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 In this paper, computational intelligence technique are presented for solving multi-point nonlinear 
boundary value problems based on artificial neural networks, evolutionary computing approach, 
and active-set technique. The neural network is to provide convenient methods for obtaining 
useful model based on unsupervised error for the differential equations. The motivation for 
presenting this work comes actually from the aim of introducing a reliable framework that 
combines the powerful features of ANN optimized with soft computing frameworks to cope with 
such challenging system. The applicability and reliability of such methods have been monitored 
thoroughly for various boundary value problems arises in science, engineering and biotechnology 
as well. Comprehensive numerical experimentations have been performed to validate the 
accuracy, convergence, and robustness of the designed scheme. Comparative studies have also 
been made with available standard solution to analyze the correctness of the proposed scheme. 
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1. Introduction  
 
 

Multi-point boundary value problems (BVPs) or non-local boundary value problems were introduced 
by Ilin and Moiseev (1987). These BVPs have become the most important area among researchers. 
These days, because of its widespread applications in engineering as to model the physical problems, 
including vibration happening in a wire of uniform cross section and combined of material with 
changed densities, through porous media applications, BVPs are used in fluid flow and in elastic 
stability. In addition, these problems have wide applications in applied physics particularly in heat 
conduction (Cannon, 1984; Cannon et al., 1987) and other problems in nonlinear elasticity 
(Timoshenko, 1961). By using perturbation techniques, these problems have been normally solved but 
these techniques have some confines, e.g. the approximate solution consists of a series of very small 
parameters, which poses difficulty since the popularity of nonlinear problems has no minor parameters. 
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These multi-point BVPs are generally limited to second order equation. Agarwal and Kinguradze (Das 
et al., 2010) solved higher order linear ordinary differential equation with singularity at numerous 
points in 2004. Cheung and Ren (Das et al., 2010) discussed multi-point BVPs in 2005. Tatari and 
Dehghan (Das et al., 2010) used Adomian decomposition method (ADM) to find the solution of multi-
point BVP in 2006. Gupta (1992, 1994, 1997) is believed to be the first who used functional analytical 
technique to demonstrate the existence of the solution monitored by Eloe and Henderson (1994), Ma 
(1999, 2001), Liu (2002), Webb (2001), etc. Deimling, (1985), Guo and Lakshmikantham (1988) and 
Krasnosel'skij (1964) used commonly fixed-point theorem on cones for positive solution. The source to 
apply this theorem can be initiated with semi linear elliptic equations on annuli (Erbe & Wang, 1994). 

Stochastic numerical techniques have been used extensively by many researchers in different fields to 
solve linear and nonlinear differential equations (Raja & Samar, 2012; Khan, 2009). Interest in this area 
is significantly enhanced with effective numerical treatment for fractional differential equation (Khan 
et al., 2012). The analysis is carried out further by constructing different types of neural networks 
models with/without satisfying the boundary conditions, exactly. Furthermore, the effect of change on 
number on neurons on accuracy and convergence has also been analyzed. 

In the present study, computational intelligent techniques are developed for solving a nonlinear multi-
point BVPs representing to model the equation with the help of universal approximation capability of 
feed-forward artificial neural networks (ANN) trained in an unsupervised manner with genetic 
algorithms (GA) technique, as a tool for effective global search optimizer, hybrid with sequential 
quadratic programming technique (SQPT), an efficient local search approach. The proposed schemes 
are evaluated on four variants of the problems to validate the correctness of the approaches. The 
reliability and effectiveness of the proposed scheme is analyzed based on sufficient large set of data 
generated from independent execution of the optimizers, i.e., GA, SQPT and GA-SQPT. 

The organization of the paper is as follows: in the second section, the system model of the problem is 
given in details. Design methodology consists of feed-forward artificial neural networks modeling and 
learning procedure based on GA, SQPT and GA-SQPT is narrated in section three. Numerical 
experimentation of number of variant of the problem is provided in section four. Concluding remarks 
and few future research directions are provided in the last section. 

2. General form of Multi-point BVPs 
 

Mathematically, this problem is a second-order ordinary differential equation (ODE). The generic form 
or general form of multi-point boundary value problems is written as follows, 
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where   and,,...,2,1,0),1,0( mii  are constants 

The Eq. (1) represents a standard form of multi-point BVP. The aim of studying the generalized form 
of the nonlinear multi-point BVP and its solutions is to develop a broader understanding of the general 
equations and to develop analytical tools to analyze these equations to cover more applications as they 
arise in the future.  
 

3. Proposed Methodology 
 

The brief description of designed methodology will be presented for the solution of the multi-point 
BVPs. In this section, the procedure consists of the development of two feed-forward unsupervised 
neural networks models of the equation. Moreover, brief introductory material for the optimization 
algorithms i.e. evolutionary computing and active set programming techniques are also given. 
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3.1 Neural Network Mathematical Modeling 

Mathematical model for the second order multi-point boundary value problems is constructed with the 
strength of feed-forward ANN, in the form of  following continuous mapping for the solution y(x) , and  
its first dy/dx, second d2y/dx2 respectively, For the activation function log-sigmoid function 

)1/(1)( xexg  is used in the neural network modeling, given as: 
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(2) 

where the vectors   and, w  are real-valued bounded unknown parameters, i.e., weights W = [  ,, w

], n is the number of neurons and g is the activation function generally taken as log-sigmoid function. 

The suitable combination of the networks given in the set (2) can be used to model the differential 
equation (1). An objective function or fitness function is developed in an unsupervised manner and it is 
defined by sum of two mean square error, e1 is error function associated with differential equation (1) 
and it is given as: 
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(3) 

Similarly, e2 is the error function associated with boundary conditions for Eq. (1) is given as: 
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A second form of feed-forward artificial neural networks modeling is also constructed such that initial 
and boundary conditions are exactly satisfied in order to solve boundary value problems of the multi-
point BVPs. The governing equations of alternative form of artificial neural networks model for the 
solution y(x), and its first dy/dx, second d2y/dx2 respectively, written as: 
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where ŷ(x), dŷ/dx, d2ŷ/dx2 are the networks as shown in Eq. (6). The updated neural network can be 
developed for solving the general nonlinear multi-point boundary value problem (1) that satisfies 
boundary conditions exactly by taking the approximate values of P(x) and Q(x).  

An objective function or fitness function is developed in an unsupervised manner for introducing error 
function base on the sum of mean square error as: 
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(6) 

 

One can only deduce that with the availability of weights of neural networks such that the objective 
function given in Eq. (3) or Eq. (6) approaches zero, the proposed solution will approximate the exact 
solution of the problem closely. 

3.2 Learning Methodology 

The procedure for training the designed parameters of the networks is accomplished with the help of 
genetic algorithms (GAs), sequential quadratic programming technique (SQPT) and hybrid computing 
approach GA-SQPT. The recent researches in genetic algorithms (GAs) has emphasized that the initial 
proposals were found incompetent of solving tough problems in a valuable and efficient way. For a 
large numbers of optimization problems, the time of execution of first-generation GAs increases 
significantly while solution quality decreases. Moreover the things such as selection schemes, encoding 
procedures, and self-adaptive and knowledge based operators play an important role in the optimization 
of well convex and stochastic nature problems. Since the beginning of the GAs, it has used for 
optimization of different fields of interest. In addition to the optimization problems, it is also used as an 
effective technique for achieving modeling, forecasting, control and simulation objectives. Traditional 
optimization approach start with a single candidate and search iteratively for the optimal result by using 
static heuristics. While, the GA techniques uses a population of candidate to seek a number of areas of 
a solution space, simultaneously and adaptively. The most famous methods that go beyond easy local 
search are GAs, simulated annealing (SA), and tabu search (TS) etc. Genetic algorithms work on a 
population of individuals. All individual is a potential solution to a given problem and is normally 
encoded as a fixed-length binary string, which is an analogy with an actual chromosome. After an 
initial population is randomly or heuristically generated, the algorithm evolves population through 
sequential and iterative application of selection, crossover, and mutation operators. A new generation is 
shaped after every each iteration. The strongest feature of the GA is that do not get stuck in local 
minimum. 

Sequential quadratic programming techniques is basically a local search method which belongs to the 
class of efficient constrained optimization technique. The method is based on mathematical model for 
solving the Karush-Kuhn-Tucker (KKT) equations to get the desired Lagrange multipliers simply and 
consequently the global candidate solution. The SQP technique has been used in many practical 
important optimization problems since their origin. The interesting reader is referred to these literatures 
to known the history, importance, subject term, working and detail procedural step of the algorithm. 
The necessary procedure adopted for GA-SQPT is given in following steps:  

Step 1:  Initialization: Initial values of parameters are set in this step with random assignment and 
declarations. These setting are also tabulated in Table1 for important parameter of GAs.   

Step 2:  Fitness Evaluation: Calculate the fitness of each individual or chromosome of population using 
the Eq. (2) and Eq. (5), for first and second type of modeling, respectively.   

Step 3:  Termination Criteria: Terminate the algorithm when either of following criteria matches:  

 Predefined fitness values e  10-15 is achieved. 
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 Predefine number of generations are executed. 

 Any of termination setting given in Table 1 for GA is fulfilled. 

If termination criterion meets, then go to step 5 

Step 4: Reproduction: Create next generation on the basis of Crossover: Call for scattered 
 function, Mutation: Call for Adaptive Feasible function, Selection: Call for Stochastic 
 Uniform function and Elitism account is set 4 etc. 

 Repeat the procedure from step 2 to step 4 with newly produced  population  

Step 5: Improvements: Sequential quadratic programming technique is used for further refinement of 
results by taking final adaptive weights of GAs as initial weights (start point) of SQPT algorithm. 
SQPT is applied as per setting of parameters given in Table 2. Store also the refined final weights of 
the algorithm.  

Step 6: Neurons Analysis: Repeat step 1 to 5 for by taking size of initial weights, i.e. 15, 30 and 45 for 
k = 5, 10 and 15 neurons, respectively. These results are used for detail analysis of algorithm later. 

The parameter setting used in this paper for GA algorithm in table 1 and SQPT algorithm are given in 
Table 2. 

Table 1  
Parameters Setting for GA in simulations 

Parameters Setting Parameters Setting 
Population Creation Linear feasible Bounds [-20, 20] 
Initial Population range [-1, 1] Derivative Approximate by solver 
Population 300 individuals TolFun 10-20 
Generations 700 StallGenLimit 100 
Scaling faction Rank Mutation Adaptive feasible 
Selection function Stochastic Uniform Migration interval 20 
Crossover fraction 0.80 Elite Count 02 
Crossover  function Heuristic TolCon 10-20 
Migration fraction 0.2 Other Defaults 

 

Table 2  
Parameter Settings of “fmincon” function for SQPT in simulations 

Parameters Settings/Values Parameters Settings/Values 

Algorithm active-set Initial Weights best weights of GA 
FinDiffType Central Initial Weight Vector length 30 
TolX 10-20 Total Initial Weight Vectors 100 
Iterations 700 Bounds ai, wi, bi ϵ (±20) ∀ i 1 to n 
MaxFunEvals 200000 TolCon  Zero 
TolFun 10-20 Derivative Approximate by solver 
TolCon 0 Other as defaults 

 
 
3. Simulations and Results 
 
In this section, three problems of multi-point boundary value problems will be presented with their 
multi-point boundary conditions. We compare the results of all the numerical problems for different 
number of neurons with exact solutions that will be provided with each problem. The error analysis 
showed graphically the high reliability of purposed scheme.  
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Problem I: consider the following nonlinear multi-point boundary value problem (Das et al., 2010) 

2 2
2 3

2

4

0

(1 )
( ) 2

2

1
(0) 0, y(1) 0.708667

1 5i

d y x x dy
y x x

dxdx

i
y y

i

 
   




             


 

 

(7) 

The exact solution of the problem is given as: 
2( )y x x  (8) 
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of neural networks thus with a total 30 design parameter or weights, ( , , )W w  .The fitness functions e 

and ε is formulated for this case for r ϵ (0, 1] with a step size h = 0.1 as: 

 

2
2 210

2 3

2
1

2
4

2

0 10
0

22 210
2 3

2
1

ˆ ˆ(1 )1
ˆ 2

1 0 2

1 1
ˆ ˆ 0 .7 0 8 6 6 7

2 1 5

(1 )1
2

1 0 2

m m m m
m m

m

i

m m m m
m m

m

d y x x d y
e y x

d xd x

i
y y y

i

d y x x d y
y x

d xd x








  
      
  


      
                


  

     
  






 



 

 

 

 

(9) 

Set of trained weights with respective fitness for GA-SQPT algorithm are shown in Fig. 1 

   

(a) (b) (c) 

Fig. 1. Set of optimal weights along with parameters for problem 1 by GA-SQPT using 5, 10 and 15 
numbers of neurons 

The proposed solution )(ˆ xy  and )(~ xy  of the Eq. (7) is obtained using the optimal weights of 

algorithms in first equation of the set (2) and (5), respectively. The results due to GA-SQPT for the 
case k = 5 are given in simplify form as:  
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To find the solution of the problems, we have applied the GA, SQPT and hybrid approach GA-SQPT 
by invoking the Matlab built in functions using the parameters setting as given in Table 1 and Table 2. 

The results calculated for the both neural networks models optimized with GA-SQPT for different 
number of neurons, i.e., k = 5, 10 and 15, are given in the Table 3 for inputs t between 0 and 1 with a 
step size of 0.1. The results obtained with exact solution given in Eq. (8) are also given in the table for 
the same inputs. It is seen that the proposed solution match with exact solution to five to seven decimal 
space of the accuracy. The values of absolute error (AE) are determined for each algorithm, i.e., GA, 
SQPT and GA-SQPT, for both models and results are shown graphically in Fig 2 

Table 3  
Proposed results of the problem 1 using neural networks models with different neurons optimized with 
GA-SQPT 

X 
Y(x) 

Exact 

)(~ xy  ŷ(x) 

GA SQPT GA-SQPT GA SQPT GA-SQPT 

0.00 0 0 0 0 0 0 0 
0.10 0.01 0.010005785 0.010002356 0.010024446 0.010000081 0.01000 0.010000 
0.20 0.04 0.040004076 0.040002018 0.040021325 0.040000132 0.04000 0.040000 
0.30 0.09 0.09000689 0.090002685 0.090020551 0.090000205 0.09000 0.089999 
0.40 0.16 0.160006592 0.160002162 0.160017598 0.160000277 0.16000 0.159999 
0.50 0.25 0.250003202 0.250001204 0.250015241 0.25000031 0.25000 0.249999 
0.60 0.36 0.360002446 0.36000157 0.360014615 0.360000284 0.36000 0.360000 
0.70 0.49 0.490005155 0.490002722 0.490013618 0.490000212 0.49000 0.490000 
0.80 0.64 0.640005664 0.640002441 0.640011193 0.640000127 0.64000 0.640000 
0.90 0.81 0.810002392 0.810000901 0.810008764 0.810000061 0.81000 0.810000 
1.00 1 1.000003505 1.0000016 1.000007151 1 1 1 

 

   
(a) (b) (c) 

 

Fig. 2. Results based on AE for two models in case of problem I (solid and dotted lines for neural 
network with/without satisfying boundary condition exactly) (a) for GA (b) for SQP and (c) for GA-
SQP 

It is seen that the values of AE are determined for each algorithm, i.e., GA, SQPT and GA-SQPT, for 
both models and results are shown graphically in Fig 3. In 3(a), the values of AE for GA lies in the 
range 10-05 to 10-06, 10-05 to 10-06, and 10-05 to 10-06  for k=5, 10 and 15 respectively using first fitness 
function, while for fitness second function these values lies in the range 10-07 to 10-08, 10-06 to 10-07, and 
10-05 to 10-06  for k = 5, 10 and 15, respectively. Similarly it is inferred from Fig 3(b) the value of AE 
for SQPT lies in the range 10-05 to 10-07, 10-05 to 10-06, and 10-05 to 10-06 for k = 5, 10 and 15 
respectively using first fitness function, while for second fitness function these values lies in the range 
10-06  to 10-07 10-06  to 10-07, and 10-07 to 10-08 for k = 5, 10 and 15, respectively. Whereas, from Fig 3(c) 
the values of AE for GA-SQPT lies in the range 10-02 to 10-05, 10-02 to 10-03, and 10-03 to 10-05 for k = 5, 
10 and 15 respectively using first fitness function, while for second  fitness function these values lies in 
the range 10-06 to 10-08, 10-05 to 10-07, and 10-06 to 10-07 for k = 5, 10 and 15, respectively. 
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Problem II: Consider the following nonlinear multi-point boundary value problem (Das et al., 2010) 
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The exact solution of the problem is given as: 

( ) ( 1)y x x x   (13) 

The proposed methodologies are applied to solve the problem by taking 10 neurons in the hidden layer 
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Set of trained weights with respective fitness for GA-SQPT algorithm are shown in Fig. 3 

   

(a) (b) (c) 

Fig. 3. Set of optimal weights along with parameters for problem 1 by GA-SQPT using 5, 10 and 15 
numbers of neurons 

The results due to GA-SQPT for the case k = 5 are given in simplify form as:  
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2
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(-0.305821484t 0.263233801) (0.944712492t 0.484968391)

( ) ( 1)

-0.216506509 0.109795413
[
1 e 1 e

0.482970033 0.018294812

1 e 1 e

0.23071701

GA SQPy x x x x x

 

   


 

 
 





(0.316310172t-0.346091359) (-0.201150105t 0.031234018)

(-0.69348194t 0.274893474) (0.842677833t 0.550224316)

(-0.576745358t -0.000596585)

1 0.426353657

1 e 1 e

0.427353059 0.28357977 

1 e 1 e

0.230940307 0.

1 e



 




 

 
 

 
 (0.529882133t-0.372938855)

250772371
]

1 e
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The results obtained for the both neural networks models of GA-SQPT for k = 5, 10 and 15, are also 
presented in the Table 4 along with exact solution using Eq. (13).  

Table 4  
Proposed results of the problem using neural networks models with different neurons optimized with 
GA-SQPT 

X 
y(x) y~ (x) ŷ(x) 

Exact k=5 k=10 k=15 k=5 k=10 k=15 

0 0 0 0 0 0 0 0 

0.1 -0.09 -0.08999763 -0.08999647 -0.08999603 -0.08999998 -0.08999988 -0.08999929 

0.2 -0.16 -0.16000270 -0.15999643 -0.15999751 -0.15999990 -0.160000271 -0.15999938 

0.3 -0.21 -0.20999887 -0.20999540 -0.20999636 -0.20999988 -0.210000158 -0.20999944 

0.4 -0.24 -0.23999158 -0.23999535 -0.23999641 -0.23999993 -0.23999969 -0.23999948 

0.5 -0.25 -0.24998915 -0.24999592 -0.24999801 -0.25000000 -0.249999367 -0.24999952 

0.6 -0.24 -0.23999295 -0.23999582 -0.23999915 -0.24000004 -0.239999515 -0.23999965 

0.7 -0.21 -0.20999795 -0.20999516 -0.20999915 -0.21000004 -0.210000055 -0.20999980 

0.8 -0.16 -0.15999881 -0.15999515 -0.15999901 -0.16000002 -0.160000553 -0.15999985 

0.9 -0.09 -0.08999632 -0.08999595 -0.08999958 -0.08999999 -0.090000531 -0.0899998 

1 0 0 0 0 0 0 0 

 

The values of absolute error AE are determined for each algorithm, i.e., GA, SQPT and GA-SQPT for 
both models and results are shown graphically in Fig 4. 

   
(a) (b) (c) 

Fig. 4. Results based on AE for two models in case of problem II (solid and dotted lines for neural 
network with/without satisfying boundary condition exactly) (a) for GA (b) for SQPT and (c) for GA-
SQPT 
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Problem III: Consider the following nonlinear multi-point boundary value problem (Das et al., 2010) 

 
2

2

4

0

( ) cos 1 sin

1
(0) 0, y(1) 0.3277

1 5i
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(17) 

The exact solution of the problem is given as: 

( ) siny x x  (18) 

The proposed methodologies are applied to solve the problem by taking 10 neurons in the hidden layer 
of neural networks thus with a total 30 design parameter or weights, W (  ,, w ). The fitness functions 

e and ε is formulated for this case for r ϵ (0, 1] with a step size h = 0.1 as: 
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(19) 

 

The proposed solution )(ˆ xy  and )(~ xy  of the Eq. (17) is obtained using the optimal weights of 

algorithms in first equation of the set (2) and (5), respectively. The results due to GA-SQP for the case 
k = 15 are given in simplify form as:  
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(21) 

The results obtained for the both neural networks models of GA-SQPT for k = 5, 10 and 15, are also 
presented in the Table 4 along with exact solution using Eq. (18). The proposed solution approximately 
matches with exact solution up to four to six decimal places of the accuracy. 
 

 
 



Z. Sabir and M. A. Zahoor Rajaa  / International Journal of Industrial Engineering Computations 5 (2014) 
 

441  

Table 4  
Proposed results of the problem using neural networks models with different neurons optimized with 
GA-SQPT 

X 
y(x) y~ (x) ŷ(x) 

Exact k =5 k=10 k=15 k=5 k=10 k=15 

0 0 0 0 0 0 0 0 
0.1 0.099833 0.099827 0.099832 0.099834 0.099832 0.099834 0.099835 
0.2 0.198669 0.198665 0.198668 0.19867 0.198669 0.198669 0.198671 
0.3 0.29552 0.295515 0.295519 0.295521 0.29552 0.295521 0.295522 
0.4 0.389418 0.389416 0.389417 0.389419 0.389418 0.38942 0.389421 
0.5 0.479426 0.479425 0.479425 0.479426 0.479426 0.479428 0.479429 
0.6 0.564642 0.564642 0.564642 0.564644 0.564644 0.564645 0.564646 
0.7 0.644218 0.644216 0.644217 0.644219 0.644219 0.64422 0.64422 
0.8 0.717356 0.717356 0.717356 0.717358 0.717357 0.717357 0.717358 
0.9 0.783327 0.78333 0.783327 0.783329 0.783328 0.783328 0.783328 
1 0.841471 0.841473 0.841472 0.841473 0.841473 0.841473 0.841473 

The values of absolute error AE are determined for each algorithm, i.e., GA, SQP and GA-SQP for 
both models and results are shown graphically in Fig 5 as follows, 

   
(a) (b) (c) 

Fig. 5. Results based on AE for two models in case of problem III (solid and dotted lines for neural network 
with/without satisfying boundary condition exactly) (a) for GA (b) for SQPT and (c) for GA-SQPT 

4. Conclusions 

Following conclusions are drawn for our research studies:  

 A new soft computing approach has been developed effectively for solving multi-point 
boundary value problems, in-particularly multi-point BVPs and its variants using neural 
networks optimized with genetic algorithm, sequential quadratic programming technique and 
their hybrid combination. 

 The sufficient low value of absolute error has established the correctness of the designed 
scheme. 

  By taking fewer number of neurons, the performance of method were efficient for finding the 
solution, however, it increased the number of neurons, one can get slightly more accurate 
solution with immense reliability but at the cost of more computations. 

  

Future research directions 
 

Following are few suggested research directions for interested readers: 
 

 One can look for more accurate neural networks modeling by using alternate activation 
functions like radial basis, Mexican Hat, wavelets hat, etc. 

 Change of optimization algorithm can also help us improve the accuracy and the convergence 
of results. In this regards, particle swarm optimization, differential evolution, genetic 
programming, hill climbing etc., are possible choices. 
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 Better hardware platform like parallel, grid and cloud computing, can help in decreasing 
computational time of the algorithm, considerably. Consequently, we may look for other 
complicated nonlinear problems to solve by our design scheme.  
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