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 Cell load variation is considered a significant shortcoming in scheduling of cellular 
manufacturing systems. In this article, a new method is proposed for scheduling dynamic cellular 
manufacturing systems in the presence of bottleneck and parallel machines. The aim of this 
method is to control cell load variation during the process of determining the best trading off 
values between in-house manufacturing and outsourcing. A genetic algorithm (GA) is developed 
because of the high potential of trapping in the local optima, and results are compared with the 
results of LINGO® 12.0 software. The Taguchi method (an L_9 orthogonal optimization) is used 
to estimate parameters of GA in order to solve experiments derived from literature. An in-depth 
analysis is conducted on the results in consideration of various factors, and control charts are 
used on machine-load variation. Our findings indicate that the dynamic condition of product 
demands affects the routing of product parts and may induce machine-load variations that yield 
to cell-load diversity. An increase in product uncertainty level causes the loading level of each 
cell to vary, which in turn results in the development of “complex dummy sub-cells”. The effect 
of the complex sub-cells is measured using another mathematical index. The results showed that 
the proposed GA can provide solutions with limited cell-load variations. 
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1. Introduction 

Facility design is a necessity in manufacturing systems engineering. An estimated $250 billion is spent 
annually for facility designing, planning, and re-planning in the U.S. (Tompkins et al., 2003). Of the total 
cost of manufacturing systems, 20% to 50% is attributed to material handling. This source also reports 
that effective planning can reduce such costs by 10% to 30%. Cellular manufacturing systems (CMS) are 
considered an effective way of using group technology. The manufacturing process is defined as a hybrid 
system of cells that apply the advantages of both jobbing (flexibility) and mass (efficient flow and high 
production rate) production approaches (Papaioannou & Wilson, 2010). 
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Minimizing material transferring movements may be among the initial reasons for developing CMS. 
Although shifting from job-shop layouts to CMS can reduce material transferring movements (Agarwal 
& Sarkis, 1998; Durmusoglu & Nomak, 2005), many challenges are involved in designing or scheduling 
a system when the optimum part routings have yet to be identified. In this section, we will review some 
of the most important shortcomings and solutions that are proposed regarding material transferring during 
the design or scheduling of CMS. 
 
The kinds of material movements in CMS are first described. In CMS studies, two main work-in-process 
(WIP) movements can be recognized (Fig. 1). Intra-cellular WIP transferring involves transferring 
materials among machines that are located in a cell. By contrast, in inter-cellular movements, materials 
are planned to shift between cells to perform some operations. Although intracellular WIP transferring 
may seem more desirable because of the lesser transfer cost involved than that for intercellular 
movements, intercellular WIP movements are unavoidable. In the following subsection, some of the most 
important reasons for the increase in material transferring costs and the solutions provided by scientists 
will be investigated in detail. 

 
Fig. 1. Intracellular and Intercellular Material Transferring 

Determining the best combination of machines that can be used in the consecutive operations of a part 
(during or after cell generation) is the aim of addressing part routing problems. From another perspective 
in part routing problems, each part can be completed in more than one way because of the existence of 
parallel machines. Choosing different permutations of various machines inevitably causes different inter 
and intracellular movements and entails material transferring costs accordingly. Gupta et al. (1995) 
focused on minimizing intercellular movements and maximizing machine utilization simultaneously 
during the process of grouping machines in cells. Gravel et al. (1998) employed a double-loop GA for 
simultaneous machine grouping and the part assigning problem in which an outer loop assigns machines 
to cells, and an inner loop determines the optimal part routing. Sofianopoulou (1999) proposed a 
mathematical method to allocate parallel machines in a multi-routing part allocation. Chen and Cao 
(2004) used quadratic terms for intercellular material handling to present an integrated model for 
production planning during cell forming. Yu and Sarker (2006) proposed a quadratic assignment problem 
model to minimize the total intercellular flows by considering bottleneck parts in which the output of 
other group formation methods can be used as an input of their method. Goncalves Filho and José Tiberti 
(2006) proposed a GA to minimize number of inter-cellular material transferring and cell load variations. 
Nsakanda et al. (2006) presented a multi-process plan problem to determine the best part routing of each 
process plan. They also used outsourcing as a useful strategy to meet the rest of the part demands. 
Afterward, Haleh et al. (2009) presented a hybrid Memetic algorithm and revised TOPSIS method to 
minimize cell load variation and inter-cellular WIP transferring. Safaei and Tavakkoli-Moghaddam 
(2009) focused on minimizing material transferring movements by considering the pre-determined batch 
sizes of materials whenever these are planned to be allocated to a cluster.  
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Existence of multi route plans causes emerging other problems. One of them is number of machine loads 
which can result machine load variation (Hsu & Su, 1998). Machine load variation has tremendous 
effects on the cellular systems and can cause the cell load variation which consequently can cause system 
imbalance (Haleh et al., 2009). In the mentioned condition, the number of machine loads for some 
machines increases which obviously can cause increasing the depreciation of some machines due to over 
allocating (Sullivan et al., 2002). Moreover, in such conditions, the possibility of machine broke increases 
due to pressure on over allocated machines. The queues of in-process parts behind over allocated 
machines increase while other parallel machines are remained idle (Seifoddini & Djassemi, 1993).  
 
To overcome cell load variation, researchers offered different ways. Seifoddini and Djassemi (1996) used 
DPA for the re-routing of parts among machines to improve machine utilization. The results show that 
the proposed DPA improves system performance by reducing the congestion in machines with long 
waiting lines. Baker and Maropoulos (2000) attempted to minimize material transferring movements by 
finding the best position of cells and workstations within them in order to find the optimal flow of parts. 
By contrast, Solimanpur et al. (2004) addressed a QAP model to minimize intercellular WIP transferring 
in which cell locations were pre-defined. In some studies, scientists attempted to set the controller for the 
number of intercellular and intracellular part routes. Muruganandam et al. (2005) tried to control inter 
and intracellular moves by using weight points for these moves (0.3 and 0.7, respectively). This approach 
can minimize cell load variation to some extent. Gonçalves and Resende (2004) applied a hybrid local 
search and GA to minimize intercellular movements and maximize the utilization of machines within a 
cell. One reason for the emerging cell load variation is ignoring the capacity of machines during the 
scheduling process (Moussa & Kamel, 1998). Ahkioon et al. (2009) presented a CMS where maintenance 
activities can affect system capacity. To overcome such drawback, they also considered using outsource 
services and machine relocating. But their model was failed to solve large scale problems. 
 
Boulif and Atif (2006) considered a situation in which cohabitation and non-cohabitation machines exist. 
In actual practice, such a condition may indeed happen because of safety reasons. They proposed a new 
approach to minimize WIP transferring between pairwise machines while the maximum number of cells 
is considered aside from the cell sizes. Ariafar and Ismail (2009) addressed the problem of material 
transferring while the shape of the machines was assumed equal. A center-based distance calculation 
between machines was employed.  
 
Aside from the strategies and solutions discussed above, during the last two decades, the idea of 
reconfiguring cells by shifting of machines or re-arranging of part families to smooth material 
transferring within and between cells (or as a result of changing part demands during periods) has become 
noteworthy. Almost in all cases, the focus is on the modification of cell layouts during the manufacturing 
process to determine the best part routing. Safaei et al. (2008) investigated the issue of machine time 
capacity and maximum cell size in a reconfigurable dynamic CMS in which machine relocating was 
allowed. A few years later, Rafiee et al. (2011) developed a similar mathematical programing method for 
a reconfigurable manufacturing system in which more aspects of a real system, such as preventive and 
maintenance activities, finished and unfinished parts inventory, and defective parts replacement costs, 
were considered. Some studies also investigated other situations in the part routing problem. Xambre and 
Vilarinho (2003) examined a special condition in which a percentage of each operation can be completed 
by one machine, and the rest can be rescheduled for another parallel machine. Yu and Sarker (2003) tried 
to minimize material transforming costs by finding better cell locations by relocating cells. Elmi et al. 
(2011) developed a situation that was previously proposed by Won and Currie (2007) in which some 
parts need to visit a machine more than once in a non-consecutive manner (re-entrant parts). In the 
proposed model, they presented a new method to schedule both bottleneck and re-entrant parts in cells. 
Paydar et al. (2010) considered operation sequences in a multiple travelling salesman formulation for the 
cell forming and machine locating problem, with multiple departures and a single destination considered.  
In most real cases, part demands are different from one planning horizon to another. Such a criterion is 
known as dynamic part demand. Market changes, changes in product designs, and the manufacture of 
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new products are some of the reasons for the change in part demands through different time periods. 
These conditions may cause emerging imbalances in part routings and bottleneck machines (Wang et al., 
2001). Defersha and Chen (2006) used parallel machines and outsource services to overcome dynamic 
part demand defects in cell forming process. Jeon and Leep (2006) presented a model for scheduling 
dynamic cells where machine failures can cause waiting times and reduce system capacity accordingly. 
Tavakkoli-Moghaddam, Aryanezhad, et al. (2007) considered dynamic part demands and parts mixed for 
a reconfigurable part routing problem. Tavakkoli-Moghaddam et al. (2007) considered the normal 
distribution function to estimate the part demands in a stochastic model; minimizing material transferring 
movements was the main objective of the method. Egilmez et al. (2012) focused on uncertain operation 
times in D-CMS. The contribution of their model is considering risk level in process of designing cells 
in dynamic environment. A few years later, Egilmez and Süer (2014) evaluated the impact of risk level 
in an integrated cell forming and scheduling problem using  Monte Carlo Simulation. Ariafar et al. (2014) 
focused on the impact of dynamic product demand on facility layout problem. The main objective of the 
proposed model was minimizing material transferring by arranging the machine cells within the shop-
floor, and the machines within each of the machine cells. Afterward, Renna and Ambrico (2015) also 
proposed three models for designing, reconfiguring and scheduling cells in dynamic condition of product 
demands. In their models, they considered minimizing system costs including intercellular movements, 
machining and reconfiguring costs as well as maximizing net-profit. 
 
An intensive review of literature reveals that problem scheduling dynamic cellular manufacturing 
systems (D-CMS) to minimize the cell load variation by finding the best trading off values between the 
values of in-house manufacturing and of outsourcing when the capacity of machines are taken into 
account and backorder of products between planning periods is restricted, is less developed.  
Therefore, the contribution of the this research can be summarized as investigating the impact of product 
demand uncertainty on cell load variation and proposing a way to smooth the machine loads which can 
cause cell load variations.  
 
2. Research methodology 
 
Both inter- and intra-cellular movements are considered in the current study; hence, the model should be 
sensitive to material transfer within cells according to the product sequence, function, and location of the 
machines. To explain work-in-progress (WIP) transfer, two consecutive processes labeled as 𝑠𝑠 and 𝑠𝑠 + 1 
are assumed. These processes may cause inter- or intra-cellular movement only if ∑ ∑ 𝑌𝑌𝑠𝑠+1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑀𝑀
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1 ≥

1 (Y is a binary value of 1 if operation 𝑆𝑆 + 1 of part 𝑖𝑖 is performed using machine 𝑗𝑗, which is located in 
cell 𝑘𝑘 during period 𝑡𝑡). The authors aim to minimize setup costs as a part of the objective functions in 
the proposed model; hence, the equation was modified to ∑ ∑ 𝑌𝑌𝑠𝑠+1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑀𝑀
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1 = 1, thus ensuring that 

operation 𝑠𝑠 + 1 is performed using only one of the machines in the system. As a consequence of 
eliminating the operations that were planned for service using the same multifunctional machine, 
equation 𝑌𝑌𝑠𝑠,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 . ��∑ 𝑌𝑌𝑠𝑠+1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 .𝑋𝑋𝑠𝑠+1,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑀𝑀
𝑗𝑗=1 � − 𝑋𝑋𝑠𝑠+1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡� shows the amount of WIP transferred from 

current machine 𝑗𝑗 to another machine ~𝑗𝑗 to serve subsequent operation 𝑠𝑠 + 1 (Fig. 2). The transfer of all 
WIP inside the cells for all of the parts operations can be formulated as: 

�����

⎝

⎜
⎛

Ys,i,j,k,t.���Ys+1,i,j,k,t. Xs+1,j,k,t

M

j=1

� − Xs+1,i,j,k,t�

⎠

⎟
⎞

M

j=1

S−1

s=1

N

i=1

K

k=1

TH

t=1

 (1) 

Given the same logic, inter-cellular movements can be detected by determining the consecutive 
operations that are performed in two different cells (that is, 𝑘𝑘 and ~𝑘𝑘) regardless of whether the same 
type of machine (𝑗𝑗) or other machine (~𝑗𝑗) is employed �𝑌𝑌𝑠𝑠,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 . ��∑ ∑ 𝑌𝑌𝑠𝑠+1,𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑡𝑡 .𝑋𝑋𝑠𝑠+1,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑀𝑀
𝑗𝑗=1

𝐾𝐾
𝑘𝑘=1 ���. 

Excluding intra-cellular movements from total movement reveals inter-cellular movements (Fig. 2): 
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�Ys,i,j,k,t. ��∑ ∑ Ys+1,i,j,k,t. Xs+1,j,k,t
M
j=1

K
k=1 � − ∑ Xs+1,i,j,k,t

M
j=1 ��.        (2) 

 
Hence the total amount of inter-cellular transfer for all parts operations in all cells throughout the 
planning horizon can be formulated as: 
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Fig. 2. Graphical scheme of inter and intra-cellular movements 

3. Problem Formulation 
 
A nonlinear mixed integer programming (NL-MIP) model is presented in this section to determine the 
ideal tradeoff values between in-house manufacturing and outsourcing over the planning horizon under 
the condition that backorders are limited and that all product demands are uncertain. These demands may 
vary from time to time. In formulating the model, all system costs are accounted for, including group 
setup, operating, machine purchasing, outsourcing, and backorder costs. The goal is to survey production 
specifications under part demand uncertainty and to demonstrate how system characteristics can 
influence system performance.  
  
3.1. Assumptions 
  
1) Product types are associated with a number of operations that must be performed according to 

manufacturing priorities. 
2) The lower and upper bounds for each cell are determined in advance. 
3) Machine purchasing and relocation are allowed.  
4) Product demands in each scheduling period are not fixed and are expressed by a normal distribution 

function. 
5) Machine capacities must be considered in scheduling. 
6) Subcontractor services are permitted for some products; however, the capacity of subcontractors is 

restricted.  
7) Backorders are allowed but restricted. The beginning inventory is zero and last-period backorders are 

not allowed. 
 

3.2 Inputs 
 

𝑖𝑖:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑜𝑜𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑠𝑠 
𝑛𝑛: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑝𝑝𝑛𝑛𝑛𝑛𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑠𝑠 
𝑗𝑗: 𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑝𝑝ℎ𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠 
𝑜𝑜: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑝𝑝ℎ𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠 
𝑘𝑘:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑠𝑠 
𝑐𝑐:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑜𝑜𝑛𝑛𝑡𝑡𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡𝑜𝑜𝑛𝑛𝑠𝑠 
𝑡𝑡:𝑝𝑝𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝 𝑝𝑝𝑛𝑛𝑛𝑛𝑖𝑖𝑜𝑜𝑝𝑝𝑠𝑠 (𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 𝑠𝑠𝑐𝑐𝑜𝑜𝑡𝑡𝑠𝑠)  

M2 

M1 

M3 

M1 

M2 

M4 

M3 

M1 

M1 
M2 

S 
S’ 

S” 

Consecutive Operation on 
multifunctional machine (s’) 

M4 is a bottleneck 
machine Parallel Machines (M1) 
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3.3 Parameters 
 
𝑝𝑝𝑖𝑖,𝑡𝑡: demand of part 𝑖𝑖 in period 𝑡𝑡 
 

𝑝𝑝𝑖𝑖,𝑡𝑡~𝑁𝑁(𝜇𝜇𝑖𝑖,𝑡𝑡 ,𝜎𝜎𝑖𝑖,𝑡𝑡) (3) 
  

𝑆𝑆 𝑗𝑗: Setup cost of machine 𝑗𝑗 
𝑂𝑂𝑂𝑂 𝑖𝑖,𝑚𝑚,𝑗𝑗: cost of processing part 𝑛𝑛 of product 𝑖𝑖 using machine 𝑗𝑗 
𝑂𝑂𝑆𝑆 𝑙𝑙: cost of performing one product by subcontractor 𝑐𝑐 
𝐵𝐵𝐵𝐵𝑖𝑖: backorer cost of product 𝑖𝑖 for 𝑜𝑜 period 
𝛼𝛼𝑖𝑖: intracellular movement cost of part 𝑖𝑖 
𝛽𝛽𝑖𝑖: interrcellular movement cost of part 𝑖𝑖 
𝐾𝐾𝑗𝑗+: purchasing cost of mchine 𝑗𝑗  
𝐾𝐾𝑗𝑗−: selling cost of mchine 𝑗𝑗  
𝑐𝑐𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ: is a lenth of the cell 
𝑤𝑤𝑖𝑖𝑝𝑝𝑡𝑡ℎ: is a width of the cells 
𝐵𝐵𝑐𝑐: is cell size and refers to maximum number of machines can be located in a cell 
 
𝐵𝐵𝐶𝐶 = 𝑐𝑐𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ ∗ 𝑤𝑤𝑖𝑖𝑝𝑝𝑡𝑡ℎ (4) 

 
3.4 Input Matrixes 
 
Product demand (𝐷𝐷𝑖𝑖,𝑡𝑡 [⋱]𝑖𝑖,𝑡𝑡) 
Batch size (𝐵𝐵𝑆𝑆𝑖𝑖 [⋱]𝑖𝑖) 
Machine Component Incidence Matrix (𝑀𝑀𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 [⋱]𝑖𝑖,𝑗𝑗) 
Machine capacity (𝑀𝑀𝑀𝑀𝑗𝑗 [⋱]𝑗𝑗) 
Sub-contractor capability (𝑆𝑆𝐵𝐵𝑙𝑙 [⋱]𝑙𝑙) 
Allowed backorder (𝑀𝑀𝐵𝐵𝑖𝑖,𝑡𝑡 [⋱]𝑖𝑖,𝑡𝑡) 
Initial number of machines (𝑁𝑁𝑂𝑂𝑀𝑀𝑗𝑗 [⋱]𝑗𝑗) 
Operation Cost (𝑂𝑂𝑂𝑂𝑖𝑖,𝑚𝑚,𝑗𝑗 [⋱]𝑖𝑖,𝑚𝑚,𝑗𝑗) 
Setup Cost (𝑆𝑆𝑗𝑗 [⋱]𝑗𝑗) 
Intercellular Cost (𝛼𝛼𝑖𝑖 [⋱]𝑖𝑖) 
Intracellular Cost (𝛽𝛽𝑖𝑖 [⋱]𝑖𝑖) 
Machine purchasing Cost (𝐾𝐾𝑗𝑗 [⋱]𝑗𝑗) 
Backorder Cost (𝐵𝐵𝐵𝐵𝑖𝑖 [⋱]𝑖𝑖) 
Outsourcing Cost (𝑂𝑂𝑆𝑆𝑙𝑙 [⋱]𝑙𝑙) 
 
3.5 Variables 
 
𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 number of part m of product i which is performing by fth of machine type j in cell k in  period 

t (int.) 
𝑍𝑍𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 if part m of product i performs using fth of machine type j in cell k in  period t (bin.) 
𝑌𝑌𝑙𝑙,𝑡𝑡 number of products which manufactured by sub-contractor l in period t (int.) 
𝐵𝐵𝑖𝑖,𝑡𝑡 number of product i which is decided to postpone for next period (int.) 
𝑁𝑁+

𝑗𝑗,𝑘𝑘,𝑡𝑡 number of machine type j added to cell k during period t (int.) 
𝑁𝑁−

𝑗𝑗,𝑘𝑘,𝑡𝑡 number of machine type j removed from cell k during period t (int.) 
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3.6 Mathematical Model 
 

������𝑆𝑆𝑗𝑗 .𝑍𝑍𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 .
𝑀𝑀

𝑚𝑚

𝐼𝐼

𝑖𝑖

𝐹𝐹

𝑓𝑓

𝐽𝐽

𝑗𝑗

(𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡/𝐵𝐵𝑆𝑆𝑖𝑖)
𝐾𝐾

𝑘𝑘

𝑇𝑇

𝑡𝑡

+ ������𝑀𝑀𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 .𝑂𝑂𝑂𝑂 𝑖𝑖,𝑚𝑚,𝑗𝑗 .𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 .
𝑀𝑀

𝑚𝑚

𝐼𝐼

𝑖𝑖

𝐹𝐹

𝑓𝑓

𝐽𝐽

𝑗𝑗

𝐾𝐾

𝑘𝑘

𝑍𝑍𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑇𝑇

𝑡𝑡

 

(5) 

+ ���[(𝐾𝐾𝑗𝑗
+.𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡

+ ) − (𝐾𝐾𝑗𝑗
−.𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡

−

𝐽𝐽

𝑗𝑗

)
𝐾𝐾

𝑘𝑘

𝑇𝑇

𝑡𝑡

] (5) 

+ ��𝑂𝑂𝑆𝑆𝑙𝑙 .𝑌𝑌𝑙𝑙,𝑡𝑡

𝐿𝐿

𝑙𝑙

𝑇𝑇

𝑡𝑡

+ ��𝐵𝐵𝑖𝑖,𝑡𝑡 .𝐵𝐵𝐵𝐵𝑖𝑖

𝐼𝐼

𝑖𝑖

𝑇𝑇

𝑡𝑡

 (6) 

+������

⎝

⎜
⎛
𝜸𝜸𝒊𝒊.𝒁𝒁𝒎𝒎,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕.���𝒁𝒁𝒎𝒎+𝟏𝟏,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕.𝑿𝑿𝒎𝒎+𝟏𝟏,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕

𝑱𝑱

𝒋𝒋=𝟏𝟏

� − 𝑿𝑿𝒎𝒎+𝟏𝟏,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕�

⎠

⎟
⎞

𝑭𝑭

𝒇𝒇=𝟏𝟏

𝑱𝑱

𝒋𝒋

𝒎𝒎−𝟏𝟏

𝒎𝒎=𝟏𝟏

𝑰𝑰

𝒊𝒊=𝟏𝟏

𝑲𝑲

𝒌𝒌=𝟏𝟏

𝑻𝑻𝑻𝑻

𝒕𝒕=𝟏𝟏

 (7) 

+������

⎝

⎜
⎛
𝝃𝝃𝒊𝒊.𝒁𝒁𝒎𝒎,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕.����𝒁𝒁𝒎𝒎+𝟏𝟏,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕.𝑿𝑿𝒎𝒎+𝟏𝟏,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕

𝑴𝑴

𝒋𝒋=𝟏𝟏

𝑲𝑲

𝒌𝒌=𝟏𝟏

� −�𝑿𝑿𝒎𝒎+𝟏𝟏,𝒊𝒊,𝒇𝒇,𝒋𝒋,𝒌𝒌,𝒕𝒕

𝑴𝑴

𝒋𝒋=𝟏𝟏

�

⎠

⎟
⎞

𝑭𝑭

𝒇𝒇

𝑱𝑱

𝒋𝒋=𝟏𝟏

𝒎𝒎−𝟏𝟏

𝒎𝒎=𝟏𝟏

𝑰𝑰

𝒊𝒊=𝟏𝟏

𝑲𝑲

𝒌𝒌=𝟏𝟏

𝑻𝑻𝑻𝑻

𝒕𝒕=𝟏𝟏

 (8) 

 
subject to   

�������𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡
𝑀𝑀� ��

𝑀𝑀

𝑚𝑚

+ �𝑌𝑌𝑙𝑙,𝑡𝑡

𝐿𝐿

𝑙𝑙

+ �𝐵𝐵𝑖𝑖,𝑡𝑡

𝐼𝐼

𝑙𝑙

𝐼𝐼

𝑖𝑖

𝐹𝐹

𝑓𝑓

𝐽𝐽

𝑗𝑗

𝐾𝐾

𝑘𝑘

≥ 𝑝𝑝𝑖𝑖,𝑡𝑡  ∀ 𝑡𝑡, 𝑖𝑖; (9) 

𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 . �1 −𝑀𝑀𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗� ≤ 0  ∀ 𝑡𝑡, 𝑘𝑘, 𝑗𝑗, 𝑖𝑖,𝑛𝑛; (10) 
𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀𝑗𝑗  ∀ 𝑡𝑡, 𝑘𝑘, 𝑗𝑗, 𝑖𝑖,𝑛𝑛; (11) 

�𝑌𝑌𝑙𝑙,𝑡𝑡

𝐿𝐿

𝑙𝑙

≤ 𝑆𝑆𝐵𝐵𝑙𝑙  ∀ 𝑐𝑐, 𝑡𝑡; (12) 

�𝐵𝐵𝑖𝑖,𝑡𝑡

𝐼𝐼

𝑖𝑖

≤ 𝑀𝑀𝐵𝐵𝑖𝑖,𝑡𝑡  ∀ 𝑡𝑡, 𝑖𝑖; (13) 

�𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡
+

𝐽𝐽

𝑗𝑗

−�𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡
+

𝐽𝐽

𝑗𝑗

+ 𝑁𝑁𝑘𝑘,𝑗𝑗,𝑡𝑡−1 = 𝑁𝑁𝑘𝑘,𝑗𝑗,𝑡𝑡 ∀ 𝑡𝑡 > 1, 𝑘𝑘; (14) 

𝑁𝑁𝑗𝑗,𝑘𝑘,1 = 𝑁𝑁𝑂𝑂𝑀𝑀𝑗𝑗   ∀ 𝑘𝑘, 𝑗𝑗; (15) 
𝐶𝐶𝑂𝑂 ≤ ∑ 𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡

𝐽𝐽
𝑗𝑗 ≤ 𝐵𝐵𝐶𝐶  ∀ 𝑘𝑘, 𝑡𝑡;   (16) 

����𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡

𝑀𝑀

𝑚𝑚

𝐼𝐼

𝑖𝑖

𝐹𝐹

𝑓𝑓

𝐾𝐾

𝑘𝑘

≤ 𝑀𝑀𝑀𝑀𝑗𝑗 .�𝑁𝑁𝑘𝑘,𝑗𝑗,𝑡𝑡

𝐾𝐾

𝑘𝑘

  ∀ 𝑡𝑡, 𝑗𝑗; (17) 

𝑋𝑋𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡;  𝑌𝑌𝑙𝑙,𝑡𝑡 , ;𝐵𝐵𝑖𝑖,𝑡𝑡;  𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡
+ ;  𝑁𝑁𝑗𝑗,𝑘𝑘,𝑡𝑡

− : 𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛 (18) 
𝑍𝑍𝑚𝑚,𝑖𝑖,𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑡𝑡 ∶ 𝑛𝑛𝑖𝑖𝑛𝑛𝑜𝑜𝑛𝑛𝑡𝑡 (19) 

 
The first term of the objective function represents the setup cost for each machine that may vary from 
period to period. The following term denotes the operating cost, including the machinery of each part. 
The third term corresponds to the purchasing or removing costs of machines. The fourth sentence 
indicates the outsourcing cost, and the fifth sentence represents backorder costs. The sixth and seventh 
denote the intra- and inter-cellular material transfer costs, respectively. As observed, all system costs are 
affected by inflation rate in the production horizon. This condition allows decision-makers to evaluate 
the system cost entropy caused by different cost uncertainty factors (such as inflation or market change 
rate) in planning horizon. 
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The first set of constraints guarantees that the demands for each part can be satisfied by in-house 
manufacturing through outsource services or postponement to the next period. The second constraint is 
developed to ensure that parts operations are based on MCIM information. The third constraint 
guarantees that each machine is allocated on the basis of capacity. Similarly, the fourth constraint assures 
that sub-contractor services do not exceed the declared capacity. The fifth constraint controls the values 
of backorders depending on the backorder limits. The sixth set of constraints ensures that the amount of 
purchased or removed machines remains logical in the manufacturing horizon. The seventh set of 
constraints represents the initial set of each machine type in the first period. The eighth set of constraints 
controls the size of cells during the manufacturing process, and the ninth set of operations indicates that 
the amount of parts produced should not be more than the available amount of that machine type. The 
next two sets of constraints are used to control the domain of the variables. 

 4. Solution procedure  
 

Tavakkoli-Moghaddam et al. (2010) reported that CMS scheduling models are non-polynomial problems 
that are difficult to solve using normal optimizers. On the basis of the review of existing literature, 
heuristics and metaheuristics have been widely employed by scientists to determine optimum or near-
optimum solutions. Genetic Algorithm has been successfully used in similar researches in CMS and 
therefore can be considered as a trustful method for solving the proposed model (Banerjee & Das, 2012; 
Dimopoulos & Mort, 2001; Goncalves Filho & José Tiberti, 2006; Paydar et al., 2013; Rogers & 
Kulkarni, 2005). The risk of trapping in the local optima is high because of the complexity of the 
proposed model. Hence, in the first step, the authors solved the proposed model for number of small, 
medium and large scale experiments using LINGO 12.0 and a genetic algorithm (GA). These experiments 
are selected in line with central limit theorem in statistics; thus, researchers can make confident decisions. 
The results presented in Table 14 show that although LINGO 12.0 and GA reported similar outcomes for 
small-scale experiments, the proposed GA can provide improved solutions for all medium- and large-
scale experiments. Hence, the next section discusses the use of GA to solve all experiments. 

4.1 Genetic Algorithm Design for Solving the Proposed Model 
 
GA was first developed by (Holland, 1975) on the basis of the biological process of genetic inheritance. 
In this process, population characteristics are improved over generations. The basic concept of GA is to 
simulate the processes necessary for evolution in a natural system, specifically those that follow the 
principles first laid down by Charles Darwin’s 1 theory of evolution that emphasizes the survival of the 
fittest.  
 

 
Fig. 3. A scheme of GA performance for improving the characteristics of population members over 

generations 

1 . (1809-1882 AC) 
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The favorable characteristics of the members are expected to be retained over generations to optimize a 
pre-determined fitness function (Fig. 3). GA has been widely used to solve optimization problems in 
CMS literature. 
 
4.2 Mechanism of the Proposed Genetic Algorithm 
 
The proposed GA is developed to use the best founded part routes of the parts (as chromosomes of each 
parent) and combine them to generate a new solution string with better quality. For this purpose, a layout 
is initially presented in the first generation according to a similarity index based on the goal of 
determining the maximum similarity between the products and required machines. For the other 
generations, the algorithm calls for a main string and a TOther string (as explained in subsequent 
sections). The chromosomes of these generations are combined to generate a layout that is supposed to 
improve total system costs (Fig. 4). The algorithm checks whether or not outsourcing is more economic 
than in-housing. If outsourcing is cheaper, then the product demands are to be completed by 
subcontractors in consideration of their capacity.  
  
Table 1  
Pseudo code for the proposed Genetic Algorithm 

Insert Dataset 
• Input data sets (𝐷𝐷𝑖𝑖,𝑡𝑡; 𝐵𝐵𝑆𝑆𝑖𝑖; 𝑀𝑀𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗; 𝑀𝑀𝑀𝑀𝑗𝑗; 𝑆𝑆𝐵𝐵𝑙𝑙; 𝑀𝑀𝐵𝐵𝑖𝑖,𝑡𝑡; 𝑁𝑁𝑂𝑂𝑀𝑀𝑗𝑗; 𝑂𝑂𝑂𝑂𝑖𝑖; 𝑆𝑆𝑗𝑗; 𝛼𝛼𝑖𝑖; 𝛽𝛽𝑖𝑖; 𝑂𝑂𝐵𝐵𝑗𝑗; 𝑆𝑆𝑆𝑆𝑛𝑛; 𝑇𝑇𝐵𝐵𝑗𝑗,𝑡𝑡; 𝐵𝐵𝐵𝐵𝑛𝑛; 𝐻𝐻𝑗𝑗; 𝐹𝐹𝑗𝑗; 𝐵𝐵𝑆𝑆𝑗𝑗; 𝑊𝑊𝑖𝑖 ; 𝐾𝐾𝑗𝑗; 𝐷𝐷𝑆𝑆𝑗𝑗; 𝑂𝑂𝐶𝐶𝑗𝑗,𝑡𝑡; 𝑂𝑂𝑆𝑆𝑇𝑇𝑗𝑗 ; 𝐸𝐸𝑀𝑀𝑇𝑇𝑗𝑗; 𝐹𝐹𝑆𝑆 𝑗𝑗; 𝑂𝑂𝑀𝑀𝐵𝐵𝑗𝑗; 𝐸𝐸𝑆𝑆𝐵𝐵𝑗𝑗; 𝐵𝐵𝐵𝐵𝑖𝑖; 𝑂𝑂𝑆𝑆𝑙𝑙; 𝑀𝑀𝑛𝑛𝑡𝑡) 
• Initialize pop.size, k, G, Mu & LEP (pop.size: population size; k= neighbourhood radius; Mu: mutation rate; G: number of generations; LEP=local escape probability) 

While n<G 
for m=1: pop.size 
Step 1) 

• if n=1 
• Generate a layout 
• else 

Step 2) 
• Choose 𝑋𝑋𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡 as main string 
• Choose a member from tournament list (tother string) 
• find 𝑋𝑋𝑖𝑖𝑗𝑗=0   (find those machines that are not assigned) 
• 𝐵𝐵𝑖𝑖𝑗𝑗 = 0     (remove idle machines from the main string) 
• Calculate Slack list (list of idle machines) 
• Recall the 𝐵𝐵𝑜𝑜𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑜𝑜𝑡𝑡𝑛𝑛. 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡) 

o for  𝑝𝑝 ∈   𝐵𝐵𝑜𝑜𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑜𝑜𝑡𝑡𝑛𝑛. 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖) (Re-locate the machines in slack list to make best part routes of tother string in the main string) 
o if 𝐵𝐵𝑖𝑖𝑗𝑗=0  
 𝐵𝐵𝑖𝑖𝑗𝑗=𝑀𝑀𝑗𝑗  ( 𝑗𝑗 ∈  Slack list) 

Step 2) 
• 𝑌𝑌: 𝑆𝑆𝑜𝑜𝑛𝑛𝑝𝑝(1) 
• if 𝑌𝑌 ≤ 𝑀𝑀𝑛𝑛 

o A=Rand(1)*width 
o B=Rand(1)*width 
o Replace Row A and B in layout of X 

Step 3)  
• for i ∈ 𝑀𝑀  
• if 𝑂𝑂𝑆𝑆𝑙𝑙< 𝑂𝑂𝑂𝑂𝑖𝑖 
• 𝑂𝑂𝑖𝑖=min(𝐷𝐷𝑖𝑖,𝑡𝑡;Out source capacity l) 
• calculate Remained 𝐷𝐷𝑖𝑖,𝑡𝑡 

Step 4) 
• find 𝑀𝑀𝐵𝐵𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 
• Generate  Neighbor list considering neighbor radius (𝑛𝑛𝑚𝑚) 

o for k ∈ 𝑛𝑛 
 𝑂𝑂𝑜𝑜𝑛𝑛𝑡𝑡. 𝑛𝑛𝑜𝑜𝑛𝑛𝑡𝑡𝑛𝑛𝑘𝑘= ∑|𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛 𝑡𝑡𝑛𝑛𝑜𝑜𝑡𝑡𝑛𝑛𝑐𝑐| + |𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛𝑜𝑜𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛 𝑡𝑡𝑛𝑛𝑜𝑜𝑡𝑡𝑛𝑛𝑐𝑐| (for consecutive machines) 

• Find the Best Part routes in the X 
• 𝑥𝑥𝑖𝑖= min(𝑀𝑀𝑀𝑀𝑗𝑗 , Remained 𝐷𝐷𝑖𝑖,𝑡𝑡,𝐵𝐵𝑆𝑆𝑖𝑖 ) 
• calculate Remained 𝐷𝐷𝑖𝑖,𝑡𝑡 

Step 5)  
• for i ∈ 𝑀𝑀  
• if Remained 𝐷𝐷𝑖𝑖,𝑡𝑡>0 
• if Machine Purchasing < Outsourcing or 𝑂𝑂𝑆𝑆𝑙𝑙 = 0 
• 𝑁𝑁𝑂𝑂𝑀𝑀𝑗𝑗 = 𝑁𝑁𝑂𝑂𝑀𝑀𝑗𝑗 + 1 𝑜𝑜𝑜𝑜𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑝𝑝 𝑛𝑛𝑜𝑜𝑝𝑝ℎ𝑖𝑖𝑛𝑛𝑛𝑛 
• Go step 3 

Step 6) 
• else  
• Set 𝑛𝑛𝑖𝑖 = Remained 𝐷𝐷𝑖𝑖,𝑡𝑡 

Step 7) 
• Calculate 𝑂𝑂𝐹𝐹𝑂𝑂𝑖𝑖 
• if 𝑂𝑂𝐹𝐹𝑂𝑂𝑖𝑖 ≤ min𝑖𝑖𝑡𝑡𝑖𝑖(𝑂𝑂𝐹𝐹𝑂𝑂) 

o 𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖=𝑋𝑋𝑖𝑖 
o 𝑂𝑂𝐹𝐹𝑂𝑂𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡 =𝑂𝑂𝐹𝐹𝑂𝑂𝑖𝑖 &  𝑋𝑋𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡 = 𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖 
o save 𝐵𝐵𝑜𝑜𝑛𝑛𝑝𝑝𝑖𝑖𝑝𝑝𝑜𝑜𝑡𝑡𝑛𝑛. 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡(𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖) 

Step 8)  
• else 
• R=rand(1) 
• if R≤ 𝐶𝐶𝐸𝐸𝑂𝑂    𝑡𝑡ℎ𝑛𝑛𝑛𝑛    𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖=𝑋𝑋𝑖𝑖 

Step 9)  
• Check Stopping Criteria 
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For the remaining product demands (if any), the GA identifies the best part routes according to the 
minimum distance between the machines and assigns parts to the machines in part routes given the 
remaining product demands, machine capacity and batch size.  

 
Fig. 4. Flowchart of the proposed genetic algorithm for solving the proposed model 
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Part routing is repeated until the product demands are fulfilled or when machine capacity in the cells is 
exhausted. The GA then checks if the purchase of needed machines for manufacturing can help meet 
product demands. If neither in-house manufacturing nor subcontractor services is feasible, then the 
remaining product demands are considered to be product backorders (in consideration of the allowed 
backorder limit). In rare cases, the generated layout is re-arranged by a mutation operator to avoid local 
optima traps. The optimizing process is repeated until all population members in a generation are fully 
developed. A tournament list containing elite members is then assembled for future generations. Table 1 
shows the pseudo code of the proposed GA. 

 

4.3 Parameters, Settings, and Functions 
 
Population Size and Number of Generations 
 
The number of population members in each generation is an important issue in GA. The exact population 
size cannot be determined; this process depends on the size and complexity of the mathematical models. 
In this research, we considered three levels (100, 200, and 300 for small-, medium-, and large-scale 
problems, respectively) for population size and number of generations; however, the ideal set of GA 
input parameters (generation number, population size, and mutation rate) are determined as well using 
the Taguchi method presented in Section 4.4 for enhanced accuracy.  

Selection of the Operator and Establishment of the Tournament List 
 

Each member of a generation must carry better original genes than the previous generation did. In the 
proposed GA, a tournament list is created for each generation that carries the ideal layouts of the previous 
generation to increase the chances of selecting an improved objective function. The ideal observed layout 
is considered the base member in the mating bath (main string), and a member of the tournament list is 
chosen as the other candidate of mating bath (TOther string). The aim of establishing this list is to use 
the chromosomes (good routes) of the main and TOther strings to improve a layout. Fig. 5 shows the 
process of selecting the main string in the developed GA. Similarly, Fig. 6 shows the procedure of using 
the best parts routes of an invited member from the tournament list to improve the part routing of the 
ideal observed solution thus far. 

  

Fig. 5. Sample of using best observed layout so 
far as the main string (right image) 

Fig. 6. Result of Using the best Part routes of an 
Invited Member from the Tournament List as 
Tother String (right image) 
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Mating Pool 
 
Upon selecting a member from the tournament list (TOther string) and determining the best observed 
layout (main string) through a selecting operator, the chromosomes of candidates are rearranged to 
generate a new population member that carries the good characteristics of both parents. For this purpose, 
two main operators are developed: a crossover operator that basically rearranges the selected operators 
and a mutation operator that is rarely used but is important in avoiding local optima.  

Crossover Operator  
 
The main genetic operator is a crossover operator that chooses and combines pieces of information from 
different individuals in the population. The main purpose of employing this operator in the proposed GA 
is to facilitate the use of the elite parts routes in the ideal layout observed in the main string layout. Hence 
the most appropriate crossover operator for the proposed GA is the arithmetic operator. In this operator, 
arithmetic functions are defined and are applied to rearrange specific parts of the main string with a 
TOther string to produce new offspring. 

a) Suppose 𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑜𝑜𝑛𝑛𝑡𝑡𝑘𝑘𝑚𝑚 �
𝑂𝑂1,1 𝑂𝑂1,2 … 𝑂𝑂1,𝑖𝑖
… . … . . . …
𝑂𝑂𝑗𝑗,1 𝑂𝑂𝑗𝑗,2 … 𝑂𝑂𝑗𝑗,𝑖𝑖

� is the layout of the best observed solution so far. 

b) Suppose 𝑀𝑀′(𝑛𝑛′1,𝑛𝑛′2, … ,𝑛𝑛′𝑘𝑘; 𝑥𝑥′1, 𝑥𝑥′2, … , 𝑥𝑥′𝑘𝑘)   is a part route of the tother string which must be 
replaced by 𝑀𝑀(𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘; 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘)  in the 𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑜𝑜𝑛𝑛𝑡𝑡𝑘𝑘𝑚𝑚. 
 
c) If  𝐵𝐵𝑚𝑚′ < 𝐵𝐵𝑚𝑚, (20) 
d) Then 𝑂𝑂𝐹𝐹𝑂𝑂𝑚𝑚′  < 𝑂𝑂𝐹𝐹𝑂𝑂𝑚𝑚, (21) 

 
where 𝐵𝐵𝑚𝑚′ refers to the distance cost of parts route 𝑛𝑛’ in the TOther string. 𝑂𝑂𝐹𝐹𝑂𝑂𝑚𝑚 𝑜𝑜𝑛𝑛𝑝𝑝𝑂𝑂𝐹𝐹𝑂𝑂𝑚𝑚′ represent 
the objective function value of the main string before and after replacement, respectively.  In the left-
hand side image of Fig. 8, a certain parts route is checked in the main string. If this route is available in 
the main string (for example, bb= [38 22] in the right-hand side image of Fig. 8), the GA determines 
another favorable parts route; however, if the mentioned parts route is not available in the main string 
(bb = [38 26]), then the needed machines are placed into the main string to generate the parts route (with 
respect to the total number of available machines). 
 

  
Fig. 7. Using Crossover Operator to choose a part route that still has capacity (left image) and replace it 
in main string (right image). 

Using Control Limits during Part Routing Process 
 
To examine machine load variations a formula is developed on the basis of the machine load variations 
within a cell: 
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𝑋𝑋𝚤𝚤� ± 𝑘𝑘𝑆𝑆𝑖𝑖2,       ∀ 𝑖𝑖 (22) 
            
where 𝑋𝑋𝚤𝚤�  is the average of a specific machine-type load in a cell in a planning horizon. 𝑆𝑆𝑖𝑖2 shows the 
standard deviation that can be calculated based on the observed values for 𝑋𝑋𝑖𝑖. 𝐾𝐾 is a value between 1 and 
3 that can be set by decision makers depending on the dimension of the experiment and the ranges of 𝑋𝑋𝑖𝑖 
in each case.  
 
The formula above determines the machines that allocate more than the average numbers of parallel 
machines in a cell and if so avoids them to consider as a member of a part route. The number of loads 
depends on many factors, such as remaining product demand and capacity. Machines must be separated 
at a safe distance, as indicated by the symbol 𝑘𝑘𝑆𝑆𝑖𝑖2. Each machine that exceeds the safety distance 
calculated by Equation 22 should not be considered as a candidate for next part routings.  
 
Fitness Function 
 
For this research, the objective function of each proposed model is applied as a fitness function operator 
in the proposed mathematical models: 
�𝐺𝐺𝑛𝑛𝑜𝑜𝑛𝑛𝑝𝑝 𝑆𝑆𝑛𝑛𝑡𝑡𝑛𝑛𝑝𝑝 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡 +�𝑂𝑂𝑝𝑝𝑛𝑛𝑛𝑛𝑜𝑜𝑡𝑡𝑖𝑖𝑛𝑛𝑝𝑝 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡 + 

(23) 
�𝑂𝑂𝑛𝑛𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡 +�𝐵𝐵𝑜𝑜𝑝𝑝𝑘𝑘𝑜𝑜𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡 + 

�𝑀𝑀𝑜𝑜𝑝𝑝ℎ𝑖𝑖𝑛𝑛𝑛𝑛 𝑂𝑂𝑛𝑛𝑛𝑛𝑝𝑝ℎ𝑜𝑜𝑠𝑠𝑖𝑖𝑛𝑛𝑝𝑝 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡 +�𝑀𝑀𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛 𝑇𝑇𝑛𝑛𝑜𝑜𝑛𝑛𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡 + 

�𝑀𝑀𝑛𝑛𝑡𝑡𝑛𝑛𝑜𝑜𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑜𝑜𝑛𝑛 𝑇𝑇𝑛𝑛𝑜𝑜𝑛𝑛𝑠𝑠𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑝𝑝 𝐵𝐵𝑜𝑜𝑠𝑠𝑡𝑡𝑠𝑠 
 

 

Each solution is evaluated to determine whether or not it can improve the minimum total system costs 
thus far. If so, then the GA considers the solution in question to be a member of the tournament list. 
 
a) Suppose 𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑖𝑖; 𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑙𝑙;𝑛𝑛1, 𝑛𝑛2, … , 𝑛𝑛𝑖𝑖) is the 𝑘𝑘𝑡𝑡ℎ solution in 𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡ℎ iteration. 
b) If 𝐹𝐹�𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖�  ≤ 𝑛𝑛𝑖𝑖𝑛𝑛 �𝐹𝐹�𝑋𝑋1𝑖𝑖𝑡𝑡𝑖𝑖�,𝐹𝐹�𝑋𝑋2𝑖𝑖𝑡𝑡𝑖𝑖�, … ,𝐹𝐹�𝑋𝑋𝑘𝑘−1𝑖𝑖𝑡𝑡𝑖𝑖 �;𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡�𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖−1��   ;  ∀ 𝑘𝑘 ∈ 𝑖𝑖                                    (24) 
c) Then, 𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡. 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡𝑚𝑚+1 =  𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖 (suppose the tournament list already has m members)              (25) 

Mutation Operator 
 
The concept of using a mutation operator is to avoid involvement with the local solution space when 
other operators cannot generate an improved solution. In such cases, the mutation operator evades the 
undesirable situation but rearranges either a part of the solution structure or the whole (Fig. 8). Although 
the use of a mutation operator may temporarily provide faulty solutions, the GA generates enhanced 
solutions eventually. 
 

a) Suppose 𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑜𝑜𝑛𝑛𝑡𝑡𝑘𝑘𝑚𝑚 �
𝑂𝑂1,1 𝑂𝑂1,2 … 𝑂𝑂1,𝑖𝑖
… . … . . . …
𝑂𝑂𝑗𝑗,1 𝑂𝑂𝑗𝑗,2 … 𝑂𝑂𝑗𝑗,𝑖𝑖

� is the layout of 𝑘𝑘𝑡𝑡ℎ population member in 𝑛𝑛𝑡𝑡ℎ generation. 
(26) 

b) If 𝑌𝑌 ≤ 𝑀𝑀𝑀𝑀  and C=1 and D=j (27) 
 

c) Then, 𝑝𝑝𝑛𝑛𝑐𝑐𝑐𝑐 𝑐𝑐𝑡𝑡𝑜𝑜𝑛𝑛𝑡𝑡𝑘𝑘𝑚𝑚 = �
𝑂𝑂𝑗𝑗,1 𝑂𝑂𝑗𝑗,2 … 𝑂𝑂𝑗𝑗,𝑖𝑖
… . … . . . …
𝑂𝑂1,1 𝑂𝑂1,2 … 𝑂𝑂1,𝑖𝑖

�                                    

where Y is a random number between 1 and 0; MU is the pre-determined value for the mutation rate; and 
c and d are the rows that must be replaced. 
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Fig. 8. Choosing two rows for replacement (left image)/ replacing the selected rows in the cell layout 

(right image) 

Local Optimum Escaping Operator  
 
After calculating the fitness function for the developed solution in the iterations (for example, 𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖), the 
GA algorithm checks the obtained value with respect to the best value observed thus far (𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖−1). If 
the fitness function value (𝐹𝐹𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖) is less than 𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖−1, then GA replaces 𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖with 𝑋𝑋𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖−1. By 
contrast, if the value of 𝐹𝐹𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖 is higher than 𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖, then 𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖 is withdrawn immediately. In the proposed 
GA, the algorithm provides a base to maintain the value with a small probability even after attaining the 
worst fitness function. This strategy enables the GA to keep searching for improved solutions (Fig. 9). A 
local escaping operator is added to the algorithm using the function described below: 
 

𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖 = �
𝐹𝐹𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖;      𝑖𝑖𝑜𝑜 𝐹𝐹𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖 ≤ min  �𝐹𝐹𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖,𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖−1� ∀ 𝑖𝑖 ∈ 𝑖𝑖𝑡𝑡𝑛𝑛                 
𝐹𝐹𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖;       𝑖𝑖𝑜𝑜 𝑆𝑆 ≤ 𝐶𝐶𝐸𝐸𝑂𝑂                                                                      
𝐹𝐹𝑏𝑏𝑏𝑏𝑠𝑠𝑡𝑡;𝑖𝑖𝑡𝑡𝑖𝑖−1;         𝑜𝑜𝑡𝑡ℎ𝑛𝑛𝑛𝑛𝑤𝑤𝑖𝑖𝑠𝑠𝑛𝑛                                                           

 
 

(28) 

 
where R is a normal random number between 0 and 1, and LEP is a local escaping parameter that is 
defined by a decision maker. The exact amount of LEP cannot be determined, and the value may differ 
from case to case; however, LEP can be approximated on the basis of the experimental design to be 
explained in Section 3.6. 

 
Fig. 9. A sample of escaping from local optimum traps by using local optimum escaping operator 

Stopping Criteria 
 
The stopping criteria in the proposed GA are as follows: 
1) The maximum number of pre-defined iterations is reached. 
2) If no choices are generated in the tournament list during iteration, thus implying that none of the 
solutions in the iteration can improve the fitness function, then the algorithm is not improved.  

(1) 

(2) 

(3) 

(4) 

(5) 
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a) Suppose 𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑖𝑖; 𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑙𝑙;𝑛𝑛1, 𝑛𝑛2, … , 𝑛𝑛𝑖𝑖) is the 𝑘𝑘𝑡𝑡ℎ solution in 𝑖𝑖𝑡𝑡𝑛𝑛𝑡𝑡ℎ iteration. 
 
b) If 𝐹𝐹�𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖� > 𝑛𝑛𝑖𝑖𝑛𝑛 �𝐹𝐹�𝑋𝑋1𝑖𝑖𝑡𝑡𝑖𝑖�,𝐹𝐹�𝑋𝑋2𝑖𝑖𝑡𝑡𝑖𝑖�, … ,𝐹𝐹�𝑋𝑋𝑘𝑘−1𝑖𝑖𝑡𝑡𝑖𝑖 �;𝐹𝐹∗�𝑋𝑋𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖−1��   ;  ∀ 𝑘𝑘 ∈ 𝑖𝑖 (29) 

Then 𝑇𝑇𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡. 𝑐𝑐𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 = ∅ for next iteration (30) 

4.4 Taguchi Method for Determining the Appropriate Input Sets for the Proposed GA 
 

As mentioned previously, the experimental design helps estimate the effect of each setting parameter and 
determine the relationship between these parameters. Therefore, the Taguchi method is used using 
Minitab® 17 while an 𝐶𝐶9 (3^4) orthogonal optimization for CdIII removal is considered (Table 2). 

Table 2  
The level of factors used for L9 orthogonal designing method 

Factor Level 1 Level 2 Level 3 
Number of Generations 50 100 200 
Pop-size 100 200 300 
Mutation 0.05 0.1 0.2 
Local Escaping Rate 0.1 0.2 0.3 

Table 3 shows the experiments designed by Taguchi method. The value R shows the minimum 𝑂𝑂𝐹𝐹𝑂𝑂 
observed while using the suggested parameters in the proposed GA. The formula which is used for 
calculating the signal ratio is chosen in a way that lower 𝑂𝑂𝐹𝐹𝑂𝑂 values are desired more by the software: 

𝑆𝑆.𝑁𝑁 𝑆𝑆𝑜𝑜𝑡𝑡𝑖𝑖𝑜𝑜 =  −10 × log10 �
∑𝑂𝑂𝐹𝐹𝑂𝑂2

𝑛𝑛
� 

(31) 

Table 3  
Results of implemeting the experiments for Taguchi method 

Experiment 
Number 

Factor     
# of Generations Pop-size Mutation Local Escaping Rate R S.N RA 

(A) (B) (C) (D) 
1 1 1 1 1 54630 -94.749 
2 1 2 2 2 53530 -94.572 
3 1 3 3 3 52450 -94.395 
4 2 1 2 3 52880 -94.466 
5 2 2 3 1 51580 -94.249 
6 2 3 1 2 51380 -94.216 
7 3 1 3 2 51020 -94.155 
8 3 2 1 3 49620 -93.913 
9 3 3 2 1 48820 -93.772 

  

Table 4 provides details of analysing the results by Minitab. As seen, all factors A (the number of 
generations), B (population size), C (mutation rate) and D (local escaping rate) can improve 𝑂𝑂𝐹𝐹𝑂𝑂 but 
with different severity levels. Upon implementing the experiments designed for the Taguchi method, the 
obtained results show that the algorithm is sensitive to the number of generations, population size and to 
interaction between number of generations and population size (Fig. 10). The high slope of the curve 
related to the number of generations and population size suggests that these factors significantly affect 
the objective function (Fig. 11). Mutation rate and local escaping rate have moderate effects on the 
solving process; however, the positive results indicate that these factors should not be disregarded. 
Therefore, maintaining a value of 0.1 for mutation- and local escaping rate are appropriate for all 
experiments.  
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Table 4 
Analyzing results of implementing the designed experiments (Taguchi Analysis: R versus A, B, C, D) 

Response Table for Signal to Noise Ratios 
Smaller is better 

Response Table for Means 
 

Response Table for Standard Deviations 
 

Level A B C D Level A B C D Level A B C D 
1 -94.57 -94.46 -94.29 -94.26 1 53537 52843 51877 51677 1 * * * * 
2 -94.31 -94.24 -94.27 -94.31 2 51947 51577 51743 51977 2 * * * * 
3 -93.95 -94.13 -94.27 -94.26 3 49820 50883 51683 51650 3 * * * * 
Delta 0.63 0.33 0.03 0.06 Delta 3717 1960 193 327 Delta * * * * 
Rank 1 2 4 3 Rank 1 2 4 3 Rank 2.5 2.5 2.5 2.5 

 
The interaction between factors can be monitored using the regression equation in uncoded units that 
estimated based on actual values: 
 
𝑆𝑆 =  50767.5 −  1862.5 𝑀𝑀 −  1453.5 𝐵𝐵 −  662.5 𝑀𝑀 ∗ 𝐵𝐵              (32) 

As seen, in this equation, the interactions between factors A & B influence on the Y (the expected 
𝑂𝑂𝐹𝐹𝑂𝑂 based on actual values) in a constructive manner. The model did not recognize any other interactions 
between other factors. Therefore, for the larger scale experiments the number of generations and the 
number of population increase simultaneously. Hopefully there is no negative interaction between factors 
in the proposed GA. However, such negative interactions (if exist) must be considered carefully while 
setting the parameters. Hence, the appropriate ranges are 50–100 for small scale problems, 100–150 for 
medium-scale problems, and of 200–250 for large-scale problems. Any value beyond the specified range 
increases the volume of computations without noticeable improvements.   

 
Fig. 10. The normal plot of the effects between 
input parameters for the proposed hybrid method 

 
Fig. 11. The main effects plot for showing the 
impact of levels of input parameters 

5. Computational Experience 
 
To determine and to verify the performance of the solving algorithms for the proposed method, a small-
scale experiment (sample number 5 in Table 6) is described in detail to determine its dataset, to evaluate 
computations, and to analyze outcomes. The experimental results obtained are analyzed thoroughly. 
Seventeen experiments derived from literature are solved in small-, medium-, and large-scale problems. 
In these experiments are conducted under different conditions (Table 14). The results of other problems 
are similar and are thus outlined in Table 2. All examples are solved using MATLAB R2009a® software 
on a Core™ i7 personal laptop with 2.40 GHz CPU and 8 GB RAM.  
 
5.1 Experiment 1 
 

In this example, we assume that four products must be processed in a manufacturing system containing 
three different types of machines and two cells. We also consider two planning periods. Other related 
information is presented in Table 5: 
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Table 5  
Product dataset for experiment number 1 

Product Demand 
(N~(μ,σ²)) Supplier Outsource 

Capacity 
Batch 
size 

Allowed 
Back 
orders 

Outsourcing 
cost (per 
product) 

Backorder 
cost (per 
product) 

Intracellular 
cost 

Intercellular 
cost 

P1 N~(100,12) L1 100 15 [20,0] 50 4 3 4 
P2 N~(60,8) L2 50 10 [30,0] 14 3.5 5 8 
P3 N~(75,14) L3 60 8 [45,0] 20 3 4 6 
P4 N~(200,4) L4 120 15 [60,0] 18 2.4 7 8 

 
The information of various machine types must also be incorporated into the model (Table 6): 
 
Table 6 
Machine dataset for experiment number 1 

Machine Initial Number Capacity Setup Cost Machine Purchasing cost 

M1 5 100  100 8000 
M2 7 150 140 12000 
M3 4 75 200 7500 

Table 7 depicts the operation process for completing each product. For example, product 1 needs to visit 
machine types 1, 2, 3, and 5.  

 

Table 7 
MCIM matrix for experiment number 1 

MCIM M1 M2 M3 
P1 1 1 1 
P2 0 0 1 
P3 0 1 1 
P4 1 0 0 

 
The cost of each operation on various machine types is also provided in Table 8. For example, the 
required costs of performing sequential operations for product 1 are $7 for the operation on machine type 
1, $12 for the operation using machine type 2, and $4 for the operation on machine type 3. 
 
Table 8 
Operational cost of using each machine type 

OP M1 M2 M3 

P1 7 12 4 

P2 0 0 5 

P3 0 9 4.6 

P4 8 0 0 

 
For comprehensiveness, all of the results are presented using the result view of MATLAB. The resultant 
best cell layout is displayed in Fig. 12. The figure indicates that the GA generated two block diagonals 
through agglomeration. These blocks are maintained until the end of the searching process. Machine re-
arrangement is possible; however, this rearrangement is unnecessary in this experiment as per the GA 
because of low rate (as explained in the next section). Such agglomerative blocks are generated in this 
example primarily because all products are similar in terms of their use of machine services. Hence the 
algorithm considers only one center point and attempts to locate other machine groups on the basis of 
their similarity scores around the center point. In the process, material transfer is as limited as possible. 
However, if a product uses a different machine type that none of the other product needs (for instance, 
product 5 needs machine types 4 and 5), then the algorithm sets another center point for this product that 
facilitates the production of these two different block diagonals. Upon forming cells and locating the 
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machines inside, the next priority is identifying the best parts routes for allocating the operation sequence 
of products. Parts routes represent a set of required machines (based on MCIM priorities) that are chosen 
in consecutive order to complete a product. For this purpose, a new matrix is developed that determines 
the ideal number of parts routes for production. This matrix is presented in Fig. 13. 
 

 
Fig. 12. The generated block diagonals obtained from the experiment 1 

 
Fig. 13. Part-routes observed for the experiment 1 

The fourth row in Fig. 13 shows that machines that are located in positions 27, 32, and 31 in the second 
cell are employed to output 15 units of product 1 in the first period of planning. Generating one unit of 
product type 1 requires machine types 1, 2, and 3, consecutively. The GA is developed such that it can 
search the closet set of the mentioned machines in the proposed cell layout to minimize material transfer 
costs. Therefore, machines that are located in positions 27, 32, and 31 are chosen as to be a machine in 
the closet set that can complete product 1 at the lowest intracellular WIP transfer costs (see Fig. 12). 
Scheduling 15 units of product type 1 facilitates the calculation of the minimum value in the remaining 
product demands, as well as the capacity of the remaining machines and the batch size for product 1 (15). 
For the remaining parts routes, the same strategy is used in each step.  
 
An important task to be performed after generating layouts and scheduling products is surveying the 
number of machine loads because this number represents the machine and cell load variations. This 
calculation can assist decision makers in determining the efficiency of the generated layout and parts 
routes in practice. 
  

 
Fig. 14.  Machine load and voids observed for the experiment 1 

 
Fig. 15. Emerging an exceptional element in final layout 

The “best-observed-machineloads” matrix in Fig. 15 indicates the number of machine loads in each cell. 
Machines with less or more load than other parallel machines can thus be recognized. For example, the 
machine located in the second column of the first row in the first cell of Fig. 14 is allocated only eight 
times, whereas similar machine types in the same cell are allocated more often (similar machine types 
can be identified using Fig. 6). Hence this event can be considered is an example of machine load 

Block Diagonals 

Voids 

Idle Machine 

Exceptional 
element 
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variation that may lead to cell load variation as well. Similarly, if a machine is scheduled more often than 
other parallel machines in a cell, then this scenario is regarded as an example of machine load variation. 
The second machine in second row of the first cell is filled by a machine type 1; however, this machine 
is not used during scheduling in the first period. Hence this machine is an example of an idle machine.  
Exceptional elements also play a key role in generating efficient cells. Hence, the number of such 
elements can be minimized as a metric for evaluating the performance of the proposed method. Less 
exceptional elements emerge in the final layout, and the layout is strengthened. Fig. 15 shows a sample 
cell layout that contains an exceptional element in cell 2.  
 
The total number of in-house manufacturing processes in each period is shown in the “best-observed-
inhouse manufacturing” matrix depicted in Fig. 16. For example, the amount of product 1 that must be 
manufactured in the first period is 97 units in this matrix. That of product 4 in the second unit is 110 
units. The capacity of machines in cells is inadequate; therefore, the algorithm set some units to be 
completed through subcontractor services. The “best-observed-out-source” matrix indicates the number 
of units that are scheduled for outsourcing. For example, 28 units of product 2 are scheduled to be 
completed through subcontractor services in the first period. As mentioned previously, the remaining 
product demands that cannot be completed through in-house manufacturing and outsourcing services are 
regarded as backorders. In this experiment, six units of product 1 and two units of product 3 are postponed 
to the second period. 
 

 
Fig. 16. Results of in-house manufacturing, outsourcing and back orders achieved in final solution of experiment 1 

Table 9 shows the percentage of machine loads in each cell as per the final solution. For example, the 
value 0.146,𝑀𝑀1 in the first position of cell 1 indicates that the first location in cell 1 is filled by machine 
type 1 and that 14.6% of all of the loads on machine type 1 are allotted during the first planning period.  
 
Table 9  
Results of machine-loads percentage in second planning period of final solution of experiment number 1 

Period Cell Load-Machine% 

t:1 

C1 
0.146,M1 0.068,M2 0 0 0 
0.146,M1 0 0 0 0 
0.127,M2 0 0 0 0 
0.127,M2 0 0 0 0 

C2 
0.146,M1 0.125,M1 0.167,M3 0.212,M2 0 
0.167,M3 0.212,M2 0.071,M1 0.167,M3 0 

0 0.071,M1 0.167,M3 0.167,M3 0.146,M1 
0 0.146,M1 0.127,M2 0.127,M2 0.167,M3 

t:2 

C1 
0.132,M1 0 0 0 0 
0.132,M1 0.075,M1 0 0 0 
0.240,M2 0 0 0 0 
0.080,M2 0 0 0 0 

C2 
0.132,M1 0.154,M1 0.167,M3 0.200,M2 0 
0.167,M3 0.240,M2 0.044,M1 0.167,M3 0 

0 0.11,M1 0.167,M3 0.167,M3 0.066,M1 
0 0.154,M1 0 0.240,M2 0.167,M3 

 
After determining the machine loads over upper and lower control limits, each value must be investigated 
because not all of the loads exhibit machine load variation. Some loads may be generated by the 



102  
allocation of previous parts routes; hence, machine load variation must not be considered. We explain 
this condition using an example. Suppose 25 units of product 𝑖𝑖 in a period plan 𝑡𝑡 are regarded as product 
demand. This product must be served by machine types 1 and 2. Two units of machine type 1 are located 
in cell positions 12 and 17. Moreover, we also suppose two units of machine type 2 that are located in 
cell positions 26 and 28. The effective capacity of machine type 1 is 20 units per planning period; that of 
machine type 2 is 22 units per planning period. If the batch size of product 𝑖𝑖 is 7, a sample parts route 
may be generated as in Table 10. 
 
Table 10  
Determining the amounts of scheduling on each part routes 

Part route 
number 

 

Machines layout 
position 

Remained capacity of each 
machine 

minimum production allowed on this part route 
(min machine capacity; batch size; remained 

product demand) 

scheduled 
amount 

remained product 
demand 

1 C12, C26 20,22 min (20,22,7,25)=7 7 25-7=18 
2 C17, C26 20,15 min (20,15,7,16)=9 7 18-7=11 
3 C12, C28 13,22 min (13,22,7,11)=7 7 11-7=4 
4 C12,C26 6,8 min(6,8,7,4)=4 4 4-4=0 

 
In the final part route, the scheduled amount is 4. This value is 57.14% less than that of other machines. 
If we use Eq. (32) (k = 1), then the final part route determines the control limits (Fig. 17); however, this 
machine should not be considered idle because no product demand needs to be scheduled in this parts 
route.  
 

 
Fig. 17. An example of machine loads fallen out of the control limits but is not an idle machine 

 
After determining the parts routes (see Fig. 13) and each machine load (see Fig. 14) and calculating the 
formula presented in Equation 32, each value must be analyzed to identify whether the machine is idle 
or over-loaded. Moreover, whether or not the achieved value should be considered noise due to product 
demands is investigated as well. To determine machine load variation in experiment 1, the results derived 
from Table 9 are analyzed further. Table 11 indicates the number of machine loads for each machine 
type for the first period in the final solution. For instance, machine type 1 in first cell has a load of 70. 
This cell contains two type 1 machines (see Fig. 12), therefore, the loads on machine type 1 can be 
averaged as 35 (70/2). 
 
Table 11 
Results of machine loads in first period of final solution of the experiment 1 

Loads/ Machines (t=1) 
C1 C2 

M1 M2 M3 M1 M2 M3 

Number of loads 70 38 0 169 80 210 

Maximum load 35 15 0 35 25 35 

loading average 35 12.67 0 28.16 20 35 

The control limit lines for each machine type in the second period of the final solution are calculated 
according to the findings regarding machine loads in each cell (Table 12). These results are then 
considered in drawing a control chart for each machine type and in determining idle or over-allocated 
machines in a cell (Fig. 18). 
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Table 12 
Control limits for each machine type in best observed solution for the experiment 1 

Control Limits 
t=1 t=2 

M=1  M=2  M=3  M=1  M=2  M=3  

U.C.L 45.89 31.55 35.00 45.98 34.11 35.00 

L.C.L 10.44 8.45 35.00 4.02 22.56 35.00 

 
Fig. 18 indicates that all of the charts are within the control limits in the final layout. We assumed that 
𝑘𝑘 = 1 when drawing the charts. As discussed previously, parameter 𝐾𝐾 is dependent on the product 
demands, number of machines, and batch sizes. This parameter can be set by a decision maker. 
 

   

   
 

Fig. 18. Control charts for machine-loads in final result of the experiment 1 
 
The final layout can be analyzed further. Table 13 presents the analysis of the solved experiment. In CMS 
studies, bottleneck products are products that must visit machines located in different cells. The 
development of bottleneck parts is attributed to many reasons in literature, including technical problems 
in machine relocation, safety problems, and the existence of a unique machine type in one cell. In this 
research, the restricted machine capacity in one cell can force materials to transfer to other cells for 
visiting parallel machines. The numbers of intercellular material movements are 3 and 5 in first and 
second planning periods, respectively; these numbers represent the number of bottleneck products. The 
amount of backorders in the second period is zero, which is in accordance with the problem assumptions 
in Section 3.1. 
 
Table 13  
Results of analyzing best observed layout for experiemnt number 1 

 Metrics t:1 t:2 
Number of Machine Loads 567 562 
Percentage of existed exceptional elements 0 0 
Number of observed voids after scheduling 1 1 
Amount of outsourcing 188 60 
Amount of backorders 8 0  
Number of intercellular movements 3 5 
Number of intracellular movements 16 14 
Number of observed part routings 35 28 
Number of bottleneck machines 0 0 
Maximum machine load variation 0 0 
Maximum cell load variation 0 0 
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5.2 Other Experiments 
 
In this section, 17 experiments are solved with data gathered from literature. Our findings demonstrate 
that in all investigated cases, the GA can provide high-quality solutions (Table 14). Fig. 19 shows the 
process of optimizing fitness function value over generations in some of the experiments. A negative 
slope in the trend lines highlights the high system cost minimization performance of the proposed GA. 
In Fig. 14, the underlying line shows the minimum solution in each generation while the upper line 
represents the average fitness function values observed in a similar generation. The trend line illustrates 
how the GA can escape from local optima through mutation and local optimum escaping operators.  
 

 
Fig. 19. Results of Fitness Function Trend Lines for Examples 11, 12 & 16 of table 14 (respectively) 

Table 14  
Comparing Results of Lingo 12.0 and the proposed GA for solving a number of experiments2 
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(i/j/s/k/t) Gen Pop.size Best 
solution 

CPU  
Time Itr. ** Best 

solution 
CPU  
Time 

1 2/2/2/2/3 96 50 50 58500 3.15 67 58500.0 2.87 0.000 0.880 0.960 0.500 0.460 
2 2/2/2/2/5 160 75 50 191700 5.57 553 191700.0 3.13 0.000 0.960 0.860 0.580 0.640 
3 2/2/2/2/7 224 100 75 274800 9.39 447 274800.0 6.20 0.000 1.013 0.893 0.467 0.680 
4 2/2/2/2/9 288 100 120 362500 17.04 167 362500.0 10.33 0.000 0.992 1.066 0.542 0.417 
5 4/3/3/2/3 432 150 200 10940 75.20 456 11940.0 65.02 8.375 3.040 2.985 2.520 2.460 
6 4/3/3/2/5 720 150 200 31032 100.86 398 34172.0 78.03 9.189 3.095 2.935 2.525 2.505 
7 4/3/3/2/8 1152 250 200 62932 379.43 606 63640.0 240.32 1.113 3.065 3.070 2.525 2.460 
8 6/4/4/3/3 1728 200 200 675281 388.56 887 684034.5 

 
411.80 

 
1.280 8.150 7.895 3.260 3.465 

9 6/4/4/3/5 2880 150 200 391570 499.12 1230 394079.5 482.63 0.637 8.390 8.225 3.070 3.235 
10 6/4/4/3/7 4032 200 150 486840 714.73 1779 551819.5 

 
693.22 

 
11.775 8.113 7.700 3.387 3.327 

11 6/4/4/3/10 5760 250 300 689630 182.71 2916 689736.0 224.03 0.015 8.023 7.790 3.353 3.467 
12 7/3/3/3/3 1134 200 200 761085 140.02 589 918925.0 89.43 17.177 3.920 3.990 2.375 2.265 
13 7/3/3/3/5 1890 200 200 75862 155.34 940 84811.30 141.67 10.552 3.965 4.075 2.370 2.300 
14 7/3/3/3/7 2646 200 250 109040 189.25 1100 117111.8 137.24 6.892 4.048 3.956 2.364 2.460 
15 7/3/3/3/9 3402 250 250 143080 393.57 1980 150133.4 411.73 4.698 3.968 4.036 2.412 2.328 
16 9/4/4/4/3 3456 250 250 473869 332.28 1700 486088.0 311.03 2.514 7.876 8.032 4.912 5.104 
17 9/4/4/4/5 5760 300 250 788780 427.41 3130 799458.0 395.22 1.336 7.840 8.232 5.108 4.636 
18 9/4/4/4/7 8064 300 250 110810 999.36 8064 1113641 822.64 0.498 8.056 8.056 4.892 4.788 
19 9/4/4/4/9 10368 300 250 141510 873.82 3889 1419174 937.06 0.287 8.036 8.176 4.972 4.784 
20 12/4/4/3/3 3456 250 250 404530 544.78 1431 409547.2 

 
465.32 

 
1.225 8.0280 7.9920 6.4920 6.6320 

21 12/4/4/3/5 5760 300 300 534034 837.84 3109 
 

539466.9 
 

826.17 
 

1.007 8.1960 8.0560 6.5120 6.4200 
22 12/4/4/3/7 8064 300 300 750620 578.51 4684 938647.2 651.71 20.032 8.0833 7.8000 6.6133 6.8233 
23 15/4/4/5/3 7200 300 250 442680 561.32 7200 462412.3 

 
732.08 

 
4.267 9.820 9.433 2.927 2.980 

24 15/4/4/5/5 12000 300 250 753750 808.79 5319 765911.0 
 

939.89 
 

1.588 9.756 9.736 2.768 3.060 
25 15/4/4/3/7 10080 300 300 106050 923.93 5370 1068340 872.65 0.734 9.557 9.660 2.970 2.997 
26 15/4/4/3/9 12960 300 300 135850 844.23 6644 1362692. 1022.53 0.308 7.8920 7.9680 8.3720 8.5440 

*Number of  Integer  Variables 
**Number of Iterations 

***Mean of Initial Period  Movements 
****Mean of Last Period Movement 

 

Results in Table 14 shows that for small and medium size problems GA takes more time to achieve the 
final solutions but for large scale problems the proposed GA can provide better solutions in less 
computation time. In addition, in all medium and large scale problems GA can provide solutions with 
better quality. To compare the outcomes of GA and Lingo 12.0 for the proposed method, a single way 

2. In order to get dataset readers can email to the first author of this research. 
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ANOVA is done using Minitab® 17.0 software. The results show that in the confidence level of 95%, 
the proposed GA can provide results with better quality (Fig. 20).  

  

Fig. 20. Results of One way ANOVA for comparing the mean of GA and Lingo 12.0 (α=0.05) 

In this section the results of solving the experiment number 6 in table 14 with Lingo 12.0 and GA are 
explained in details. 

Local optimal solution found.  ans =    
Objective value: 34172.00 2.5250 2.6200 2.4000 2.5100 
Objective bound: 34172.00     
Infeasibilities:  0.000000     
Extended solver steps: 0 ans =    
Total solver iterations: 398 3.0950 3.0100 3.0500 2.8800 
      
Model Class: PINLP ans =    
      
Total variables: 720  31.032   
Nonlieanr variables: 720     
Integer variables: 720     
Total constraints:  856     
Nonlinear constraints 721  Elapsed time is 100.858822 seconds. 
Total nonzeros: 3530     
Nonlinear nonzeros: 1800 

 
    

 
Fig. 21. Results Observed for case study number 6 solved 
with Lingo 12.0 (medium size problem) 

 
Fig. 22. Results Observed for case study 
number 6 solved with the Proposed GA 

(medium size problem) 
 

As shown in Fig. 21, the Lingo 12.0 was able to find the local optimum solution. Fig. 22 in contrast 
shows the results of the proposed GA. the first 2 rows in this figure show the average of intercellular and 
intracellular movements for completing one product of each product type in final solution. The rest of 
the results are compared in Table 15. Hence for the rest of the research only results of GA will be 
represented and explained. 
 

Table 15  
Comparing results of Lingo 12.0 and GA for a medium size problem 

 Metrics GA Lingo 12.0 
Objective Function 31032 34172.0 
CPU time 100.86 78.03 
Number of Variables 720 720 
Average of Inter cellular movements per batch 8.54 - 
Average of Cellular Movements per batch 7.96 - 
Number of observed voids 0 1 

 
The results of the solving all experiments without control limits show that demands for dynamic parts 
can disrupt material transfer fluency (parts routes).  
 

Best_observed_cellposition( : , : , 1 , 3) =   
 
 

Best_observed_X (:, : , 1 , 3) = 
 

1 4 2 3 0 0  60 62 60 26 0 0 
1 3 3 4 0 0  96 36 58 122 0 0 
1 2 4 4 0 0  92 212 182 120 0 0 
2 1 3 2 0 0  26 292 26 148 0 0 
3 2 3 4 0 0  0 74 34 134 0 0 
             

Best observed cellposition( : , : , 2 , 3) =   Best observed X (:, : , 2 , 3) = 
 0 0 0 0 0 0  0 0 0 0 0 0 

0 0 0 0 0 0  0 0 0 0 0 0 
0 0 0 0 0 0  0 0 0 0 0 0 
0 0 0 0 0 0  0 0 0 0 0 0 
0 0 0 0 0 0  0 0 0 0 0 0 

 
Fig. 23. Emerging complex dummy sub-cells after scheduling in a CMS 
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Additional short-distance intra-cellular routes are generated by increasing the number of products or 
product demands. As a result, the number of bottleneck machines increases, whereas other parallel 
machines remain idle. As per a comparison of the numbers of inter- and intra-cellular movements, intra-
cellular WIP movements increased in the time horizon in 53.8% of the studied cases under dynamic parts 
demand. Although such movements may be useful and may reduce material transfer costs, these 
movements may induce cell load variation. This variation is concisely called “complex dummy sub-cells”. 
This phenomenon emerges as a consequence of increasing the setting of short-cut distances in material 
transfer on parts routes that enhance cell load variation. Fig. 23 presents the “complex dummy sub-cells” 
as a CMS output. The sub-cells do not follow a specific rule and may emerge in any area in a cell 
depending on the arrangements of the machines and on the parts routes scheduled on the machines. This 
phenomenon illustrates the tendency of systems to allocate WIPs to a set of machines that are located 
contiguously. Parallel machines in the same cell are located farther away and remain idle. To examine 
the level of cell sensitivity to “dummy complex sub-cells,” a metric is developed on the basis of the 
neighborhood radius of the WIPs. 
  
5.3 Proposing a System Entropy Metric for Calculating Cell-load variation: 
 
In small layouts, dummy sub-cells are easily recognized by the naked eye. However, these cells are 
difficult to identify as they grow in number or size. Hence, a mathematical metric must be used. To 
investigate the effect of uncertain product demands on cell load variation, a mathematical metric is 
developed that operates on the basis of tracking material transfer between and within each cell in the 
planning horizon. The metric can indicate the possibility of existing dummy sub-cells in a region with 
neighborhood radius 𝑆𝑆. 
 

𝐵𝐵𝐷𝐷𝑆𝑆𝐵𝐵𝑝𝑝,𝑞𝑞 = (�𝑀𝑀(𝑝𝑝,𝑞𝑞),𝑗𝑗,𝑘𝑘,𝑡𝑡� �
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑛𝑛𝑏𝑏−𝑙𝑙𝑙𝑙𝑀𝑀𝑙𝑙𝑗𝑗,𝑘𝑘,𝑡𝑡

∑ 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑛𝑛𝑏𝑏−𝑙𝑙𝑙𝑙𝑀𝑀𝑙𝑙𝑗𝑗,𝑘𝑘,𝑡𝑡
𝐾𝐾
𝑘𝑘

> 𝑋𝑋�𝑗𝑗,𝑘𝑘,𝑡𝑡 + 𝑘𝑘𝑆𝑆𝑗𝑗,𝑘𝑘,𝑡𝑡
2� ;  ∀ 𝑗𝑗 ∈ (𝑆𝑆 − 1 ≤ 𝑝𝑝 ≤ 𝑆𝑆 + 1 ,𝑆𝑆 − 1 ≤ 𝑞𝑞 ≤ 𝑆𝑆 + 1 ));𝑘𝑘, 𝑡𝑡� (33) 

 

where 𝑀𝑀𝑝𝑝,𝑞𝑞,𝑗𝑗,𝑘𝑘,𝑡𝑡 is machine type j that is placed in row 𝑝𝑝 and column 𝑞𝑞 of cell 𝑘𝑘 during period 𝑡𝑡. 𝑋𝑋�𝑗𝑗,𝑘𝑘,𝑡𝑡 is 
the average machine load on machine type j in cell k during period t. 𝑆𝑆𝑗𝑗,𝑘𝑘,𝑡𝑡 is the standard deviation of 
machine type j. R is the neighborhood radius that shows the cubic area around each center point (𝑝𝑝, 𝑞𝑞). 
Fig. 24 depicts an example of dummy sub-cell recognition in the first period of the final solution for 
experiment 8 while the machine loads are not controlled using control limits. 
 

 
Cell-position Matrix  Machine Load Matrix  

Over allocated machines and 
Complex Dummy Sub-Cells 

C1 
4 0 0 1  5 0 0 35  0 0 0 0 

4 2 0 0  5 24 0 0  0 24 0  

1 2 4 4  21 20 0 5  0 0 0 0 

2 2 1 0  10 5 59 0  0 0 59 0 

0 4 0 4  0 20 0 10  0 20 0 0 

 
              

c2 
2 3 1 3  24 77 75 89  0 0 0 0 

5 2 1 5  150 39 84 150  0 0 84 0 

5 4 3 1  150 20 117 61  0 0 117 0 

3 2 4 3  58 34 25 69  0 0 25 0 

5 4 1 2  150 20 75 3  0 0 0 0 

Fig. 24. Results of 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒑𝒑,𝒒𝒒 Equation for first period in final solution of experiment number 8 

The formula above is used in a macro program of MATLAB 2009. This macro works based on the set 
center point, the considered cubic block around the center point and all of the recognized sets of machines 
that are over-allocated in this area given the relations defined in MCIM. If the algorithm detects an 
overloaded machine in the cell, then all of the processes mentioned earlier are repeated to increase R 

 



A. Delgoshaei et al. / International Journal of Industrial Engineering Computations 7 (2016) 
 

107 

values until all members of the complex sub-cells are recognized. The outcome is the set of over-allocated 
machines located nearby. 
Table 16  
Observed dummy sub cells in the solved experiments 
No. t=1 t=2 t=3 t=4 t=5 
1 - - - - - 
2 {1,2} {2,5} {1,7} {2,6} - 
3 - - - - - 
4 {10,12} {7,12,16} - - - 
5 {8,9,,19} {3,8,14,18,19} {4,8,13,19} {4,8,9,12,19} - 
6 {12,13,17,18} {7,10,12,13} - - - 
7 {21,27,28} - - - - 
8 {23,32,34,35} {4,12}; {22,28,31} {4,13,18} {7,12}; {23,29} - 
9 {1,2,4,11}; {34,36} {1,8,19};{34,36} {5,6};{26,28}  - 
10 {7,11};{28,29} {7,9,10} {9,11};{26,29} - {9,10,12,14};{26,29} 
11 {5,11,12} - {2,3} {3,15,24}  
12 - - - - - 
13 - - - - - 
14 - - - - - 
15 - - {6,7} {5,8,11} - 
16 - - - - - 
17 {18,23,26} {22,25} - - - 
 
The use of this algorithm can help a decision-maker consider complex dummy sub-cells in cubic blocks 
of various sizes. For example, the dummy sub-cell block of over-allocated machines can be identified as 
highlighted in Fig. 24 in the second cell of experiment 8 when neighborhood radius (R) 1 is considered. 
However, if we assume that R = 1 for the first cell of experiment 8, then each over-allocated machine 
cannot identify other nearby over-allocated machines. Instead, if R is assumed to be 2, then a dummy 
complex can be recognized as illustrated in Fig. 24. The remaining dummy sub-cells in the solved cases 
are presented in Table 16. As shown although in all cases, the proposed method found the minimum total 
system cost (which contains feasible part routes) but in many cases dummy sub-cells emerged which can 
be considered as a reason for increasing cell load variation. Afterward, the experiments are run once 
again considering the mentioned control limits during the part routing process in each stage. The results 
that are shown in the Table 17 indicate that the proposed method can effectively avoids machine load 
variation in all experiments. 
 
Table 17 
Results of Solving Numerical Examples Gained from the Literature 

Sc
al

e 

No. Problem Source K I m j L T C.S NOP d(i,t) 
GA Results 

BD EE Vo. MLV CPU time 
(Seconds) Gen Pop.size Mu Total System Cost 

Sm
al

l S
iz

e 

1 Askin & Huang (2001) 2 2 2 2 2 4 8 [2 4] d~N(300,50) 50 100 0.1 4454 2 0 0 0 7.55 
2 Askin & Huang (2001) 2 2 4 2 2 4 20 [3 6] d~N(400,80) 50 100 0.1 6304 1 0 0 0 11.73 
3 Suer & Cedeno (1996) 1 4 4 4 4 4 15 [3 2 3 2] d~N(300,100) 50 100 0.1 19550 2 1 3 0 9.61 
4 Mahdavi et al. (2010) 2 4 4 4 4 2 20 [4 5 3 6] d~N(300,100) 100 100 0.1 20300 1 0 0 0 27.24 
5 Mahdavi et al. (2012) 2 4 4 4 4 4 16 [4 3 6 5] d~N(220,80) 100 100 0.1 17090 1 0 0 0 78.13 
6 Aryanezhad et al. (2009) 3 3 3 3 3 3 20 [5 4 5] d~N(300,100) 100 100 0.1 17360 2 0 0 0 27.27 

M
ed

iu
m

 S
iz

e 

7 Askin & Huang (2001) 8 2 2 2 2 4 4 [14 6] d~N(500,150) 200 200 0.1 1970 5 0 0 0 13.77 
8 Askin & Huang (2001) 8 2 2 2 2 4 4 [8 8] d~N(200,100) 200 200 0.1 3170 5 0 1 0 12.81 
9 Aryanezhad et al. (2009) 4 5 5 5 5 4 12 [2 4 3 4 4] d~N(500,170) 250 300 0.1 11690 2 1 2 0 15.38 
10 Li et al. (2012) 2 5 5 5 5 4 15 [3 5 4 2 3] d~N(400,200) 150 200 0.1 27510 2 1 1 0 107.5 
11 Mahdavi et al. (2010) 2 6 6 6 6 3 20 [5 4 3 6 5 4] d~N(300,75) 200 200 0.1 17800 2 0 1 0 71.74 
12 Mahdavi et al. (2012) 2 5 5 5 5 4 15 [7 8 5 9 4] d~N(300,150) 150 200 0.1 51666 2 2 2 0 227.94 
13 Norman et al. (2002) 2 6 6 6 6 5 14 [3 5 2 4 3 4] d~N(500,200) 200 200 0.1 11190 2 1 0 0 107.37 
14 Askin & Huang (2001) 2 8 6 6 8 4 30 [3 2 2 3 2 3] d~N(500,140) 200 200 0.1 12610 2 0 1 0 102.78 

La
rg

e 15 Askin & Huang (2001) 2 8 8 8 8 4 20 [2 4 3 5 4 3 2 4] d~N(350,75) 200 200 0.1 20765 2 0 1 0 212.43 
16 Aryanezhad et al. (2009) 5 5 5 5 5 5 30 [4 3 4 3 3] d~N(200,100) 300 300 0.1 11235 2 0 1 0 64.62 
17 Aryanezhad et al. (2009) 5 4 5 5 4 4 8 [4 3 4 3 3] d~N(500,150) 300 300 0.1 11370 2 1 2 0 120.83 

Mu: Mutation rate     BD: Block Diagonals   EE: Exceptional Elements    Vo.: Voids    MLV: Machine load variation 
 
* While gathering data in each case, the authors endeavored to use applicable data as much as possible. We generated the remaining data needed for solving problems that did not 
appear in each case. 
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6. Conclusion 
 
This paper has proposed a new method for determining the best tradeoff values between in-house 
manufacturing and outsourcing in a restricted capacity D-CMS. The effect of uncertain market demands 
on D-CMS has been analyzed, and the findings have revealed that uncertain product demands could 
aggravate disruption in material transfer routes. This increase facilitates increasing machine load 
variation and generation of complex dummy sub-cells. As discussed, the existence of complex dummy 
sub-cells establishes bottleneck machines, whereas other parallel machines remain idle. It is shown that 
the market changes have significant impact on machine loads in cellular manufacturing systems and can 
cause cell-load variations in 47% of the studied cases. 
 
To control the cell load variation a new controlling method is used during the process of part routing of 
products. Using this method, parallel machines in a cell will be allocated not more than an upper control 
limit that is calculated using the mean and standard deviation of a specific machine type in a cell. Such 
method can prevent over loading a machine while other parallel machines are remained idle or less 
allocated.  
 
Since the medium- and large-scale D-CMS problems cannot be solved using regular optimizing methods, 
to use the proposed cell-load variation controlling method, a GA is proposed. In the first step in order to 
verify the GA, the outcomes of the GA and Lingo 12.0 are compared using 26 case studies. Although 
both algorithms reported the same results for small size problems but for medium and large scale 
problems, the GA can provided solutions with better quality. In continue 17 datasets that are gathered 
from the literature have been solved. Then the outcomes have been analyzed using a metric that are 
developed to calculate the machine load variation in cells. The results have shown that the proposing 
method could significantly control the machine load variation for all machine types and sub consequently 
avoids cell load variation in all studied cases. Future studies can investigate the effects of complex 
dummy sub-cells on maintenance costs. 
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