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 Enhancing the overall machining performance implies optimization of machining processes, i.e. 
determination of optimal machining parameters combination. Optimization of machining 
processes is an active field of research where different optimization methods are being used to 
determine an optimal combination of different machining parameters. In this paper, multi-stage 
Monte Carlo (MC) method was employed to determine optimal combinations of machining 
parameters for six machining processes, i.e. drilling, turning, turn-milling, abrasive waterjet 
machining, electrochemical discharge machining and electrochemical micromachining. 
Optimization solutions obtained by using multi-stage MC method were compared with the 
optimization solutions of past researchers obtained by using meta-heuristic optimization methods, 
e.g. genetic algorithm, simulated annealing algorithm, artificial bee colony algorithm and 
teaching learning based optimization algorithm. The obtained results prove the applicability and 
suitability of the multi-stage MC method for solving machining optimization problems with up to 
four independent variables. Specific features, merits and drawbacks of the MC method were also 
discussed. 
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1. Introduction  

 
In recent years, high resource efficiency and optimization of machining processes have been vital for 
machining companies in order to gain a competitive advantage on the market. Machining processes are 
highly complex processes affected by a number of input variables, i.e. machining parameters, which in 
consort have an important role on different process performance characteristics such as quality, cost, 
productivity, processing time, etc. In real production environment, the selection of machining 
parameter settings is usually made based on experience and knowledge of a machinist (or a production 
planner), machining handbooks and manufacturers’ recommendations (Rao & Pawar, 2010; Rao & 
Kalyankar, 2013). Although this is essentially a subjective approach, and chosen values of machining 
parameters are preferably conservative, or even not near optimal ones, in some cases this approach is 
sufficient. However, many process parameters and the complex and stochastic nature of the machining 
processes mean that achieving the optimal performance, even for a highly skilled machinist with a 
state-of-the-art machine tool, is rarely possible (Rao & Pawar, 2009). The most adverse effect of such 
approach may lead to product quality deterioration, increase in operation cost and machining time, 
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decrease in productivity, etc. In order to gain a competitive advantage on the fierce market, get the 
most from a machine tool and enhance the overall machining efficiency, it is necessary to select 
machining parameter settings more intelligently.  Recent studies indicate that the selection of 
machining parameter settings is often performed in a two-stage approach consisting of mathematical 
modeling of a machining performance characteristic and optimization using an optimization method. 
Mathematical modeling is aimed at establishing mathematical relationships between machining 
parameters and different performance characteristics. Since many machining optimization problems are 
complex, highly non-linear and multi-dimensional, meta-heuristic optimization methods have become a 
preferred trend for solving machining optimization problems.  
 
Meta-heuristic optimization methods conceptually developed to imitate natural phenomena, the 
biological evolutionary process (genetic algorithm-GA), the physical annealing process (simulated 
annealing-SA), social behavior of bird flocking (particle swarm optimization-PSO), behavior of real ant 
colonies (ant colony optimization-ACO), artificial bee colony (artificial bee colony-ABC), have been 
employed instead of classical optimization methods such as sequential unconstrained minimization 
technique, feasible direction method, goal programming and non-linear programming. Actually, as 
noted by Yildiz (2009), the complexity of machining problems creates the requirement for increasingly 
effective optimization algorithms. Many researchers and authors have found classical optimization 
methods ineffective for solving machining optimization problems because of the following: a tendency 
to obtain a local optimal solution (Rao & Pawar, 2010), very complex nature and inability to handle 
multi-objective problems effectively (Rao & Kalyankar, 2013) and lack of robustness (Rao & Pawar, 
2009; Rao & Pawar 2010). As noted by Mukherjee and Ray (2006), researchers and practitioners prefer 
an alternative cost effective near-optimal (or approximate) solution than the exact optimal one, as it 
may be extremely difficult to find the exact optimal point in the high dimensional and multimodal 
search space. Rao et al. (2008) used the PSO algorithm to determine optimal machining parameter 
settings for an electro-chemical machining (ECM) process and compared its performance with that 
obtained by other optimization methods. Rao and Pawar (2009) applied the ABC algorithm in order to 
determine optimal machining parameter values for a wire electric discharge machining (WEDM) 
process. Rao and Pawar (2010) developed a comparative study of the application of the ABC, SA and 
PSO algorithm in order to obtain the optimum machining parameter values for various cutting 
strategies in multi-pass milling process. In the research of Samanta and Chakraborty (2011), the ABC 
algorithm was applied to search out the optimal machining parameter values combinations of three 
non-conventional machining processes. The obtained single and multi objective optimization solutions 
were better compared to optimization solutions obtained by the past researches.  
 
GA was considered by Kilickap et al. (2011) to optimize drilling of AISI 1045 steel. In the study, three 
machining parameters such as cutting speed, feed rate, and cutting environment were employed. 
Response surface methodology was used to develop mathematical model and GA was used to 
determine optimal machining conditions for ensuring the minimum surface roughness. Bhushan et al. 
(2012) presented the GA approach for optimization of surface roughness in machining of Al alloy SiC 
particle composite material. A surface roughness prediction model was developed in terms of four 
machining parameters such as cutting speed, feed rate, depth of cut and tool nose radius. The authors 
concluded that the GA method outperformed the RSM regarding the best (minimal) surface roughness 
predicted value. Savas and Ozay (2008) applied GA for optimization of the surface roughness in the 
process of tangential turn-milling process. The mathematical model consisted of four independent 
variables, i.e. machining parameters, such as depth of cut, workpiece speed, tool speed and feed rate. 
Zain et al. (2011) applied GA and the SA algorithm to optimize the machining parameter values of 
abrasive waterjet (AWJ) machining process. Five machining parameters were considered in the 
research including traverse speed, waterjet pressure, standoff distance, abrasive grit size and abrasive 
flow rate. Comparative analysis of optimization solutions indicated that SA provided better solutions 
than GA. However, recently Yusup et al. (2012) attempted the same optimization problem and 
observed that the ABC algorithm outperformed both SA and GA. Rao and Kalyankar (2013) applied a 
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newly developed advanced algorithm named ‘teaching–learning-based optimization (TLBO) algorithm’ 
for optimization of non-conventional machining processes such as ultrasonic machining (USM), 
abrasive jet machining (AJM) and WEDM. It was concluded that TLBO has given a considerable 
improvement in terms of results and convergence over GA, SA, ABC and PSO. Recently, Madić and 
Radovanović (2014b) proposed the use of pattern search (PS) algorithm, as deterministic direct search 
method, for solving single- and multi-objective machining optimization problems. While solving 
several case studies it has been found that the PS algorithm is an efficient optimization method showing 
good competitive potential against stochastic direct search methods such as meta-heuristic algorithms. 
 
From the literature review, it has been observed that GA, SA, PSO, ABC and ACO have been 
extensively used for solving machining optimization problems (Yusup et al., 2012). It is observed that 
meta-heuristic algorithms were identified as effective stochastic optimization methods for solving 
machining optimization problems. However, the well-known difficulty in determination of optimum 
algorithm specific controlling parameters such as crossover and mutation rate in the case of GA, initial 
temperature in the case of SA, inertia weight in the case of PSO, etc., affects the effectiveness of meta-
heuristic optimization methods in searching for global optimal solutions (Rao & Kalyankar, 2013). As 
noted by Bhushan et al. (2012), there is no guideline yet given by the researchers which could be 
followed in recommending the best combination of parameter values for the best optimal solution. In 
addition, application of meta-heuristic algorithms implies that the repeatability of optimization results 
obtained with the same initial condition settings is not guaranteed (Madić et al., 2013). Meta-heuristic 
optimization methods perform efficient and comprehensive exploration of the optimization search 
space using the random Monte Carlo (MC) search guided by governing mechanisms which imitate 
certain strategies taken from nature. GA, SA and recently the ABC algorithm have shown their strength 
in this respect. Recently, it has been shown that the iterative exhaustive search algorithm has the 
potential for solving the aforementioned machining optimization problems for a given discrete 
optimization space (Kovačević et al., 2013). However, to the authors’ knowledge there is no 
application of the MC method for solving machining optimization problems, which is traditionally 
applied to continuous optimization problems. As noted by Mosegaard and Sambridge (2002), MC 
methods are powerful optimization tools when searching for globally optimal solutions amongst 
numerous local optima.  
 
The main motivation behind this paper is to investigate the applicability and efficiency of a 
conceptually simple MC method for solving machining optimization problems. Although the 
aforementioned meta-heuristic optimization methods have proved that they can succeed in obtaining 
good optimization solutions, the average process engineer in real machining environment may not feel 
familiar with these methods, which require deeper knowledge of artificial intelligence and 
optimization. Moreover, in some cases, specialized software or programming skills are needed. With an 
increasing number of meta-heuristic optimization methods and their combinations that have emerged in 
recent years, it has become very difficult even for researchers to become familiar with all these 
optimization methods. Because of these reasons, as noted by Besseris (2008), in practice only the 
simplest of optimization tools are eventually proved workable in the factory. In that sense, this paper is 
an attempt to investigate the applicability of the MC method for solving machining optimization 
problems. The proposed optimization procedure was employed to search out the optimal combinations 
of machining parameters for six machining processes, i.e. drilling, turning, turn-milling, AWJ 
machining, electrochemical discharge machining (ECDM), and electrochemical micromachining 
(EMM). The obtained optimization solutions were compared with the optimization solutions obtained 
by the past researchers using meta-heuristic algorithms. 
 
2. Machining optimization  
 
Optimization of machining processes has been of considerable interest in the literature. The ultimate 
goal of machining optimization is to select machining parameter values such that the overall machining 
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performance is enhanced. Depending on the criteria, optimization of machining processes should result 
in an increase in product quality, increase in productivity, decrease in machining cost and time, etc. 
Mathematically, optimization of machining processes is related to optimization of an objective 
function, often representing a machining performance, under some machining parameter constraints. 
The machining optimization problem may be expressed as follows: 
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  (1) 

 

where X is the vector of machining parameters,  xf  is the objective function to be minimized 
(maximized),  Xgi  is the i-th functional constraint, and l

jX  and u
jX  are the lower and upper bounds of 

j-th machining parameter jX . 
Generally, objective functions for machining optimization problems can be developed in two ways 
either analytically or empirically. The development of analytical equations, based on basic laws and 
principles of a machining process, requires deeper knowledge and understanding of the machining 
process and is usually quite complex. These equations are more general, but less accurate since they 
involve some simplifications and approximations in relation to the real machining process and do not 
take into account any imperfections in the process. Therefore, analytical solutions for describing 
machining processes are generally not accurate enough for practical usage (Davim, 2001).  
 
Compared with analytical approach, empirical model development does not need deeper knowledge of 
the phenomena occurring in the machining process, but the development of complex mathematical 
models and designs implies a more profound knowledge of theory of experimental design and 
mathematical modeling. The development of empirical models comprises the selection of experimental 
design, realization of experiment, data collection and development of mathematical equations using 
different modeling techniques, e.g. regression analysis, artificial neural networks etc. Theory and 
practice in the field of machining have shown that in most cases the best choice is a mathematical 
model in the form of polynomials (linear, quasi-linear, square, etc.) (Savas & Ozay, 2008).  
 
3. Monte Carlo Method  
 
The term Monte Carlo method (MC method) was coined in the 1940s by physicists S. Ulam, E. Fermi, 
J. von Neumann and N. Metropolis under the name “statistical sampling”. Since the pioneer studies in 
the 1940s and 1950s, this method has been applied in almost all areas of science (Yang, 2010). MC 
methods have been used for a long time, but only in the last few decades, the methods have gained the 
status of fully rounded numerical methods. As for obtaining a reasonably accurate assessment, the 
calculation of large number of special cases is needed, as well as appropriate statistical analysis, the 
efficient application of the MC methods begins with the emergence of high-speed computers able to 
perform fast computations (Madić & Radovanović, 2014a). 
 
At the heart of any Monte Carlo method there is a random number generator: a procedure that produces 

an infinite stream: 1 2 3, , ,... ~
iid

U U U Dist  of random variables that are independent and identically 
distributed (iid) according to some probability distribution Dist. When this distribution is the uniform 
distribution, that is , the generator is said to be uniform random number generator 
(Kroese et al., 2011). Monte Carlo methods can be divided into two categories: the sampling methods 
and the optimization methods. Monte Carlo sampling is useful when the space of feasible solutions is 
to be explored, and measures of resolution and uncertainty of solution are needed. Monte Carlo 
optimization methods are powerful tools when searching for globally optimal solutions amongst 
numerous local optima (Mosegaard & Sambridge 2002). The optimization based on Monte Carlo 

 0,1Dist U
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methods can be useful for solving optimization problems with many local optima and complicated 
constraints, possibly involving a mix of continuous and discrete variables (Kroese et al., 2011). When 
using the MC method for solving optimization problems there are basically two approaches: single and 
multi-stage (Dhavlikar et al. 2003; Khayet & Cojocaru 2012). In a multi-stage approach, simulation 
runs are repeated by modifying the bounds of each independent variable considering the near optimum 
solution obtained in the previous simulation run, which is illustrated in Fig. 1.  
 

 
 

Fig. 1. Illustration of MC optimization procedure in single and multi-stage 
 

The basic idea of the multi-stage MC method for solving optimization problems is given in Fig. 2. 
 

Input: 
n: Number of independent variables 
L[1], L[2], …, L[n]: lower bounds of independent variables permissible intervals 
U[1], U[2], …, U[n]: upper bounds of independent variables permissible intervals 
numOfStages: Number of stages 
 
Output: 
Fmax: Maximal mathematical model output value 
Qmax: list of independent variables value {Qmax[1], …., Qmax[n]} that corresponds to maximum mathematical 
model output value L[i] ≤ Qmax [i] ≤ U[i], i=1,…,n 
 
Declare: 
NmOfSimulations: Number of simulation runs 
IntervalSize: Interval size 
Fc: Current mathematical objective function value 
Qc: List of independent variables values {Qc[1], …., Qc[n]} that corresponds to current mathematical model output 
value L[i] ≤ Qc [i] ≤ U[i], i=1,…,n 
 
for stage = 1 to numOfStages 
 
      /* Single Stage Monte Carlo Method */ 
      NumOfSimulations = UserInput() 
      for i=1 to n do 
           R = GenerateRandomNumberFromInterval (0,1) 
           Qmax[i] = L[i] + (U[i] + L[i])*R 
      end for 
      Fmax = ComputeMathematicalModelOutput(Qc) 
     for loop = 1 to NumOfSimulations do 
          for i = 1 to n do  
            R = GenerateRandomNumberFromInterval (0,1) 
            Qc[i] = L[i] + (U[i] + L[i])*R 
           end for 
     Fc = ComputeMathematicalModelOutput(Qc) 
     If Fc > Fmax then 
        Fmax  = Fc 
        Qmax = Qc 
     Endif 
 
/* Reduce independent variables permissible intervls  */  
 for i=1 to n do 
    intervalSize = UserInput() 
    L[i] = Qmax [i] + intervalSize/2 
    U[i] = Qmax [i] + intervalSize/2 
 endfor 
endfor 
 
Return Fmax, Qmax 

Fig. 2. Pseudo-code of the multi-stage MC method for solving optimization problems 
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4. Application examples 
 
The machining optimization application examples considered in this paper are taken from scientific 
resource bases, such as Springer and Elsevier. Case studies focused on solving machining optimization 
problems using meta-heuristic algorithms were chosen for comparative analysis of the obtained 
solutions by the multi-stage MC method. In order to facilitate the validation of obtained optimization 
solutions, the search for papers was restricted to only those dealing with mathematical models 
developed using regression analysis. In sum, six optimization case studies were considered - two case 
studies deal with three, two case studies deal with four and two case studies deal with five independent 
variables, i.e. machining parameters. 
 
4.1. Application of Monte Carlo method for solving machining optimization problems 
 
In solving machining optimization problems the aim of applying the MC method is to explore the 
optimization space and identify near optimal values of independent variables (xi) i.e. machining 
parameters such that objective function f(xi) has an extreme value (maximal or minimal) and the 
constraints for machining parameters are satisfied. The machining optimization 
procedure based on the MC method was implemented in the MS Excel software package. The idea 
behind the MC method was to explore the space of feasible solutions by performing a large number of 
computational runs using pseudo-random numbers. After the formulation of a machining optimization 
problem, the first step in optimization procedure involves generation of random numbers ri,j uniformly 
distributed in the range [0,1] using the function rand. Subsequently, in order to satisfy the bounds of 
machining parameters values, random numbers ri,j were used to generate random numbers qi,j for each 
machining parameter by using the following equation:  
 

 (2) 
 

In such a way, by using random numbers qi,j and a mathematical model, a number of stochastic 
computational runs (n) can be performed. When applying the single-stage approach, for each case study 
different numbers of simulation runs were performed, that is 1000, 2000, 5000 and 10000. Each was 
repeated 10 times and the best optimization solutions were recorded. In sum, for each case study n = 
180000 simulation runs were performed. A simple procedure for computing was implemented in the 
Excel software package resulting in these computations being performed within few seconds. 
 
In order to improve obtained optimization solutions, the multi-stage approach was implemented. After 
180000 simulation runs performed in the first stage the near optimal optimization solution was 
identified. Subsequently, the bounds of each independent variable were diminished, 10000 simulation 
runs were repeated and the best optimization solution was identified. Although the multi-stage 
approach essentially refers to multiple modifications of the bounds of each independent variable, in this 
paper only one was performed.  
 
4.2. Single objective machining optimization 
 
4.2.1. Case study 1 
 
Sarkar et al. (2006) investigated the influence of applied voltage, electrolyte concentration and inter-
electrode gap on material removal rate (MRR), radial overcut (ROC) and thickness of heat affected 
zone (HAZ) in an ECDM process. Based on the experimental data of Sarkar et al. (2006), Samanta and 
Chakraborty (2011) developed the following three equations using uncoded values of machining 
parameters: 
 

min max,i i ix x x   

 min max min
, ,i j i i i i jq x x x r   
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(3a) 

 

 
(3b) 

 

 
(3c) 

 

where x1 = applied voltage, x2 = electrolyte concentration, x3 = inter-electrode gap. 
 
In an attempt to obtain optimal machining parameter values for minimization of ROC and HAZ and 
maximization of MRR, Samanta and Chakraborty (2011) and Rao and Kalyankar (2011) applied the 
ABC and TLBO algorithm, respectively. The bounds of machining parameters used in optimization 
procedure as well as optimization solutions are given in Table 1. Optimization solutions obtained using 
MC methods are also shown in Table 1 as follows. 
 
Table 1  
Optimization solutions of case study 4.2.1 
Machining parameters and bounds ABC algorithm TLBO algorithm Single stage MC Multi-stage MC 

MRR ROC HAZ MRR ROC HAZ MRR ROC HAZ MRR ROC HAZ 
Applied voltage (V) [50 - 70] 70 50 50 70 50 50 69.973 50.159 50.081 69.999 50.007 50.004 
Electrolyte concentration (wt%) [10 - 30] 20 30 24.5 10 30 25 10.299 29.819 24.753 10.002 29.998 24.491 
Inter-electrode gap (mm) [20 - 40] 20 20 40 21 20 38 20.598 20.201 38.447 20.017 20.013 39.994 
Optimal value 1.3372* 0.05912 0.05409 1.5902 0.0591 0.0541 1.5958 0.0611 0.0542 1.6252 0.05919 0.054092 
* Corrected value after Venkata Rao and Kalyankar (2011) 

 
4.2.2. Case study 2 
 
Kilickap et al. (2011) presented a study focused on the influence of machining parameters on the 
surface roughness obtained in drilling of AISI 1045. The mathematical relationship for correlating the 
surface roughness and the considered drilling parameters was obtained in the following form: 
 

 (4) 
 

where x1 = cutting speed, x2 = feed rate, x3 = cutting environment. In order to determine optimum 
drilling parameters for AISI 1045 material at the lowest possible surface roughness value, Kilickap et 
al. (2011) used GA. The bounds of machining parameters used and comparison of optimization 
solutions found by GA, PS algorithm (Madić & Radovanović, 2014b) and the MC method are given in 
Table 2.  
 
Table 2  
Optimization solutions of case study 4.2.2 
Machining parameters and bounds GA PS Single stage MC Multi-stage MC 
Cutting speed (m/min) [5 - 15] 7.62 7.692 7.813 7.690 
Feed rate (mm/rev) [0.1 - 0.3] 0.1 0.1 0.1 0.1 
Cutting environment [1 - 3] 1 1 1.016 1 
Ra optimal value 1.89 1.8892 1.8958 1.8892 
 
4.2.3. Case study 3 
 
Bhushan et al. (2012) investigated turning of Al Alloy SiC particle composite material using carbide 
turning inserts. The investigation was focused on the application of GA for finding the optimal 
machining parameters at which surface roughness has minimal value. Bhushan et al. (2012) developed 
the following mathematical model relating the machining parameters and surface roughness:  

2
1 2 3 1

2 2
2 3 1 2 1 3 2 3

4.96423 0.20418 0.09862 0.00851 0.00249

           0.00086 0.00039 0.00181 0.00104 0.00125

MRR x x x x

x x x x x x x x

        

            

2
1 2 3 1

2 2
2 3 1 2 1 3 2 3

3.15622 0.08019 0.07678 0.00356 0.00069

           0.00048 0.00016 0.00072 0.00026 0.00041

ROC x x x x

x x x x x x x x

        

            

2
1 2 3 1

2 2
2 3 1 2 1 3 2 3

0.940335 0.019541 0.028638 0.003122 0.000147

           0.000242 0.000017 0.000251 0.000017 0.000106

HAZ x x x x

x x x x x x x x

        

            

2
1 2 3 14.115 0.82767 8.225 0.135 0.0538aR x x x x        



  

       

654

 (5) 

where x1 = cutting speed, x2 = feed rate, x3 = depth of cut and x4 = tool nose radius. The bounds of 
machining parameters used in optimization procedure and comparison of optimization solutions found 
by Bhushan et al. (2012) by using GA to those obtained by using the MC method are given in Table 3. 
The same optimization problem was solved previously by Madić and Radovanović (2014b) by using 
the PS algorithm. 
 

Table 3 
Optimization solutions of case study 4.2.3 
Parameters and objective function GA  PS Single stage MC Multi-stage MC 
Cutting speed (m/min) [90 - 210] 207.055 210 206.198 209.867 
Feed rate (mm/rev) [0.15 - 0.25] 0.151 0.15 0.152 0.152 
Depth of cut (mm) [0.2 - 0.6] 0.201 0.2 0.208 0.2 
Tool nose radius (mm) [0.4 - 1.2] 1.199 1.2 1.197 1.2 
Surface roughness 1.06509* 1.0498 1.0885 1.0516 
* Corrected values 

 
4.2.4. Case study 4 
 

Savas and Ozay (2008) presented the GA approach for optimization of cutting parameters at cylindrical 
workpieces leading to minimal surface roughness in the tangential turn-milling process. The 
mathematical model for the prediction of surface roughness considering machining parameters was 
obtained according to experiment results and is given in the equation below: 
 

 (6) 

 

where x1 = workpiece speed, x2 = tool speed, x3 = feed rate and x4 = depth of cut. 
 
The optimization solution for turn-milling process obtained by Savas and Ozay (2008) by using GA is 
given in Table 4. In the same table the bounds of machining parameters used in optimization procedure 
and optimization solution obtained by the MC method are given. The same optimization problem was 
solved previously by Madić and Radovanović (2014b) by using the PS algorithm. 
 
Table 4  
Optimization solutions of case study 4.2.4 
Parameters and objective function GA  PS Single stage MC Multi-stage MC 
Workpiece speed (rev/min) [300 - 700] 511.9 512.5 497.716 513.305 
Tool speed (rev/min) [150 - 300] 224.9 225 225.164 226.193 
Feed rate (mm/min) [3 - 20] 3.2 3 3.055 3 
Depth of cut (mm) [0.1 - 1] 0.1 0.1 0.106 0.1 
Surface roughness 0.4394* 0.4366 0.4398 0.4366 
* Corrected values 

 
4.2.5. Case study 5 
 

Çaydaş and Hasçalik (2008) investigated the relationship between machining parameters and surface 
roughness in AWJ machining of Al 7075-T6 wrought alloy. Based on experimental data, the following 
prediction model was developed: 
 

 (7) 

 

2
1 2 3 4 1

2
3 2 3 3 4

0.72412 0.00324 0.19694 4.19915 0.18753 0.0000174

       3.42419 3.33125 0.56484
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3 4
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x x
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        0.03089 0.00513
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where x1 = traverse speed, x2 = waterjet pressure, x3 = standoff distance, x4 = abrasive grit size and x5 = 
abrasive flow rate. Zain et al. (2011) used Eq. (7) as the objective function to determine optimal values 
of machining parameters so as to minimize surface roughness by using GA and SA. Recently, for 
solving the same problem, Yusup et al. (2012) and Madić and Radovanović (2014b) attempted the 
ABC and PS algorithm, respectively. The bounds of machining parameters used in optimization 
procedure and optimization solutions obtained by past researchers and those obtained by using the MC 
method are given in Table 5.  
 

Table 5 
Comparison of optimization solutions of case study 4.2.5 

Optimization approach 
Traverse speed 

(mm/min) 
[50 - 150] 

Waterjet pressure 
(MPa) 

[125 - 250] 

Standoff 
distance (mm) 

[1 - 4] 

Abrasive grit size 
(µm) 

[60 - 120] 

Abrasive flow 
rate (g/s) 

[0.5 – 3.5] 

Minimal 
Ra 

GA 50.024 125.018 1.636 94.73 0.525 1.554 
SA 50.003 125.029 1.486 107.737 0.5 1.533 
ABC 50 125 1.550 102.521 0.5 1.522 
PS 50 125 1.545 102.494 0.5 1.5223 
Single stage MC 50.610 126.443 1.125 103.096 0.506 1.64392 
Multi-stage MC 50.030 125.005 1.255 101.778 0.501 1.53351 
 
4.2.6. Case study 6 
 

Munda and Bhattacharyya (2008) presented an approach for investigation of the EMM process using 
RSM. Five machining parameters, pulse on/off ratio, machining voltage, electrolyte concentration, 
voltage frequency and tool vibration frequency and two machining performance characteristics such as 
MRR and ROC were considered in the study. The RSM mathematical models for MRR and ROC 
prediction on the basis of machining parameters are given in Eqs. (8a) and (8b), respectively: 
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where x1 = pulse on/off ratio, x2 = machining voltage, x3 = electrolyte concentration, x4 = voltage 
frequency and x5 = tool vibration frequency. In order to investigate the applicability and suitability of 
the ABC algorithm for solving machining optimization problems, Samanta and Chakraborty (2011) 
used Eqs. (8a) and (8b) as the objective functions to determine optimal values of machining parameters. 
The bounds of machining parameters used in optimization procedure and optimization results of single 
objective optimization of the MRR and ROC for the EMM process obtained by the ABC algorithm and 
MC method are given in Table 6.  
 
As seen from Table 6, optimization of mathematical model for ROC (Eq. 8b) using MC method yielded 
a negative value as the optimal one. It is recognized that the negative value of ROC is physically 
meaningless, however, this value is regarded only as the optimal solution of the mathematical model. 
Although it was observed by Munda and Bhattacharyya (2008) that the mathematical model for ROC 
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prediction is statistically adequate at 97.5% confidence level, it is observed that there is no guarantee 
that the model will yield meaningful predictions over the entire experimentally investigated range. 
 

Table 6  
Optimization solutions of case study 4.2.6 
Machining parameters and bounds ABC algorithm Single stage MC Multi-stage MC 

MRR ROC MRR ROC MRR ROC 
Pulse on/off ratio   [0.5 – 2.5] 0.9168 0.6288 0.912 0.511 0.966 0.501 
Machining voltage (V)   [2.5 – 4.5] 4.5 3.2639 4.499 2.534 4.498 2.501 
Electrolyte concentration (g/l)   [10 - 30] 30 18.7930 29.872 20.766 29.996 20.546 
Voltage frequency (Hz)   [35 - 55] 52.4956 39.4123 54.923 35.663 54.606 35.012 
Tool vibration frequency (Hz)  [100 - 300] 100 249.4320 108.436 270.838 105.011 270.287 
Optimal value 1.47 0 1.4483 -0.2424 1.4584 -0.2649 
 
 

4.3. Analysis and discussion 
 

As it can be seen from the results in the previous section, the identified near optimal machining 
conditions are about the same as those selected as optimal by previous researches. Given that the 
optimization was based on using mathematical models as objective functions, all optimization solutions 
obtained by the multi-stage MC method can be verified through a trivial calculation using mathematical 
models given in section 4. Considering stochastic nature of the MC method and meta-heuristic 
methods, validation and possible improvement of optimization solutions can be performed using 
exhaustive search algorithm. In our previous work (Kovačević et al. 2013) the possibilities and 
advantages of applying exhaustive iterative search for solving machining optimization problems and 
validation of optimization results obtained by other optimization methods were presented. 
 
A deeper analysis of the machining optimization solutions indicates that in the case of mathematical 
models with up to four independent variables, the optimization solutions obtained by the multi-stage 
MC method are comparable or even better than solutions obtained by past researchers using meta-
heuristic algorithms such as GA, ABC and TLBO. For the case study 5, which deals with five 
independent variables, it was observed that the optimization solution obtained using the multi-stage 
MC method is better that the optimization solutions obtained by GA and SA, but poorer than the one 
obtained by ABC algorithm. A comparative analysis of optimization solutions of case study 4.2.6 in the 
case of five independent variables reveals that the multi-stage MC method is less effective in high 
dimensional spaces, and the advantage should be given to the ABC algorithm.  
 
When applying the MC method for solving machining optimization problems it should be noted that a 
decrease in the variability of obtained solutions was not observed with an increase in the number of 
simulation runs. Also, it was observed that in some cases e.g. (case study 1) the best optimization 
solution was obtained after only 5000 simulation runs, whereas in some cases the best optimization 
solution was obtained after a larger number of simulation runs. In other words, there is no greater 
certainty that the better optimization solution will be found with an increasing number of simulation 
runs, which is the case when using meta-heuristics. The impossibility to decrease the variability of 
obtained solutions and increase certainty of obtaining better optimization solutions with increasing 
number of simulation runs is a consequence of the fact that the MC method does not use any search 
guide information and rules, but only random numbers. However, possible improvements of 
optimization solutions might be expected by a drastic increase in the number of simulation runs. 
 

The optimization solutions presented in this paper indicate that the multi-stage MC method involving 
few thousand MC computation runs represents a fairly effective and efficient approach for solving 
multi-dimensional machining optimization problems. Furthermore, the MC based optimization 
approach is very simple to implement, requires no expert knowledge of optimization theory and 
artificial intelligence, setting of algorithm parameters and/or defining an initial solution as in the case 
of using other optimization methods. 
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The salient advantage of the application of the MC method is that it is possible to obtain a population of 
optimization solutions. Graphical visualization of the optimization solutions for the case study 4.2.1. 
(maximization of MRR) obtained using the multi-stage MC method are shown in Figure 3. By plotting 
these graphs, all acceptable solutions with corresponding values of machining parameters can be easily 
identified. This is particularly advantageous in machining practice considering different machine/tool 
constraints and limitations. 

 
 

Fig. 3. Optimization solutions obtained using the multi-stage MC method for the case study 4.2.1. 
 
5. Conclusion 
 
This paper presented an investigation of applicability of the multi-stage MC method for solving 
machining optimization problems. To this aim six machining optimization problems taken from 
relevant literature were considered and the obtained results were compared with the results obtained by 
previous researchers using different meta-heuristic optimization methods.  The optimization procedure 
based on the MC method is very simple, both conceptually and in implementation without the need to 
write a programming code or use specialized software packages, and by the authors’ opinion represents 
an optimization tool being most suited to use by process engineers in real production environment. The 
salient features of MC include the following: (i) solving optimization problems requires no expert 
knowledge of optimization theory, artificial intelligence, setting of different algorithm parameters 
and/or defining an initial solution as in the case of using other optimization methods, (ii) there is a 
possibility to find a population of optimization solutions and rank them, (iii) the multi-stage approach 
provides the possibility for an improvement of the optimization solutions. The analysis of the obtained 
results can be summarized by the following points: 
 

 in the case of mathematical models with up to four independent variables, the optimization 
solutions obtained by the multi-stage MC method are comparable with the optimization 
solutions obtained by using other meta-heuristic optimization methods, 

 the multi-stage MC method may not be suitable for higher dimensional spaces and the priority 
for solving machining optimization problems should be given to meta-heuristic optimization 
methods which have powerful mathematical tools that guide the exploration of optimization 
space. However, the optimization solutions obtained using the MC method can be used as initial 
solutions such as in the case of SA, 

 the MC method proves its applicability as a very simple optimization method for solving 
machining optimization problems. 
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The main scope of our future work will be the application of the multi-stage MC method for solving 
multi-objective machining optimization problems. Furthermore, attempts will be made to investigate 
the applicability of a combined optimization approach by integrating the MC method with the brute 
force algorithm based on an exhaustive iterative search. It is believed that the application of this hybrid 
approach for solving machining optimization problems in continual search space will outperform the 
optimization results of other meta-heuristic optimization methods in terms of solution accuracy and 
computational speed. 
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