The mathematic formulation is specific for the sequencing in a flow shop problem implemented for 
warehousing activities in all those companies working in the Mass Retail Channel. This flow-shop 
presents a quite general structure consisting of two main activities: materials handling from a static buffer 
to a dynamic buffer and emptying of the dynamic buffer to deliver products. The two activities are 
generally identified as “drop” and “picking”. How this activities are executed influences performance 
parameters as well as delivery time and the number of daily dispatched orders.  
 

In this article, drop and picking activities are combined to obtain the objective function for maximize the 
number of daily orders processed, i.e. minimize the difference between the overall working daily hours 
and the time required to fulfil orders. For the drop activities sequencing the following two cases are 
considered: 

a. Shortest Processing Time (SPT), 
b. Longest Processing Time (LPT), 

 

where Processing Time is the total number of drops necessary to allow to start picking activities in order 
to complete a customer order to be loaded. 
Before explaining the problem formulation, the notations used are presented: 
 
i index that identifies the orders within a load; it goes from 1 to n 
j index that identifies the different loads; it goes from 1 to m 
g index that identifies the product; it goes from 1 to s 
k index that identifies the iteration 
C(k) set of loads Cj waiting during the iteration k 
C’(k) set of loads Cj prepared during the iteration k 
C”(k) set of loads CjOij generated during the iteration k 
O (k) set of orders Oij waiting during the iteration k 
O’ (k) set of orders Oij for which the drop phase results completed and they are waiting the picking 

phase 
O”(k) set of orders Oij prepared during the iteration k 
O”’(k) set of orders Oij generated during the iteration k 
Aij (k) Total num. of drops of the generic order i of the generic load j waiting during the iteration k 
A’ij (k) Total num. of drops of the generic order i of the generic load j carried out during the iteration 

k 
A”ij (k) Total num. of drops of the generic order i of the generic load j generated during the iteration 

k 
wg weight (expressed in kg) of the g-th product 
xg (k) stock, expressed in number of packages, of the g-th product in picking position during the 

iteration k 
ẍgij (k) demand, expressed as number of packages, of the g-th product in the generic order i of the 

generic load j 
agij (k) binary variables that identify the necessity (or not) to carry out a drop of products 
Pij (k) No. pickings of the generic order i of the generic load j waiting during the iteration k 
P’ij (k) No. pickings of the generic order i of the generic load j carried out during the iteration k 
P”ij (k) No. pickings of the generic order i of the generic load j generated during the iteration k 
tw total working time 
ta drop per unit time 
tp picking per unit time 
ts setup time 
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The above-described problem is formulated as:  
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓𝑓𝑓 =  𝑀𝑀𝑂𝑂𝑓𝑓(𝑍𝑍)! (1) 

𝑍𝑍 =  𝑂𝑂𝑤𝑤 − (� � 𝑂𝑂𝑚𝑚 × 𝐴𝐴𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+
𝑚𝑚

𝑖𝑖=1

� � 𝑂𝑂𝑝𝑝 × 𝑃𝑃𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑂𝑂𝑠𝑠)
𝑚𝑚

𝑖𝑖=1

 
(2) 

Algorithm of drop activities sequencing 

The drop activities scheduling problem is subject to the following constraints:  

- if ẍgij(k) ≤ xg(k) then agij(k) = 0  
if ẍgij(k) >xg(k) then agij(k) = 1   ∀ g, i, j  
 

- if ∑i=1,n∑j=1,m Aij(k) ≥ 25 then don't generate new loads  
if ∑i=1,n∑j=1,m Aij(k) < 25 then generate new loads (where 25 is the number of possible drops) 
 

- if Aij(k) = 0 then go to the drops of the next order 
 

- Cj = ∑i=1,n Oij  ∀ j 
 

- C(k) = ∑j=1,m Cj 
 

- xg(k+1) = xg(k) - ẍgij(k) + agij(k)*(pallet dimension) ∀g and fixed i and j 
 

- Aij(k) = ∑g=1,s agij (k) ∀ i, j 
 

- Aij(k+1) = Aij(k) + A’’ij(k) - A’ij(k) ∀ i, j 
 

- for Ai’j (k) = Ai”j (k) and si’j < si”j then send in preparation the drops of i’  
for Ai’j (k) = Ai”j (k) and si’j > si”j then send in preparation the drops of i"  
for Ai’j (k) = Ai”j (k) and si’j = si”j and ∑j=1,m Oi’j (k) > ∑j=1,m Oi”j (k) then send in preparation the 
drops of i’ 
for Ai’j(k) = Ai”j(k) and si’j = si”j and ∑j=1,m Oi’j (k) > ∑j=1,m Oi”j (k) then send in preparation the 
drops of i" 
 

- 𝑂𝑂𝑤𝑤 − (∑ ∑ 𝑂𝑂𝑚𝑚 ∗ 𝐴𝐴𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 +𝑚𝑚

𝑖𝑖=1 ∑ ∑ 𝑂𝑂𝑝𝑝 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 + 𝑂𝑂𝑠𝑠)𝑚𝑚

𝑖𝑖=1 ≥ 0 

The problem can be stated as follows: 

Initialization (k=0): 
C’(0) = C’’(0) = C(0) = 0; O’(0) = O’’(0) = O(0) = 0; A’ij(0) = A”ij(0) = Aij(0) = 0; 
Step 1:  
k = 1 Give as input to the software the first Cj; 
Step 2 (SPT scenario): 
Check the stock values for each g, create a list placing the orders according to the increasing number 
of drops that each order generates and give the first of the list to the workers. 
Step 2 (LPT scenario): 
Check the stocks , create a list placing the orders according to the decreasing number of drops that 
each order generates and give the first of the list to the workers. 
Step 3:  
Update the stocks and return to the Step 2.  
Stop criterion:  
The algorithm is stopped when ∑i=1,n∑j=1,m Aij(k) = 0. 

Algorithm of picking activities sequencing 

The picking scheduling problem is subject to the following constraints: 
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- if Aij(k) = 0 then pick; 
- Cj = ∑i=1,n Oij∀ j = 1,…..,m; 
- C(k) = ∑j=1,m Cj; 
- Pij(k+1) = Pij(k) + P’’ij(k) - P’ij(k)∀i, j 

 

Initialization (k=0) : 
k = 0; C’(0) = C’’(0) = C(0) = 0; O’(0) = O’’(0) = O(0) = 0; P’ij(0) = P’’ij(0) = Pij(0) = 0; 
Step 1:  
k = 1 Give as input the first Cj to the software; 
Step 2:  
If the condition 1 is verified, give the pickings to the first free worker; 
Step 3:  
Place the products on the pallet according to decreasing weights wg in order to have the heavier 
products on the base of the pallet. 
Step 4: 
If O’(k) ≠ return to the Step 3. if O’(k) = 0  
Stop criterion : ∑i=1,n∑j=1,m Pij(k) = 0. 

 

For the detailed description of the algorithm functioning the representation is shown below (Fig. 3) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Algorithm flow chart heuristic 

4. Data collection 

In order to implement a dynamic model, wholesaler company data have been collected.  

Initialization k=0 
All sets are equal to zero 

C(0) = 0(0) = ”(0) = C’C 
(0) = O(0) = 0”(0) = O’O 

(0) = 0ij(0) = Aij”(0) = Aij’A 

For k=1 
until  jGive as input to the software C

(k) < 25ij Aj=1,m ∑i=1,n∑ 

 (k)ij ACreate a list containing the number of drops 
necessary for each order considering the difference 

between the demand and the stock level of each product; 
more specifically:  

(k)gij ag=1,s (k) = ∑ijA 
(k) = 0gij(k) then ag(k) ≤ xgijẍif  
(k) = 1gij(k) then ag(k) >xgijẍif  

 
 kOOrganize the orders list 

according to SPT (or LPT) 
logic, i.e. create a list placing 

the orders according to the 
increasing (decreasing) 

that  (k)ij Anumber of drops 
each order generates and give 

the first of the list to the 
workers. 

 
 
 

i’select the order  i”j< s i’js 
i"select the order  i”j> s i’js (k)i”j (k) = Ai’j Aif  

 
 

i”j=si’jsif  
 
 

i’(k) select  i”jOj=1,m (k) > ∑i’j Oj=1,m ∑ 
i"(k) select  i”jOj=1,m(k) < ∑i’j Oj=1,m ∑ 

Start drop operations of the 
order selected 

(k) = 0ij Aif  
 
 

Start picking operations of 
the order selected 

Organize the order list according 
products  gof the  gto the weight w

of the order selected 
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The data collection method used for the data collection campaign is the direct observations (duration 
thirty working days). Data collected are raw and not corrected or treated. A cross-ABC analysis (or 
Selective Inventory Control) based on turnover and profit was conducted in order to identify the items 
that have a significant impact on overall inventory. The ABC classification provided in this paper, heir 
of the Pareto principle, allows to identify articles generating the highest (A class) rotation in the 
warehouse. Therefore the attention has been focused on A class articles, 28 products. In Table 1 model 
variables data related to the first day of simulation time are shown. For two consecutive processed orders 
coming from the generic load j for each product g (28) are reported: stock levels (xg), demands (ẍg), 
necessary drops (ag) and weights (wg). 
 
Table 1 
 Example of data for two orders i of a generic load j 

Product (g) 
Model variables 

xg (k) ẍg1j (k) ag1j (k) xg (k) ẍg2j (k) ag2j (k) wg 
1 0 - 0 0 33 1 2.0 
2 46 27 0 19 15 0 1.5 
3 0 14 1 86 - 0 1.7 
4 19 25 1 94 55 0 5.0 
5 13 - 0 13 34 1 1.6 
6 30 11 0 19 10 0 1.4 
7 43 - 0 43 - 0 1.0 
8 35 - 0 35 49 1 1.3 
9 52 - 0 52 21 0 2.5 

10 0 38 1 62 25 0 1.4 
11 16 7 0 9 - 0 1.7 
12 57 10 0 47 40 0 1.6 
13 54 12 0 42 57 1 1.9 
14 0 21 1 79 30 0 3.0 
15 84 - 0 84 22 0 4.0 
16 74 - 0 74 58 0 2.8 
17 80 - 0 80 72 0 1.0 
18 66 48 0 18 62 1 3.4 
19 19 14 0 5 35 1 1.8 
20 78 33 0 45 0 0 2.0 
21 4 - 0 4 23 1 1.3 
22 44 55 1 89 28 0 1.2 
23 0 - 0 0 19 1 1.6 
24 95 - 0 95 64 0 2.7 
25 79 11 0 68 0 0 3.4 
26 71 15 0 56 93 1 1.7 
27 11 36 1 75 19 0 2.5 
28 39 - 0 39 48 1 1.8 

 
5. Model implementation 
 
The model described earlier has been tested on the most demanded products, identified after an ABC 
analysis. As discussed before, in the company analyzed there are two main activities, drops and pickings 
that follow different scheduling rules that have to be considered together, in fact the picking cannot begin 
if the drop is not completed. The simulation logic chosen is the System Dynamics. This approach gives 
an overall view of a dynamic system with balanced subsystems.  
 
Company data collection is used to implement the dynamic model for the current situation (as is) and to 
demonstrate that the two "to be" scenarios output give better solutions. The implementation of the System 
Dynamics has been done through the software Powersim Studio® (Fig. 4). The simulative model is for 
distributive flow-shop with high complexity of the matrix orders-products and the presence of a dynamic 
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buffer beyond the static buffer. The model individualizes a real set of orders represented through a n-
quantitative x m-qualitative matrix. The model represents the order preparing process that the company 
receives from the customers.  

 
Fig. 4. Model procedure implemented in Powersim simulation 

The model structure consists of 4 areas: 
 In the first area there is a comparison between orders and stocks and the dynamic updating of 

them. Moreover, in this area the orders scheduling logic is decided; 
 In the second area there are drops and all the possible mappings. There is also the list of the orders 

to prepare according to the logic utilized. 
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 The third area is the picking start. It contain only the orders for which the preparatory activities 

are completed; 
 The fourth area in which only the prepared orders can enter. 

 
In particular, in the second area the model proposes three different mappings: 

1. A logic based on a preloaded matrix ; 
2. A logic based on the lower number of drops; 
3. A logic based on the maximum difference between the picking times and the drop times. 

The first mapping simulates whatever “as is” logic of a company belonging to the Mass Retailer Channel. 
The other two mappings are scenarios "to be" suggested to improve the number of daily satisfied orders. 
  Data given as input to the system go from the 08/09/14 to the 17/10/14 and are in the rows "Actual 
Values". Instead, in the rows “Simulation Output” there are the results of the simulation according to the 
As Is scenario. 
 
Table 2  
Actual values and simulation output (Prepared orders) 

 Day 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ACTUAL VALUES 149 152 150 151 132 148 152 150 154 145 153 149 150 152 149 

SIMULATION OUTPUT 152 154 152 153 135 150 154 152 157 147 155 151 152 154 152 

 Day 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

ACTUAL VALUES 153 139 154 149 150 154 145 148 152 154 149 151 153 151 150 

SIMULATION OUTPUT 155 141 156 151 152 157 147 150 154 157 151 153 155 153 153 

 
6. Model validation 
 
Although the actual values and the simulation outputs seem very similar, it is not enough to validate the 
model. For this reason a t-student test is necessary. This test compares the averages of two populations 
with unknown variance (but supposed equal), having the first order statistics (X̅1 e X̅2) and second order 
statistics (S12 e S22) of two big random sampling (n = m = 30). The following statistic is utilized: 
 

𝒕𝒕 =
𝒙𝒙�𝟏𝟏 − 𝒙𝒙�𝟐𝟐

𝑺𝑺�(𝟏𝟏/𝐧𝐧 + 𝟏𝟏/𝐦𝐦) 
 

where S2represents the Pooled Variance : 
 

𝑺𝑺𝟐𝟐 =
(𝒏𝒏 − 𝟏𝟏)𝑺𝑺𝟏𝟏

𝟐𝟐 + (𝒎𝒎 − 𝟏𝟏)𝑺𝑺𝟐𝟐
𝟐𝟐

𝒏𝒏 + 𝒎𝒎 − 𝟐𝟐
 

The logical path followed is: 

 
 

H0 and H1 are defined: H0=[𝑥𝑥1��� = 𝑥𝑥2���],  H1=[𝑥𝑥1��� ≠ 𝑥𝑥2���] and V = n + m − 2 degrees of freedom calculated; 
α = 0,05 level of significance defined; t0.025 = 2.00039 critical value extrapolated from the table that 
defined the rejection region. The main parameters resulting from the calculation are: 
 

Averages 
comparison

H0: Simulation 
data well 

approximate 
real data

H0 acceptance 
or rejection? t-student
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�̅�𝑥1= 149.6; S12= 21.16; �̅�𝑥2= 151.8; S22= 20.97; S2 = 21.065; V = 58; t = 1.856 
 

Because |t| < t0.025 the test is passed fixed a confidence level of 1-α=0.95.With the hypothesis testing a 
scientific validation of the model is given. 
 
7. Analysis of the results 
 
Two parameters are compared between the 'as is' and the 'to be' scenarios. 

Daily processed order lines 
 
Thanks to an accumulator properly placed downstream of a level containing the prepared lines, the 
presented model allows to visualize the number of prepared orders. Below Figs. (5-7) are representing, 
the number of processed orders for the “as is” scenario and for the “to be” scenarios. The first one is 
obtained using the FIFO logic, the second one represents the first to be scenario and the third one the 
second to be scenario. 
 

 

Fig. 5. Scenario “AS IS” 

 
Fig. 6. Scenario “TO BE 1” 
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Fig. 7. Scenario “TO BE 2” 

As shown in the figures from 4 to 6, the company processes almost 4555 orders in 30 days with an 
average of 152 orders each day. Analyzing the first scenario “to be”, corresponding to the second 
mapping, it is evident that the number of processed orders rises to 4882 with an average of 163 orders 
each day. The increase respect the actual situations is 7.2 %. Similarly for the third mapping, the overall 
number of processed orders is 5023 and the daily average is 168. Therefore, it is better than the first “to 
be”., in fact respect the “as is” it shows an increment of 10.3 %, instead regardless the other “to be” an 
increase of 3.1 %. The Fig. 8 compares the three scenarios.  

 

 
Fig. 8. Scenarios comparison 

Number of daily prepared packages  
 
The previous parameter might be already enough to demonstrate that the “to be” scenarios, in particular 
the second, are better than the actual.  
 

 
Fig. 9. Scenarios comparison 
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Considering only the number of processed orders says nothing about the volume of products included in 
the flow because there aren't information about the number of products in each order that's why also the 
number of daily prepared packages is analyzed. Fig. 9 compares the three scenarios. Also considering 
this parameter the result is an improvement of company's performance despite the actual situation of 7.2 
% and 11.6 %. 
 
8. Conclusion 
 
In this paper an integrated dynamic buffer model has been developed between the two activities of drop 
and picking in warehouse operations building an efficient algorithm to solve the problem. The flow shop 
problem analyzed in this paper consists of two main activities, drops that move products from the static 
buffer to the dynamic buffer, and picking that empties the dynamic buffer. Usually these two activities 
are considered separately. Instead the developed algorithm and the System Dynamic implementation 
allow to consider a unique dynamic system with balanced subsystem. Moreover, it has made possible a 
dynamic simulation, through the simulation tool Powersim Studio®, that enables to compare different 
outputs. The aim was to increase the number of fulfilled orders and orders picking lead time 
minimization, as well as workers unproductivity minimization. In order to validate and demonstrate the 
efficacy of the model, data of the Southern Italian wholesaler company have been used. Two scenarios 
have been simulated and the results have been compared with the actual solutions. They have given better 
solutions in term of order lines daily processed and number of daily prepared packages with an 
improvement of 7.2% for the first scenario and 10.3% for the second one.  
The added-value of this paper is its possible implementation in each distributor center based on drops 
and pickings activities, for this reason it's a useful tool for the company management to evaluate 
alternative scenarios and improve performances. 
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