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 The powder coating is an economic, technologically superior and environment friendly painting 
technique compared with other conventional painting methods. However large variation in 
coating thickness can reduce the attractiveness of powder coated products. The coating thickness 
variation can also adversely affect the surface appearance and corrosion resistivity of the product. 
This can eventually lead to customer dissatisfaction and loss of market share.  In this paper, the 
author discusses a dual response surface optimization methodology to minimize the thickness 
variation around the target value of powder coated industrial enclosures. The industrial 
enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed 
methodology consists of establishing the relationship between the coating thickness & the 
powder coating process parameters and developing models for the mean and variance of coating 
thickness. Then the powder coating process is optimized by minimizing the standard deviation 
of coating thickness subject to the constraint that the thickness mean would be very close to the 
target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial 
enclosures, which is very close to the target value of 80 microns. A comparison of the results of 
the proposed approach with that of existing methodologies showed that the suggested method is 
equally good or even better than the existing methodologies. The result of the study is also 
validated with a new batch of industrial enclosures. 
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1. Introduction  
 

The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The 
enclosures protect the equipment from outside environment and adverse weather conditions. The 
enclosures can also protect the user from electromagnetic interferences (Chen et al., 2008). In many 
situations, only the enclosure will be visible to the users. Hence the appearance of the enclosures should 
be attractive to the customers. The enclosure painting process is a very important step in enclosure 
manufacturing process. The enclosures are generally painted using powder coating method. The powder 
coating, as a painting technique, does not require any solvent and is applied as free flowing dry powder. 
The solvent emission is considered as a major problem in surface coating industry. Hence powder coating 
has superior techno-economic benefits (Naderi et al., 2004). It creates a hard finish. The first step in 
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powder coating is the preparation of the surface to be coated. This involves removal of oil, greases, etc. 
from the surface. The common methods for surface preparation are degreasing, etching, rinsing, etc. After 
the surface is prepared, it is heated and the powder is sprayed to the metal surface using an electrostatic 
gun. The powder melts to form a uniform film and is then cooled or cured to form a hard coating. 

The coating thickness is an important quality characteristic of powder coating process. It affects the 
mechanical and physical properties of the coated surface. If the coating thickness is not uniform across 
the surface, it would impact the hardness, surface appearance and corrosion resistivity of the enclosures. 
A company manufacturing industrial enclosures is facing the serious problem of coating thickness 
variation in the powder coated enclosures. This reduced the attractiveness of the enclosures and also 
resulted in customer dissatisfaction. Hence this study is undertaken to develop a methodology to reduce 
the variation in coating thickness around the target for industrial enclosures. 

The remaining part of the paper is arranged as follows. The methodology is discussed in session 2. The 
data collection and analysis is given in session 3. The session 4 provides the optimization details. The 
results are discussed in session 5 and validated in session 6. The conclusions are given in session 7. 

2. Methodology 
There are many approaches for achieving the target value of a response variable. Most of these 
approaches are based on response surface methodology (Box & Draper, 1987). Response surface 
methodology (RSM) is a collection of statistical and mathematical techniques for improving and 
optimizing processes (Mayers et al., 2009). The RSM identifies the best settings for a set of input or 
design variables that would optimize the response y (Box & Wilson, 1951; Sahoo et al., 2013). Lots of 
work, both theoretical and applied, have been carried out in the recent past in the area of response surface 
methodology (Khuri & Mukhopadhyay, 2010; Bezerr et al., 2008; Baş & Boyacı, 2007; Liyana-Pathirana 
& Shahidi, 2005; Noordin, 2004; Öktem, 2005; Barton, 2013). The main emphasis of RSM is on 
optimizing the estimated mean of the response variable (Ding et al., 2004). The mean is estimated using 
a polynomial model given in Eq. (1). 

∑ ∑
<

+∑
=

+∑
=

+=
k

ji
jxixija

k

i
ixiia

k

i
ixiaay

1
2

1
0µ

  (1) 

where  yµ
  is the estimated value of the mean of the response y and xi, i = 1, 2, …, k, are the exploratory 

variables. Using Eq. (1), the optimum values of xi’s, which would bring  yµ
  close to the target is then 

determined. But the optimum xi’s may not minimize or change the variance. In RSM and traditional 
industrial experimentation, it is assumed that the variance is constant. But the assumption on constant 
variance doesn’t hold well in many industrial scenarios. Hence it is required to simultaneously optimize 
multiple responses, namely mean and variance of the response variable (Taguchi, 1986; Phadke, 1995). 
The most efficient methodology for simultaneous optimization of the mean and variance is dual response 
surface methodology (Myers & Cartel, 1973). In dual RSM, along with the model for estimating the 
mean of the response variable, another polynomial model for estimating the standard deviation is also 
developed as shown in Eq. (2). 
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where yσ
  is the estimated value of the standard deviation of the response y and xi, i = 1, 2, - - -, k, are 

the exploratory variables. Then both the responses (mean and variance) are optimized, simultaneously.  

Several methods have been proposed for the simultaneous optimization of mean and variance of the 
response variable. The important among them are  

• Vining and Mayers (VM) method (Vining & Myers, 1990)  

• Lin and Tu (LT) method (Lin & Tu, 1995) 

•  Copeland and Nelson (CN) method (Copeland & Nelson, 1996)  
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• Quality loss function (QLP) method (Ames et al., 1997).   

In VM method, one of the responses is taken as the primary response and the other one as a constraint. 
The VM approach is to 

min yσ
  

subject to y Tµ =  
(3) 

where µy  and σy  are estimated mean and standard deviation of the response variable y obtained using 
Eq. (1) and Eq. (2). T is the target value for y. Del Castillo and Montgomery (1993) showed that the VM 
problem can be solved using Excel solver (Brown, 2001). The Excel solver uses generalized reduced 
gradient algorithm for solving optimization problems. Still many researchers encountered the problem 
of not getting a feasible solution to the dual response optimization problem using VM method. This is 
because the VM method tries to find out an optimum solution which forcefully ensures the mean exactly 
on target.   

The LT method proposes to solve the dual response optimization problem by minimizing the mean square 
error (MSE). The LT method is to 

min ( )2 2MSE y T yµ σ= − +   (4) 

where µy  and σy  are estimated mean and standard deviation of the response variable y obtained using 
Eq. (1) and Eq. (2). T is the target value for y. The problem with LT method is that it may minimize the 
MSE without bringing µy  close to the target T. This is because the LT method does not have an upper 
limit or restriction on the deviation of µy from the target T. 

The aforementioned problem is taken care in CN method. The CN method is to 

min yσ
  

subject to ( )2 2y T ∆µ − ≤ , 
(5) 

where ∆ is the maximum allowed deviation of estimated mean µy   from the specified target value. The 
CN method is considered to be logically sounder among the aforementioned three methods. But the CN 
method is also not free from problems. The presence of higher order polynomials in the constraint 
sometimes makes it difficult to obtain the global optimum solution using commonly used optimization 
programs like Excel solver.  

An alternative approach suggested is to minimize the quality loss function (referred as QLP method). 
Many papers on a wide variety of applications of Taguchi’s loss function is published in the recent past 
(Liao & Kao, 2010; Pi & Low, 2006;  Antony, 2000;  Antony, 2001;  Wu, 2004; Kethley, 2002; Chan & 
Ibrahim, 2004; Cho & Cho, 2008; John, 2012). The QLP method is to 

min ( ) ( ) ,2 2QLP w y T w y Tµ µ µ σ σ σ= − + −   (6) 

where µy and σy are the estimated mean and standard deviation of the response variable, µw and σw are 
the weights assigned to mean and standard deviation of the response and µT  and σT are the respective 
target values for mean and standard deviation of the response variable. The problem with QLP method is 
that the solution would be influenced by the weights µw and σw . 
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In this study, the author has used the CN method and the problem of higher order polynomials in the 
constraints is handled by slightly modifying the CN method. The methodology is a simplified version of 
the CN method. The step by step details of the proposed methodology is given below: 

1. Identify the control variables or factors xi’s, i = 1,2, …, k. 
2. Identify the important factors among xi’s which significantly influence the response variable 

through design of experiments. 

3. Develop the models for estimating the mean µy  and the standard deviation σy of the response 
variable y. 

4. Identify the optimum values of xi’s which would simultaneously optimize the mean and standard 
deviation of response y by 

min yσ
  

subject to ( ) ( )T y T∆ ∆µ− ≤ ≤ + , 
(7) 

where ∆ is the maximum allowed deviation of estimated mean µy   from the specified target value T. The 
optimization problem (7) can be easily solved using the generalized reduced gradient algorithm of Excel 
solver (Fylstra et al., 1998).  

3. Data collection and analysis  
Through discussions with the technical personals and surface coating experts of the company four 
variables namely oven temperature (in 0C), curing time (in minutes), conductivity (in micro seimens) and 
powder output (in grams per second) of the powder coating process are identified as factors for the study. 
The coating thickness (in microns) is chosen as the response variable. The effect of the factors on the 
coating thickness is studied using design of experiments. The design of experiments is an efficient tool 
for optimizing the process and product characteristics (Chowdhury & Boby, 2003; Surm et al., 2005; 
Wang et al., 2008; Bhuiyan, 2011; Sahoo & Sahoo, 2011; Boby, 2013; Kirshna et al., 2013;, Saha & 
Mandal, 2013; Sahoo, 2014). Since response surfaces need to be fitted for mean and variance of the 
response variable, a central composite design (CCD) is chosen for experimentation (Alam et al., 2008). 
The central composite designs have less number of experiments compared to 3 level full factorial 
experiments. The CCDs are factorial experiments augmented with additional central and axial points. 
The factors with the levels, central points and axial points are given in Table 1.   

Table 1   
Factors with levels 

Factor Name Code Levels Central Point Axial  Points 
-1 +1 0 -2 2 

Oven Temperature x1 185 200 192.5 177.5 207.5 
Curing Time x2 10 12 11 9 13 
Conductivity x3 1500 1800 1650 1350 1950 
Powder Output x4 32 34 33 31 35 

The experiments are conducted as per the design and the response, coating thickness is measured. Each 
experiment is replicated twice. The experimental layout with the mean and variance of the response is 
given in Table 2. The mean of the response is subjected to analysis of variance (Box, 2009). The ANOVA 
table is given in Table 3.  

The ANOVA table showed that the regression is significant (p value = 0.00 < 0.05) at 5 % level.  The 
ANOVA table also revealed that the square terms (p value = 0.977 > 0.05) and interaction terms (p value 
= 0.984 > 0.05) are insignificant. Hence the linear model is adequate. Moreover the lack of fit (p value = 
0.953 > 0.05) is insignificant indicating that the linear model is a good fit. The coefficients of the 
significant factors are given in Table 4. The residual plots are given in Fig. 1. 
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Table 2  
Experimental layout with response mean and variance 

Exp No Oven Temperature Curing Time Conductivity Powder Output 
Thickness 

Mean Variance 
1 185 10 1500 32 80.5 12.5 
2 200 10 1500 32 81.5 12.5 
3 185 12 1500 32 79.5 4.5 
4 200 12 1500 32 81 8.00002 
5 185 10 1800 32 89 8.00002 
6 200 10 1800 32 90.5 12.5 
7 185 12 1800 32 88 8.00002 
8 200 12 1800 32 89 8.00002 
9 185 10 1500 34 107 8.00002 

10 200 10 1500 34 108.5 12.5 
11 185 12 1500 34 106 8.00002 
12 200 12 1500 34 107.5 12.5 
13 185 10 1800 34 116 8.00002 
14 200 10 1800 34 117 8.00002 
15 185 12 1800 34 115 8.00002 
16 200 12 1800 34 116.5 4.5 
17 177.5 11 1650 33 96.5 4.5 
18 207.5 11 1650 33 99.5 12.5 
19 192.5 9 1650 33 99.5 12.5 
20 192.5 13 1650 33 97 1.99999 
21 192.5 11 1350 33 90 8.00002 
22 192.5 11 1950 33 106.5 4.5 
23 192.5 11 1650 31 72 8.00002 
24 192.5 11 1650 35 124.5 4.5 
25 192.5 11 1650 33 98.5 4.5 
26 192.5 11 1650 33 97.5 4.5 
27 192.5 11 1650 33 98.5 4.5 
28 192.5 11 1650 33 97.5 4.5 
29 192.5 11 1650 33 99 8.00002 
30 192.5 11 1650 33 98 8.00002 
31 192.5 11 1650 33 99 8.00002 

 
Table 3   
ANOVA table for thickness mean 

Source DF SS MS F p 
Regression 14 4709.28 336.38 1471.41 0.00 

Linear 4 4708.96 1177.24 5149.59 0.00 
Square 4 0.1 0.03 0.11 0.977 

Interaction 6 0.22 0.04 0.16 0.984 
Residual Error 16 3.66 0.23     

Lack-of-Fit 10 1.23 0.12 0.3 0.953 
Pure Error 6 2.43 0.4     

Total 30 4712.94       
 
Table 4  
Coefficient table for thickness mean 
 Code Coefficients Standard Error t Stat P-value 
Intercept  -399.950269 3.561889813 -112.29 0 
Oven Temp x1 0.091666667 0.010644676 8.6115 0 
Curing Time x2 -0.52083333 0.079835072 -6.5239 0 
Conductivity x3 0.028472222 0.000532234 53.4957 0 
Powder Output x4 13.3125 0.079835072 166.75 0 
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Fig. 1. Residual plots for thickness mean 

The residual plot showed that the residuals are approximately normally distributed and there is no trend 
or pattern in the residual versus order of the data or residual versus the fitted values (Montgomery, 2012). 
Hence the model for the mean of the coating thickness is identified as 

413.3125x32x0.028472222x0.52083333-10.09166679-399.95026 +++= xyµ
  (8) 

Similarly the variance of the response is subjected to analysis of variance. The ANOVA table for variance 
is given in Table 5.  

Table 5 
ANOVA table for thickness variance 
Source DF SS MS F P 
Regression 14 198.23 14.159 2.56 0.037 

Linear 4 131.04 32.76 5.92 0.004 
Square 4 36.35 9.087 1.64 0.213 

Interaction 6 30.84 5.141 0.93 0.501 
Residual Error   16 88.6 5.538   

Lack-of-Fit 10 67.6 6.76 1.93 0.217 
Pure Error   6 21 3.5   

Total 30 286.84       

 

The ANOVA table shows the regression is significant (p value = 0.037 < 0.05) at 5 % level and the lack 
of fit (p value = 0.2176 > 0.05) is insignificant indicating that the regression model is a good fit. The 
coefficients of the significant factors are given in Table 6.  

Table 6 
Coefficient table for thickness variance  

 Code Coefficients Standard Error t Stat P-value 
Intercept  535.3152619 294.7195892 1.81635 0.08044 
Oven Temperature x1 -5.45348197 3.06295487 -1.7805 0.08626 

Curing Time x2 -1.7291612 0.495350216 -3.4908 0.00167 

Oven Temperature2 x12 0.014590571 0.007953877 1.8344 0.07764 



B. John / International Journal of Industrial Engineering Computations 6 (2015) 
 

475 

Table 6 revealed that the factor namely curing time (x2) is significant at 5% level and the oven temperature 
(x1) and over temperature2 (x12) are significant at 10% level (p value < 0.10). The residual plots are given 
in Fig. 2.  

 

Residual

P
er

ce
nt

5.02.50.0-2.5-5.0

99

90

50

10

1

Fitted Value

R
es

id
ua

l

1210864

4

2

0

-2

-4

Residual

Fr
eq

ue
nc

y

420-2

8

6

4

2

0

Observation Order

R
es

id
ua

l

30282624222018161412108642

4

2

0

-2

-4

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Variance

 
Fig. 2. Residual plots for thickness variance 

The residual plot showed that the residuals are normally distributed and there is no trend or pattern in the 
residual versus order of the data or residual versus the fitted values. Hence the model for the variance of 
coating thickness is identified as 

2
10.014591x21.729161x-15.4534821x-535.3152622 +=σy

  (9) 

4. Optimization  
The company professionals suggested that a coating thickness of 80 microns is ideal for the industrial 
enclosures. Hence the thickness target is chosen as 80 with a tolerance ∆ of 0.05 microns. Substituting 
Eq. (8) and Eq. (9) in Eq. (7), the optimization problem became 

.min (535.315262-5.4534821x -1.729161x 0.014591x )1 2 1
2 0 5yσ = +  

subject to  

80413.3125x32x0.028472222x0.52083333-10.09166679-399.9502695.79 ≤+++≤ x  

2001185 ≤≤ x  

12210 ≤≤ x  

180031500 ≤≤ x  

34432 ≤≤ x  

, ,.., integerx i 1 4i =  

(10) 



476  

    

The integer constraint is added because the least count for most of the factors is one unit. The 
aforementioned problem is an integer programming problem (Hiller and Liberman, 2008; Taha, 2007). 
This problem can be solved using Excel solver. The solver uses one of the most robust nonlinear 
programming methods, namely generalized reduced gradient algorithm. This algorithm is developed by 
Lasdon and Waren (Lasdon & Waren, 1977; Lasdon et al., 1978). Moreover lot of studies have been 
published on the applications of MS Excel solver in solving industrial problems (Souliman et al., 2010; 
Dasgupta, 2008; Fang, 2006; Brown, 2006). The solution obtained is given in Table 7. The table showed 
that the optimum combination of factors would give an average coating thickness of 80.0199 microns, 
very close to the target value of 80 microns with a standard deviation of 2.232 microns. 

Table 7 
Optimum solution 
Factors Code Optimum value 
Oven Temperature x1 187 
Curing Time x2 12 
Conductivity x3 1513 
Powder Output x4 32 
Mean   80.0199 
Standard Deviation   2.23201 

 
5. Results and discussion 
In this study, models are developed for estimating the mean and variance of the coating thickness of 
powder coated enclosures. The models are developed in terms of powder coating process parameters 
namely oven temperature, curing time, conductivity and powder output. Then the variation around the 
target value of coating thickness is minimized by simultaneously optimizing the mean and standard 
deviation of the coating thickness. The study showed that the optimum values of oven temperature, curing 
time, conductivity and powder output would give an estimated average coating thickness of 80.0199 
microns, very close to the target value of 80 microns.  

Table 8  
Comparison of results obtained using different optimization methods 

Factors Code Proposed Method VM Method LT Method CN Method QLP Method 
Oven Temperature x1 187 

No feasible 
Solution 

187 187 187 
Curing Time x2 12 12 12 12 
Conductivity x3 1513 1513 1505 1513 
Powder Output x4 32 32 32 32 
Mean   80.0199 80.0199 79.7921 80.0199 
SD   2.23201 2.23201 2.23201 2.23201 

The results obtained through the proposed methodology are compared with the existing methodologies 
for simultaneous optimization of the mean and standard deviation of response variable. The comparison 
result is given in Table 8. The Table shows that the VM method does not give any feasible solution. This 
is because VM method forces the estimated mean to be exactly equal to the target value. The LT and QLP 
methods give the same optimum combination. The CN method gives a different optimum combination 
with estimated mean equal to 79.7921 microns not as good as other methods. But all the methods except 
VM method minimized the estimated standard deviation to 2.23201 microns. Hence it is concluded that 
the proposed methodology is equally good for simultaneously optimizing the mean and standard 
deviation of a response variable. Moreover the optimum problem can be easily solved through the MS 
Excel solver function.  

6. Validation  
The results are presented to the management of the company and it is decided to validate the results by 
powder coating a pilot batch of 12 enclosures with optimum settings.  The results of the validation study 
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are given in Table 9. The table shows that the mean of the coating thickness for the pilot batch is 80 
microns, very close to the estimated mean of 80.0198 and the standard deviation is 2.1742 microns, again 
very close to the estimated standard deviation of 2.2302 microns. The results of validation study are 
submitted to the management and it is decided to implement the optimum solution for powder coating 
all future enclosures. 

Table 9  
Validation of results 
Enclosure No. 1 2 3 4 5 6 7 8 9 10 11 12 
Thickness 84 83 80 78 79 82 80 79 80 80 76 79 

Mean = 80  Standard deviation 2.1742 Variance = 4.7273 
 

7. Conclusion  
This paper presented a methodology for reducing the variation in coating thickness around the target 
value of powder coated industrial enclosures. The methodology is based on dual response surface 
optimization technique. Four powder coating process variables namely oven temperature, curing time, 
conductivity and powder output are selected as factors and the coating thickness is chosen as the response 
for the study. A 31 run central composite design is used for the study. Based on experimental results, 
polynomial models are developed for estimating the mean and variance of the coating thickness.  The 
powder coating process is then optimized by minimizing the estimated standard deviation of the coating 
thickness subject to the constraint that the estimated mean of coating thickness would be very close to 
the target. The aforementioned integer programming problem is solved using Excel solver. The study 
showed that the optimum combination would yield a mean coating thickness of 80.0199 microns which 
is very close to the target value of 80 microns. The study also reduced the estimated standard deviation 
of coating thickness to 2.2301 microns. The solution obtained using the proposed method is compared 
with that of existing dual response surface optimization methodologies. It is found that the proposed 
method is equally good or even better than many of the existing methodologies. 

The findings of the study are presented to the management of the company. As per the directions of the 
management, the results of the study are once again validated by powder coating a new batch of twelve 
enclosures with the optimum combination of factors. This pilot study confirmed the results. Hence it is 
decided to use the optimum combination of the factors for powder coating all the future enclosures. The 
same approach can be used for optimizing similar surface coating processes. 
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