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 In the existing literature, there are a huge number of studies focused on p-hub median problems 
and inventing heuristic or metaheuristic algorithms for solving them. But such analogous body 
of literature does not exist for its counterpart problem; p-hub center problem. In fact, since p-hub 
center has been lately introduced and has a particular objective function, minimizing the 
maximum cost between origin-destination nodes, there are few studies investigating the problem 
and the challenges for solving it. In this study, after presenting a complete definition of the 
uncapacitated multiple allocation p-hub center problem (UMApHCP) two well-known 
metaheuristic algorithms are proposed to solve the problem for small scale and large scale 
standard data sets. These two algorithms are one single solution-based algorithm, Simulated 
Annealing (SA), and one population-based metaheuristic, Genetic Algorithm (GA). Because of 
the particular nature of the problem, Dijkstra’s algorithm has been incorporated in the fitness 
function calculation part of the proposed methods. The numerical results of running the GA and 
SA for standard test problems show that for smaller scale test problems, single solution-based 
SA shows greater performance versus GA but for larger scales of data sets the GA generally 
yield more desirable solutions. 
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1. Introduction  
 
In some networks, for example, telecommunication or transportations systems, there exist many nodes 
whose flows should depart from one origin node and arrive in a destination node. Since establishing a 
direct link between every pair of nodes needs considerable investments and is financially inefficient, 
some nodes are chosen as hubs, which operate as switching, transshipment and sorting centers and the 
flow of every node is conveyed to destination points through these nodes.  
 
The problem of optimally locating these hubs and allocating demand nodes to them is called hub location 
problem. There are two basic types of hub networks: single allocation and multiple allocations. Their 
difference is in the way of allocating non-hub nodes to hub centers. According to Alumur and Kara 
(2008)  “In single allocation, all the incoming and outgoing traffic of every demand center is routed 
through a single hub; in multiple allocation, each demand center can receive and send flow through more 
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than one hub.”. Fig. 1 shows the mentioned difference of single allocation and multiple allocation hub 
networks. 
 

 

 

 

 

 

 

 

 

Fig. 1. A single allocation (left hand side) and multiple allocation (right hand side) hub network 
 
The p-hub center problem is a well-known NP-hard problem (Kara & Tansel, 2000) which was firstly 
introduced and formulated by Campbell (1994). It is worth noting that it is a minimax type problem and 
is similar to the p-center problem. Campbell (1994) categorized this problem into three different types: 
 

• The maximum cost for movement on any single link (origin-to-hub, hub-to-hub and hub-
to-destination) is minimized. 

• The maximum cost of movement between a hub and an origin/destination is minimized 
(vertex center). 

• The maximum cost for any origin–destination pair is minimized. 
 
When a hub system involves perishable or time sensitive items and because of that time is really 
important, we can replace cost with time and in such cases the first type of p-hub center problem becomes 
important. An example of the second type of p-hub is the vehicle drivers that are subject to a time limit 
on continuous service. Similar examples to the second type can be given for the third type problem, 
considering that hub-to-hub links may have some particular characteristics. Campbell (1994) presented 
formulations for both single and multiple allocation versions of the all three types of p-hub center 
problem mentioned above. 
 
Based on the results of the study of Alumur and Kara (2008), the total number of papers on the p-hub 
center problem is very few compared with other hub models. The main reason is that these problems are 
proposed in 1994 and remain untouched until 2000. However, in the last decade this indicator is growing 
and the research community is giving more and more attention to the problem. 
 
Kara and Tansel (2000) studied the computational aspects of the single-assignment p-hub center problem 
on the basis of Campbell’s first type model and their proposed model. As reported by the authors, the 
new model outperformed different linearizations of the basic model regarding CPU times. 
 

Ernst et al. (2009) developed a new formulation for the single allocation p-hub center problem. A new 
variable 𝑟𝑟𝑘𝑘 was defined to model the maximum collection/distribution cost between hub k and the nodes 
allocated to hub k. Their model for single allocation was as follows: 
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(1) Min     𝑍𝑍 
  subject to 

(2) ∀𝑖𝑖 �𝑋𝑋𝑖𝑖𝑘𝑘
𝑘𝑘

= 1 

(3) ∀𝑘𝑘 �𝑋𝑋𝑘𝑘𝑘𝑘
𝑘𝑘

= 𝑝𝑝 

(4) ∀𝑖𝑖, 𝑘𝑘 𝑟𝑟𝑘𝑘 ≥ 𝐶𝐶𝑖𝑖𝑘𝑘𝑋𝑋𝑖𝑖𝑘𝑘 

(5) ∀𝑘𝑘,𝑚𝑚 𝑍𝑍 ≥ 𝑟𝑟𝑘𝑘 + 𝑟𝑟𝑚𝑚 + 𝛼𝛼𝐶𝐶𝑘𝑘𝑚𝑚 

(6) ∀𝑖𝑖, 𝑘𝑘 𝑋𝑋𝑖𝑖𝑘𝑘 ≤ 𝑋𝑋𝑘𝑘𝑘𝑘 

(7) ∀𝑖𝑖, 𝑘𝑘 𝑋𝑋𝑖𝑖𝑘𝑘 ∈ {0,1} 

(8) ∀𝑘𝑘 𝑟𝑟 ≥ 0 
 

Baumgartner (2003) proposed a branch-and-cut algorithm by investigating the polyhedral properties of 
a formulation proposed by Ernst in an unpublished report and identified some facet-defining inequalities 
and defined separation procedures. Pamuk and Sepil (2001) addressed the p-hub center problem. They 
proposed the first heuristic for the single allocation p-hub center problem as a means of generating 
location-allocation strategies in a reasonable amount of time, and superimposed tabu search on the 
underlying algorithm, so as to decrease the possibility of being trapped by local optima. Kratica and 
Stanimirovic (2006) proposed a genetic algorithm with binary coding for the uncapacitated multiple 
allocation p-hub center problems. They constructed and implemented problem-specific genetic operators 
in their genetic algorithm. Yaman et al. (2007) analyzed the latest arrival hub location problem with 
stopovers and included the transient times, the time spent for unloading, sorting and loading at hubs in 
their model. Campbell et al. (2007) presented complexity results and IP formulations for several versions 
of the p-hub center allocation problem including both capacitated and uncapacitated cases and established 
that some special uncapacitated cases are solvable in polynomial times. 
 
Gavriliouk (2009) considered aggregated heuristic procedures for the hub location problems and 
calculated bounds for errors from such heuristics. Meyer et al. (2009) presented an exact 2-phase 
algorithm. In the first phase, a set of potential optimal hub locations was computed with a shortest path 
based B&B algorithm and in the second phase, allocation phase, the optimal allocations were computed 
accordingly. They also developed an ant colony optimization heuristic for the upper bound needed for 
the B&B. Sim et al. (2009) presented the stochastic p-hub center problem with chance constraints. To 
solve the problem, a two stage heuristic approach was also developed. Contreras et al. (2011) considered 
stochastic uncapacitated hub location problems with uncertain demands and transportation costs. They 
showed that if the uncertainty was associated with demands, the stochastic problem was equivalent to its 
expected value problem. On the contrary, if independent transportation costs were uncertain the 
corresponding stochastic problem would not be equivalent to its expected value problem and some other 
solution approaches were needed to be developed. Mohammadi et al. (2011a) considered a network with 
a central mine and a number of factories as customers, and tried to design and schedule transportation of 
raw material from the mine to its customers using a single allocation hub covering location problem. 
Afterward the problem was formulated as a mixed-integer programming formulation and two 
metaheuristics namely, genetic algorithm and shuffled frog leaping algorithm were developed. In another 
study, Mohammadi et al. (2011b) proposed a new model for capacitated single allocation hub covering 
location problem and developed a multi-objective imperialist competitive algorithm to solve the problem. 
Yaman and Elloumi (2012) introduced p-hub center and p-hub median problem with bounded path 
length. They proposed two integer programming formulations for the star p-hub center problem and three 
formulations for the star p-hub median problem. Furthermore, they strengthened the last formulation via 
specific clique inequalities and solved the considered instances to optimality within half an hour. After a 
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while, Liang (2013) analyzed the hardness of the star p-hub center problem. Bashiri et al. (2013) 
considered a number of qualitative parameters for the hub location problem and proposed a GA based 
heuristic to solve this problem under capacitated constraints. In order to deal with uncertainty and 
qualitative parameters, fuzzy systems were utilized. Yang et al. (2013b) proposed a hybrid particle swarm 
optimization algorithm for fuzzy p-hub center problem. In their problem travel times were considered to 
be uncertain and modeled by normal fuzzy vectors. In a similar study, Yang et al. (2013a) considered a 
fuzzy p-hub center problem with fuzzy travel times and developed a genetic algorithm with local search 
to deal with the problem. Hult et al. (2014) proposed a reformulation for the p-hub center problem when 
the uncertainty of travel times was considered. Then a number of exact solution approaches based on 
variable reduction were developed to solve small-medium sized problems to optimality. The literature is 
rich enough with high-quality reviews in the context of hub location problem. In 2012, Campbell and 
O'Kelly (2012) provided a comprehensive review on hub location problems and discussed the present 
status of the literature. They also explored the shortcomings of the literature and suggested future research 
directions. A short after, Farahani et al. (2013) provided a latest review of models, classification, solution 
techniques and applications of hub location problems. To provide a concise overview of the literature 
review, the paramount feature of each studies mentioned above are encapsulated in Table 1. 
 
Table 1  
p-Hub center literature 

Year Authors Notes 
1994 Campbell (1994) Different types of p-hub center formulations 
2000 (Kara & Tansel, 2000) Various linear formulations for single allocation 
2001 (Pamuk & Sepil, 2001) Heuristic for the single allocation problem 
2003 (Baumgartner, 2003) Polyhedral properties, valid inequalities and branch-and-cut algorithm 
2007 (Yaman et al., 2007) Latest arrival hub location problem with stopovers 
2006 (Kratica & Stanimirovic, 

2006) 
GA for the uncapacitated multiple allocation problem 

2007 (Campbell et al., 2007) Complexity results and formulations for the allocation subproblem 
2009 (Gavriliouk, 2009) Heuristic procedures based on aggregation 
2009 (Meyer et al., 2009) Optimal hub locations using a shortest path based B&B and optimal allocations 

based on reduced size allocation; and ant colony optimization heuristic 
2009 (Sim et al., 2009) Stochastic p-hub center problems with chance constraints 
2009 (Ernst et al., 2009) Proposing integer programming formulations for both single and multiple 

uncapacitated hub center problems and developing a branch-and-bound approach 
for the multiple allocation case 

2011 (Contreras et al., 2011) Stochastic uncapacitated hub location problem by considering uncertain demands 
and transportation costs 

2011 (Mohammadi et al., 2011a) A two-stage capacitated single allocation hub covering location problem is 
considered and two metaheuristics namely, GA and Shuffled Frog leaping 
algorithm are proposed 

2011 (Mohammadi et al., 2011b) A new model for the capacitated single allocation hub covering location problem 
is proposed and a multi-objective imperialist competitive algorithm is applied 

2012 (Campbell & O'Kelly, 2012) A review of the hub location research is provided and the current status of the 
literature is discussed. 

2012 (Yaman & Elloumi, 2012) star p-hub center and star p-hub median problems with bounded path lengths are 
introduced. 

2013 (Bashiri et al., 2013) A fuzzy capacitated p-hub center problem is introduced and a genetic algorithm 
solution is presented. 

2013 (Farahani et al., 2013) A comprehensive survey of hub location problems is presented. 
2013 (Liang, 2013) The hardness of star p-hub center is analyzed. 
2013 (Yang et al., 2013b) A hybrid particle swarm optimization problem for p-hub center problem is 

developed. 
2013 (Yang et al., 2013a) Fuzzy p-hub center problem is considered and a hybrid metaheuristic consisting 

of a local search incorporated into a GA is proposed. 
2014 (Hult et al., 2014) For a stochastic uncapacitated single allocation p-hub center problem a number 

exact computational approaches are developed. 
2014 (Yang et al., 2014) Optimization of a fuzzy p-hub center problem with generalized value-at-risk 

criterion is considered. 
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In this study, our focus is on the p-hub center problem which is a minimax type problem and has the 
number of hubs as an exogenous parameter and previously determined p. The problem considered here 
is of multiple allocation type problems. Since the problem could be modeled as a graph, where the nodes 
represents the origin/destination or prospective location and edges represent the linkages between the 
nodes with weights denoting distances (or costs), Dijkstra’s algorithm could be successfully used in order 
to find the shortest path from each node to any other node. Having the information obtained from running 
Dijkstra’s algorithm once for each node, one can minimize the maximum length between any 
origin/destination nodes by incorporating this algorithm into a heuristic or metaheuristic method. 
Achieving this aim is exactly equivalent with solving a UMApHCP.  
 
Hence, in essence, the objective of this study considering the literature provided above, is to propose 
well-qualified metaheuristic methods for solving the UMApHCP, improve the existing GA in the 
literature, develop SA for the first time for solving the problem and compare the results of the two 
algorithms for both small-scale and large-scale data sets. The rest of the paper is organized as follows: 
In section 2, the problem formulation is presented. In section 3, the proposed algorithms are explained in 
detail. The numerical experiments are illustrated in section 4. Finally, the concluding remarks are drawn 
in section 5. 
 
2. Problem definition 

The p-hub center multiple allocation problems is to allocate each non-hub node to one or more hubs such 
that the maximum travel time between any o–d pair is minimized. It is clear that the multiple allocation 
problems will have an objective function value no larger than that of the single allocation problem since 
the unique allocation constraints are relaxed in the multiple allocation problems. Thus, the solution to a 
multiple allocation problem can be used as a lower bound for solving a single allocation problem. Here, 
the model developed by Ernst et al. (2009) is presented. 

Min     𝑧𝑧 (9) 

�𝑧𝑧𝑘𝑘

𝑛𝑛

𝑘𝑘=1

= 𝑝𝑝 (10) 

� � 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑛𝑛

𝑘𝑘=1

= 1,       𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 (11) 

�𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚

𝑛𝑛

𝑘𝑘=1

≤ 𝑍𝑍𝑚𝑚           𝑖𝑖, 𝑗𝑗,𝑚𝑚 = 1, … ,𝑛𝑛 (12) 

� 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚

𝑛𝑛

𝑚𝑚=1

≤ 𝑍𝑍𝑘𝑘           𝑖𝑖, 𝑗𝑗,𝑘𝑘 = 1, … ,𝑛𝑛 (13) 

𝑧𝑧 ≥ � � 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚

𝑛𝑛

𝑚𝑚=1

(𝑐𝑐𝑖𝑖𝑘𝑘 + 𝛼𝛼𝑐𝑐𝑘𝑘𝑚𝑚 + 𝑐𝑐𝑚𝑚𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

,       𝑖𝑖, 𝑗𝑗 = 1, … ,𝑛𝑛 (14) 

𝑍𝑍𝑘𝑘 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚 ∈ {0,1}       𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝑚𝑚 = 1, … ,𝑛𝑛 (15) 
 

Constraint (10) indicates that exactly p hubs are chosen. Constraint (11) together with (15) shows that 
there is a unique path between each origin–destination pair. Constraints (12) and (13) imply that a node 
must be selected to be a hub if another node is allocated to it. Constraint (14) defines the lower bound 
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for the objective function z, which represents the maximum transportation cost between all origin–
destination pairs. 

3. Proposed methods 

Based on the results of the study of Alumur and Kara (2008), the total number of papers on the p-hub 
center problem is very few compared with other hub models. The main reason is that these problems are 
proposed in 1994 and remain untouched until 2000. These problems are a fairly new research area and 
there is still a lot of ground to cover; there is a need to develop more exact solution procedures and 
heuristic algorithms for these problems. To the best knowledge of authors, application of metaheuristics 
in p-hub center problems is very limited and has not well been studied. Therefore, in this section we 
propose two metaheuristics for solving UMApHCP; simulated annealing and genetic algorithm.  
 

Because of the nature of the problem and its objective function, which makes it different from p-hub 
median problems, a special procedure is needed to calculate the fitness function. This procedure is based 
on Dijkstra’s algorithm to find the maximum distance between every origin-destination pairs that is the 
amount of objective function value. Since the problem could be modeled as a graph, where the nodes 
represents the origin/destination or prospective hub location and edges represent the linkages between 
the nodes with weights denoting distances (or costs), Dijkstra’s algorithm could be successfully used in 
order to find the shortest path from each node to any other node. Having the information obtained from 
running Dijkstra’s algorithm once for each node, one can minimize the maximum length between any 
origin/destination nodes which is exactly equivalent with solving an UMApHCP. 

3.1. Genetic Algorithm 

Before explaining the main steps of the proposed GA, it is worth mentioning that it is not the first GA 
implemented for solving UMApHCP. Kratica and Stanimirovic (2006) proposed an efficient GA for the 
problem and reported the numerical results. The aim of this paper, in addition to improve the performance 
of their proposed GA, is comparing the performance of a population-based algorithm (GA) and a single 
solution-based algorithm (SA) while the fitness function calculation procedure operates based on 
Dijkstra’s algorithm.  
 

The pseudo code of the Dijkstra’s algorithm is illustrated in Fig. 2 to provide the respected reader with a 
general view of the algorithm. The obtained results of the SA and GA will guide the respected reader to 
suitably choose between these two different categories of metaheuristics for coping with different real 
size problems of UMApHCP. Pseudo code for the proposed GA is presented in the following: 

 STEP 1: Generate Npop random solutions. 

STEP 2: Calculate fitness function for each solution 

In this step a Dijkstra’s algorithm is implemented to calculate the fitness of each solution. 
(The Dijkstra’s pseudo code is shown in Fig. 2). For each solution, Dijkstra’s algorithm 
is run by number of genes times. For example, if a chromosome has n genes (number of 
nodes) Dijkstra’s algorithm will be run n times for that solution in order to calculate the 
minimum distance of every node from other nodes. The maximum of these distances is 
regarded as the fitness function of that solution and the goal of the GA is minimizing it. 

 STEP 3: Sort the solutions based on their fitness values. 

 STEP 4: Move the elitist solution to the new generation 
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STEP 5: Select good solutions by Tournament selection method and crossover a fraction of 
them and move to the new generation 

STEP 5: Mutate a number of solutions and transfer them to the new generation. 

STEP 6: Check if the termination criteria are met. If so, terminate the algorithm otherwise, go to 
STEP 2. 

                                Function Dijkstra (Graph, Source): 
 
                                                 for each vertex v in Graph:  
                                                           dist[v] := infinity; 
                                                           previous pv[ := undefined; 
                                                 end for; 
 
                                                 dist[Source] :=0; 
                                                 Q := the set of all nodes in graph; 
                                                  
                                                While Q is not empty:  
                                                                u := vertex in Q with smallest distance in dist []; 
                                                                if dist [u] = infinity: 
                                                                                  break; 
                                                                endif; 
 

                                                                remove u from Q; 
 

                                                                for each neighbor v of u: 
 

                                                                               alt := dist [u] + dist_between(u, v); 
                                                                               if alt < dist [v]: 
                                                                                              dist[v] := alt; 
                                                                                              previous [v] := u; 
                                                                                              decrease-key v in Q; 
                                                                               end if; 
                                                                end for; 
                                               end while; 
 

                                      return dist[]; 
                                  end Dijkstra. 
 

Fig. 2. Dijkstra's algorithm pseudo code (Taken from contributors (2014)) 
 

3.1.1. Solution representation 

In this GA implementation the binary encoding of individuals is used. Each solution is represented by 
the binary string of length n. Gene 1 in the genetic code denotes that particular hub is established, while 
0 shows it is not. Since users can be assigned only to open hub facilities, only array 𝑧𝑧𝑘𝑘is obtained from 
the genetic code. 

3.1.2. Selection 

The selection method used in this paper is Tournament selection procedure. In tournament selection, a 
number Tour of individuals is chosen randomly from the population, and the best individual from this 
group is selected as parent. This process is repeated as often as individuals to choose. 
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3.1.3. Crossover operator 

The Crossover operator employed in the proposed GA is just like the operator employed by Kratica and 
Stanimirovic (2006). Here, the operator is elaborated in detail. Generally, crossover operator executes a 
swap between two random parts of a selected pair of parents producing two offsprings. However, because 
of the specific structure of the solution representation, where number of ones stands for number of hubs, 
this action will yield infeasible solution. To cope with the problem, Kratica and Stanimirovic (2006) 
proposed a modified version of the classical crossover operator. In this version, the operator is 
simultaneously tracing the genetic codes of the parents from right to left searching the position i on which 
the first parent has 1 and second 0. The individuals exchange genes on the found position (that is 
identified as crossover point), and similar process is performed starting from the left side of genetic 
codes. Operator seeks for the position j where the first parent is 0 and the other one is 1. Genes of the jth 
position are swapped while the total number of located hubs remains unaffected. The process is repeated 
until j ≥ i. 
 
3.1.4. Mutation Operator 

Each offspring produced by crossover operator is mutated only one time by probability of MutateRate. 
If a random number chosen uniformly between [0,1] is less than MutateRate, two genes, one with value 
1 and the other with value 0, are randomly selected from the chromosome and their values are exchanged. 
This Mutation procedure keeps the feasibility characteristics of the solutions. 

3.2. Simulated annealing 

Simulated annealing whose name come from annealing in metallurgy is a suitable probabilistic algorithm 
for finding the optimum value of a cost function that may have several local minima. This is a single 
solution based method that starts with an initial solution and searches the neighbors of that solution in 
each iteration by a local search mechanism. In fact, SA emulates the physical process of slowly cooling 
of a material to increase the size of its crystals and reduce their defects. One important advantage of using 
SA is its simple implementation. The pseudo code is really straightforward and the idea behind the 
algorithm could be easily understood. The pseudo code of the algorithm used in this paper is briefly 
presented below: 

𝑟𝑟 = 0,𝑇𝑇 = 𝑇𝑇0,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∅ 

𝐺𝐺𝐵𝐵𝑛𝑛𝐵𝐵𝑟𝑟𝐺𝐺𝐵𝐵𝐵𝐵 𝐼𝐼𝑛𝑛𝑖𝑖𝐵𝐵𝑖𝑖𝐺𝐺𝐵𝐵 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝐵𝐵𝑖𝑖𝐵𝐵𝑛𝑛 𝑋𝑋0 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑋𝑋0 

{𝑊𝑊ℎ𝑖𝑖𝐵𝐵𝐵𝐵 𝑟𝑟 < 𝑅𝑅 𝑑𝑑𝐵𝐵 (𝑂𝑂𝑠𝑠𝐵𝐵𝐵𝐵𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝) 

     𝑛𝑛 = 0 

     〈𝑊𝑊ℎ𝑖𝑖𝐵𝐵𝐵𝐵 𝑛𝑛 < 𝑁𝑁 𝑑𝑑𝐵𝐵(𝐼𝐼𝑛𝑛𝑛𝑛𝐵𝐵𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵𝑝𝑝) 

          𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝐵𝐵 𝐺𝐺 𝑚𝑚𝐵𝐵𝑚𝑚𝐵𝐵 𝑟𝑟𝐺𝐺𝑛𝑛𝑑𝑑𝐵𝐵𝑚𝑚𝐵𝐵𝑦𝑦 𝐺𝐺𝑛𝑛𝑑𝑑 𝑟𝑟𝑠𝑠𝑛𝑛 𝐵𝐵𝑚𝑚𝐵𝐵𝑟𝑟 𝑋𝑋𝑛𝑛 𝐺𝐺𝐵𝐵 ∆𝐶𝐶 = 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵(𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛) − 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) 

          𝑖𝑖𝑖𝑖 ∆𝐶𝐶 < 0 𝐵𝐵ℎ𝐵𝐵𝑛𝑛 

               𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 𝐺𝐺𝑛𝑛𝑑𝑑 𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 

          𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵 

               𝐺𝐺𝐵𝐵𝑛𝑛𝐵𝐵𝑟𝑟𝐺𝐺𝐵𝐵𝐵𝐵 𝐺𝐺 𝑠𝑠𝑛𝑛𝑖𝑖𝑖𝑖𝐵𝐵𝑟𝑟𝑚𝑚 𝑟𝑟𝐺𝐺𝑛𝑛𝑑𝑑𝐵𝐵𝑚𝑚 𝑛𝑛𝑠𝑠𝑚𝑚𝑛𝑛𝐵𝐵𝑟𝑟 𝑖𝑖𝑟𝑟𝐵𝐵𝑚𝑚 [0,1] 𝐺𝐺𝑛𝑛𝑑𝑑 𝑐𝑐𝐺𝐺𝐵𝐵𝐵𝐵 𝑖𝑖𝐵𝐵 ′𝑦𝑦′ 
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               𝐵𝐵𝐵𝐵𝐵𝐵 𝑍𝑍 = exp (−∆𝐶𝐶
𝑇𝑇𝑟𝑟

) 

               𝑖𝑖𝑖𝑖 𝑦𝑦 < 𝑍𝑍 𝐵𝐵ℎ𝐵𝐵𝑛𝑛 𝑋𝑋𝑛𝑛 = 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 

     𝑛𝑛 = 𝑛𝑛 + 1〉 

𝑟𝑟 = 𝑟𝑟 + 1 

𝑇𝑇𝑟𝑟 = 𝐴𝐴𝐵𝐵𝑝𝑝ℎ𝐺𝐺 × 𝑇𝑇𝑟𝑟−1} 

𝑅𝑅𝐵𝐵𝐵𝐵𝑠𝑠𝑟𝑟𝑛𝑛 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐺𝐺𝐵𝐵 𝐵𝐵ℎ𝐵𝐵 𝐵𝐵𝑝𝑝𝐵𝐵𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚 

Remark. 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵(𝑋𝑋) denotes the objective function value of solution X. Thus, a calculation similar to that 
one mentioned in STEP 2 of the proposed GA is required. 

Remark. In the inner loop of the proposed SA, a local search is performed on the current solution. A 
non-hub node of the current solution is randomly selected and changed to a hub and an arbitrarily chosen 
hub is changed to a non-hub node. Thus, at each inner loop iteration only two digits of the solution are 
changed.  
 

The respected reader should keep in mind that the solution representation of the SA is just like the one 
employed in genetic algorithm. (A string of digits where 1 denotes a hub node and 0 denotes a non-hub 
one). 

4. Results and discussions 

In this section, the performance of the proposed algorithms above is assessed and compared using two 
sets of modified ORLIB instances. The proposed algorithms were programmed in MATLAB (R2009a) 
software and were run on a PC with 2.2 GHz CPU and 2.0 GB RAM. The first set of test problem 
instances belong to Civil Aeronautics Board (CAB) data set based on airline passenger flow between 
cities of the United States. The instances we used for analysis have 25 nodes, 2, 3 or 4 hubs and 𝛼𝛼 values 
from 0.2 to 1. The other data set is of Australian Post (AP) that is drawn from study of postal delivery 
system. The instances used in this paper for assessment have 200 nodes, a maximum of 25 hubs and 𝛼𝛼 =
0.75.  
 
4.1. Parameter tuning 
 
As is known, the quality of genetic algorithm and simulated annealing solutions is significantly 
influenced by its parameter. Thus, considering the objective function values of these algorithms as a 
response of input parameters, response surface methodology (RSM) can be perfectly applied to optimize 
the parameter values. In most RSM applications, the form of the relationship between the response and 
the input variables is unknown. Therefore, finding an appropriate approximation for the true functional 
relationship between y (response) and the set of independent variables is the first step in RSM.  
 
Frequently, a first-order model for beginning is sufficient because the initial parameter values are usually 
far from the optimum region. Then, RSM moves from the initial values using steepest descent method 
(if the objective is to minimize a measure) to a better area with regard to the GA response. Afterward, an 
ANOVA is applied to check the adequacy of a new first-order model with the new parameter values. 
This approach is repeated until no suitable first-order model is found; this situation usually happens in 
the areas near the optimum region. In such circumstances a polynomial of higher degree must be used, 
such as the second-order model shown in Eq. (16). 
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By analyzing the second order model the optimum parameter values will be determined. The convergence 
of RSM is negatively affected by an increase in the number of independent variables. Thus, it is 
encouraging to keep the number of input variables at a minimum. To do so, we first set 𝑁𝑁 = 40,𝐴𝐴𝐵𝐵𝑝𝑝ℎ𝐺𝐺 =
0.9 for SA and Number of generations = 100 for GA using a trial-and-error approach. Afterward, we let 
RSM choose the optimum values of 𝑇𝑇0,𝑅𝑅 and Elitist probability, Tour and Mutation rate for both SA and 
GA and for both CAB and AP data sets. Table 2 shows the initial values we considered for SA and GA 
parameters.  
 
Table 2  
Initial parameter values of SA and GA for RSM 

SA initial parameters 𝑇𝑇0 30000 
𝑅𝑅 150 

GA initial parameters 
Elitist probability 0.2 

Tour 4 
Mutation rate 0.1 

 
In order to fit the second-order models, central composite design (CCD) which is a very effective design 
is employed. Commonly, CCD consists of a 2𝑘𝑘factorial (or fractional factorial of resolution V) with 𝑛𝑛𝐹𝐹 
runs, 2𝑘𝑘 axial runs and 𝑛𝑛𝐶𝐶center runs. Our CCD created by MATLAB software for 3 input variables, 
contains 𝑛𝑛𝐹𝐹 = 8 factorial runs, 6 axial runs and 𝑛𝑛𝐶𝐶 = 10 center runs. Considering rotatability property, 
parameter 𝛼𝛼 (distance of axial runs from the design center) is set to 1.6818 (= (𝑛𝑛𝐹𝐹)1 4� = √84 ). 
Rotatability is needed to have a consistent variance of the predicted response at different set of parameter 
values. The optimum parameter values obtained by RSM methodology for SA and GA based on the 
experiments designed above are shown in Table 3. 

 
Table 3  
Optimal parameter values obtained by RSM for SA and GA 

SA optimal parameters 
for CAB data set 

𝑇𝑇0 21760 
𝑅𝑅 188 

SA optimal parameters 
for AP data set 

𝑇𝑇0 53389 
𝑅𝑅 112 

GA optimal parameters for  
both CAB and AP data sets 

Elitist probability 0.12 
Tour 3.8 

Mutation rate 0.17 
 

4.2. Discussions 
 

Table 4 shows the results of the SA for different CAB data set instances. Likewise, the outputs of the GA 
for the same test problem instances are provided in Table 5. 
 
Note. For each instance, each of the algorithms were run 10 times and OF average column denotes the 
average of obtained objective function values, OF Minimum column shows the minimum amount, the 
average processing time for each instance has been shown in the fifth column, the best solution already 
found in the literature is shown in the sixth column and in the last column our algorithm is compared 
against the best solution in the literature. 
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Table 4  
Results of the SA for different CAB data set instances 

α p OF average OF Minimum Avg. 
Time(s) 

Kratica and 
Stanimirovic 
(2006) best 

solution 

Decrease in 
the best 
solution 

0.2 2 2.0495e+003 2.0495e+003 4.3746 2049.48 0 
0.4 2 2.4025e+003 2.4025e+003 4.4543 2402.55 0 
0.6 2 2.5587e+003 2.5587e+003 4.4305 2558.74 0 
0.8 2 2.7149e+003 2.7149e+003 4.4813 2714.93 0 
1 2 2.7392e+003 2.7392e+003 4.4631 2739.22 0 

0.2 3 1.7729e+003 1.7651e+003 17.0272 1911.60 7.66% 
0.4 3 2.0673e+003 2.0647e+003 17.5873 2064.67 0 
0.6 3 2.2438e+003 2.2438e+003 18.1846 2243.77 0 
0.8 3 2.5156e+003 2.5156e+003 18.9688 2515.58 0 
1 3 2.7258e+003 2.7258e+003 24.5331 2725.79 0 

0.2 4 1.6585e+003 1.6195e+003 28.7445 1619.48 0 
0.4 4 1.8111e+003 1.7744e+003 25.4180 1774.45 0 
0.6 4 2.1293e+003 2.1271e+003 28.0046 2127.13 0 
0.8 4 2.4377e+003 2.4377e+003 29.1487 2437.71 0 
1 4 2.7258e+003 2.7258e+003 76.9415 2725.79 0 

 

Table 5  
Results of the GA for different CAB data set instances 

α p OF average OF Minimum Avg. 
Time(s) 

Kratica and 
Stanimirovic 
(2006) best 

solution 

Decrease in 
the best 
solution 

0.2 2 2.0495e+003 2.0495e+003 6.6355 2049.48 0 
0.4 2 2.4025e+003 2.4025e+003 6.6036 2402.55 0 
0.6 2 2.5587e+003 2.5587e+003 6.5451 2558.74 0 
0.8 2 2.7149e+003 2.7149e+003 6.6089 2714.93 0 
1 2 2.7392e+003 2.7392e+003 7.2774 2739.22 0 

0.2 3 1.7866e+003 1.7651e+003 7.8678 1911.60 7.66% 
0.4 3 2.0885e+003 2.0647e+003 8.0270 2064.67 0 
0.6 3 2.2438e+003 2.2438e+003 7.6414 2243.77 0 
0.8 3 2.5156e+003 2.5156e+003 7.7504 2515.58 0 
1 3 2.7258e+003 2.7258e+003 9.2883 2725.79 0 

0.2 4 1.6674e+003 1.6195e+003 9.6749 1619.48 0 
0.4 4 1.8669e+003 1.7744e+003 8.9404 1774.45 0 
0.6 4 2.1674e+003 2.1271e+003 8.8509 2127.13 0 
0.8 4 2.4499e+003 2.4377e+003 8.6370 2437.71 0 
1 4 2.7258e+003 2.7258e+003 15.1055 2725.79 0 

 

Observing the results of the proposed algorithms in Tables 4 and 5, the following conclusions can be 
drawn for CAB data set: 
 

1. For α=0.2 and p=3 the proposed algorithms (both SA and GA) were able to find a value 7.66% 
better than the best value already found in the literature. Also, for all of the other instances both of the 
proposed algorithms reach to the optimum value. These experimental results imply that the proposed 
algorithms outperform the already proposed GA in the literature for solving UMApHCP. 
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2. The proposed GA is computationally more efficient than the SA because needs less time to solve 
larger CAB instances although for the smaller ones the SA performs better. 

 
3. The average of obtained objective function values for the SA are less than or equal to those of the 

GA and hence, from the quality of solutions view point the SA shows greater performance. 
 

For AP data set, both SA and GA were run for five times and the best obtained results are presented in 
Tables 6 and 7. 

Table 6 
Results of the GA for different AP data set instances 

p Objective function 
value Time (s) 

Kratica and 
Stanimirovic 
(2006) best 

solution 

Decrease in the 
best solution 

2 6.7083e+004 428.5157 67083.28 0 
3 6.2946e+004 514.2701 62945.55 0 
5 5.7419e+004 650.0875 57419.32 0 
10 5.5959e+004 1.0358e+003 55958.75 0 
15 5.5959e+004 1.4727e+003 55958.75 0 
20 5.5959e+004 2.0195e+003 55958.75 0 
25 5.5959e+004 2.2261e+003 55958.75 0 

 

Table 7  
Results of the SA for different AP data set instances 

p Objective function 
value Time (s) 

Kratica and 
Stanimirovic 
(2006) best 

solution 

Decrease in the 
best solution 

2 6.7083e+004 691.7911 67083.28 0 
3 6.2550e+004 1.2726e+003 62945.55 0.63% 
5 5.7419e+004 1.9504e+003 57419.32 0 
10 5.5959e+004 1.6374e+003 55958.75 0 
15 5.5959e+004 2.1720e+003 55958.75 0 
20 5.6003e+004 3.1328e+003 55958.75 0 
25 5.5959e+004 3.6111e+003 55958.75 0 

 

As can be seen in Table 7, for AP data set, for p=3 the proposed simulated annealing was able to find a 
value 0.63% better than the best value already found in the literature. Comparing the obtained results for 
large scale instances of AP test problem, one can see that in all cases both algorithms have reached the 
best solution reported in the literature. Moreover, in one case the SA algorithm was able to find a solution 
better than the best solution reported for that specific instance in the literature. These results together 
with the results obtained for CAB data set imply that the both proposed algorithms perform well and are 
suitable for solving UMApHCP problem even for large scale instances. Also, it could be concluded that 
for this problem the proposed GA is computationally more efficient that could be a result of being a 
population-based algorithm. 
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5. Conclusion 

Since p-hub center has been lately introduced and has a specific objective function (minimizing the 
maximum cost between origin-destination nodes), there are few studies investigating the problem and 
the challenges for solving it. Because of the specific structure of the problem Dijkstra’s algorithm could 
be successfully used in order to find the shortest path from each node to any other node. Using the 
information obtained from running Dijkstra’s algorithm once for each node, one can minimize the 
maximum length between any origin/destination nodes which is exactly equivalent with solving a 
UMApHCP. In this paper, two well-known metaheuristics were adapted to suit to solving the NP-hard 
problem. The computational results of applying the proposed algorithms (SA and GA) shows that for 
smaller scale test problems, single solution-based SA shows greater performance versus GA but for larger 
scales of data sets the GA generally yield more desirable solutions. 
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