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 Optimization of machining processes not only increases machining efficiency and economics, but 
also the end product quality. In recent years, among the traditional optimization methods, 
stochastic direct search optimization methods such as meta-heuristic algorithms are being 
increasingly applied for solving machining optimization problems. Their ability to deal with 
complex, multi-dimensional and ill-behaved optimization problems made them the preferred 
optimization tool by most researchers and practitioners. This paper introduces the use of pattern 
search (PS) algorithm, as a deterministic direct search optimization method, for solving 
machining optimization problems. To analyze the applicability and performance of the PS 
algorithm, six case studies of machining optimization problems, both single and multi-objective, 
were considered. The PS algorithm was employed to determine optimal combinations of 
machining parameters for different machining processes such as abrasive waterjet machining, 
turning, turn-milling, drilling, electrical discharge machining and wire electrical discharge 
machining. In each case study the optimization solutions obtained by the PS algorithm were 
compared with the optimization solutions that had been determined by past researchers using 
meta-heuristic algorithms. Analysis of obtained optimization results indicates that the PS 
algorithm is very applicable for solving machining optimization problems showing good 
competitive potential against stochastic direct search methods such as meta-heuristic algorithms. 
Specific features and merits of the PS algorithm were also discussed. 
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1. Introduction  
 

Importance for saving costs, maintaining competitiveness in a fierce market and ever-growing demand 
for high quality machined products, necessitates optimization of machining processes. Machining 
processes are highly complex, dynamic processes characterized by a number of machining parameters, 
i.e. input variables and different performance measures (responses), i.e. outputs (Kovačević et al., 
2013). The main goal of optimization of machining processes is to determine the optimal values of 
machining parameters so as to achieve an enhanced machining performance with high dimensional 
accuracy (Samanta & Chakraborty, 2011). Traditionally, determination of optimal values of machining 
parameters comprises of mathematical modeling of a machining performance measures and 
optimization using an optimization method. 
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Wide spectrum of optimization methods and algorithms has been proposed for solving machining 
optimization problems (Dixit & Dixit, 2008; Mukherjee & Ray, 2006; Zhang et al., 2006). Some of 
these include analytical, classical optimization and artificial intelligence methods. In an early work, 
Gilbert (1950) presented an analytical approach for the selection of optimal cutting speed in a single 
pass turning process. Armarego and Brown (1969) reported the application of differential calculus for 
solving unconstrained machining optimization problem. Bhattacharya et al. (1970) applied Lagrange’s 
method for optimization of unit cost in turning process, subject to the constraints of surface roughness 
and cutting power. Many references presented the application of linear, non-linear, geometric and 
dynamic programming methods. 
  
Linear programming was used in the early stage of optimization of machining process (Ermer & Patel, 
1974). Later on, Tan and Creese (1995) used a sequential method based on linear programming for 
optimization of multi-pass turning operation. An approach based on the use of integer linear 
programming was presented by Gupta et al. (1995) for optimization of machining cost. Linear 
programming methods are fast and reliable (Al-Sumait et al., 2007), but both objective function and 
constraint equation(s) are linear functions. As machining optimization problems are mostly complex 
and non-linear in nature, linear programming methods do not provide an adequate answer, or may not 
be appropriate for many such problems. Multi-modal objective functions and consideration of multiple 
non-linear objective functions justify the use of non-linear programming methods (Mukherjee and Ray, 
2006). Geometric programming was earlier used for solving different machining optimization 
problems. Ermer (1971), Petropoulos (1973) and Lambert and Walvekar (1978) applied geometric 
programming for solving constrained machining economics optimization problems. Sönmez et al. 
(1999) used geometric and dynamic programming for optimization of multi-pass slab milling and face 
milling for maximum production rate. The geometric programming method could not become popular 
for two reasons. First, the constraints and objective functions must be expressible in the form of a 
polynomial and second, as the number of constraints increase, the degree of difficulty in solving a 
geometric programming problem increases (Dixit & Dixit, 2008). 
 
Dynamic programming has been applied for solving sequential and multi-stage optimization problems 
(Shin & Joo, 1992; Hayers & Davis, 1979; Sekhon, 1982) and goal programming was earlier used to 
solve multi-objective non-linear machining optimization problems (Sundaram, 1978; Philipson & 
Ravindran, 1978; El-Gizawy & El-Sayed, 2002). The aforementioned mathematical programming 
optimization methods are mostly gradient-based, and they possess many limitations in the application 
for solving machining optimization problems including: (i) inability to deal with integer/discrete input 
variables (Zhang et al., 2006), (ii) inclined to obtain a local optimal solution (Yildiz, 2009; Rao & 
Pawar, 2010; Debroy & Chakraborty, 2013) (iii) a judicious choice of an initial starting point in the 
input space is required (Zhang et al., 2006; Debroy & Chakraborty, 2013), (iv) slow convergence, (v) 
lack of robustness (Rao & Pawar, 2010) and (vi) inability to handle the overall machining process 
complexities due to large number of inter-dependent input variables and their stochastic relationships 
(Markos et al., 1998).  
 
In the past decade, the new trend in the optimization of the machining processes has been based on the 
use of meta-heuristic algorithms (Zain et al., 2011; Yusup et al., 2013; Bhushan et al., 2012; Savas & 
Ozay, 2008; Kilickap et al., 2011; Maji & Pratihar, 2011; Rao & Pawar, 2009; Rao & Pawar, 2010; 
Rao, 2011; Rao & Kalyankar, 2013; Goswami & Chakraborty, 2014). It has been widely reported that 
these algorithms have the possibility to deal with discontinuous, non-differentiable, and multi-
dimensional machining process models. Furthermore, they do not require the derivative information of 
the objective function and constraints for the search, rather, they “intelligently” search the optimization 
space by combining different rules so as to imitate natural phenomena. Lately, the need to tackle more 
and more complex machining optimization problems and reach a global optimal solution, led to the 
introduction of hybrid methods which combine constructive properties of several methods, both 
classical and meta-heuristic algorithms. Yildiz (2009) demonstrated the superiority of the proposed 
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hybrid method by combining immune algorithm with a hill climbing local search algorithm for solving 
multi-pass turning operation. Also, hybridization of simulated annealing and Hooke-Jeeves algorithm 
(Chen & Tsai, 1996), genetic algorithm and simulated annealing (Wang et al., 2004), Taguchi’s method 
and genetic algorithm (Yildiz & Ozturk, 2006), etc., proved the effectiveness and efficiency of 
combined approach for solving machining optimization problems. 
 
Although the popularity of the meta-heuristic algorithms is ever increasing, they are plagued by their 
own limitations including (Kovačević et al., 2013; Yildiz, 2009): (i) the optimality of the determined 
solution is impossible to prove, (ii) algorithm parameters settings have a strong influence on the final 
optimization solution, (iii) there is no universal rule for setting the algorithm parameters and (iv) even 
expert knowledge in meta-heuristics, systematical selection of the algorithm parameters, as well as 
understanding of the optimization problem being solved, do not guarantee the optimality of the 
obtained solution, (v) premature convergence to a local minimum and poor exploitation abilities. 
Apart from meta-heuristic algorithms, the potential for solving machining optimization problems also 
have other optimization methods that are conceptually simpler. In recent years, direct search methods 
have received renewed interest due to new mathematical analysis, their suitability for parallel and 
distributed computing, and their utility in addressing optimization problems that involve complex 
computer simulations (Lewis & Torczon, 2011). Direct search methods as one of the earliest numerical 
optimization methods, formally proposed in the late 1950s and early 1960s, have remained popular 
with users due to their (Macklem, 2006; Lewis et al., 2000; Lewis & Torczon, 2011): (i) ease of 
implementation and formulation requiring setting of only few parameters, (ii) flexibility, reliability and 
practical success in solving a wide range of non-continual, non-differentiable and multimodal 
optimization problems, (iii) features unique to direct search methods often avoid the pitfalls that can 
plague more sophisticated approaches, (iv) robustness in locating at least local optimal solutions. 
Historically direct search methods can be classified into pattern search (PS) methods, simplex methods, 
and methods with adaptive sets of search directions (Lewis et al., 2000). The development and results 
of Torczon's multidirectional search (Torczon, 1989), generalized pattern search (Torczon, 1997), 
generating set search (Kolda et al., 2003) and mesh adaptive direct search (Audet and Dennis, 2006) 
renewed interest in the application of direct search methods for solving nonlinear optimization 
problems. Direct search methods neither compute nor approximate derivatives, instead, they work 
directly with values of the objective function to drive the search for an optimal point (Lewis & 
Torczon, 2011). They generate search points according to a pattern, around the current point, and 
accept points, which improve the objective function. Many of the direct search methods are based on 
surprisingly sound heuristics that fairly recent analysis demonstrates guarantee global convergence 
behavior analogous to the results known for globalized quasi-Newton techniques (Lewis et al., 2000). 
 
The main objective of this paper is to introduce the use of PS algorithm to the subject of machining 
optimization, which to the best of the authors’ knowledge, has not been previously applied in this field. 
This paper aims at investigating applicability and performance of conceptually simple PS algorithm for 
solving single and multi-objective machining optimization problems. The machining optimization 
application examples considered are taken from scientific resource bases, such as Springer, Elsevier, 
and Sage. The paper is organized as follows. After introduction, the brief description of the PS 
algorithm is given in the second section. In the third section, six case studies of machining optimization 
problems were considered. In each case study optimization solutions obtained by previous researchers 
using meta-heuristic algorithms and optimization solutions obtained using the PS algorithm were 
compared and discussed. Findings and observations are summarized in the last section. 
 
2. Pattern search algorithm  
 
The PS algorithm is characterized by a series of exploratory moves that consider the behavior of the 
objective function at a pattern of points, all of which lie on a rational lattice (Lewis et al., 2000). The 
algorithm computes a sequence of points that may or may not approach an optimal point.  
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The PS algorithm uses a set of vectors {vi}, called a pattern, to determine which points to search at each 
iteration. The pattern is defined by the number of independent variables of the objective function, N, 
and the positive basis set. Two commonly used ones are the maximal basis, with 2N vectors (v1=[1 0 
0], v2=[0 1 0], v3=[0 0 1], v4=[-1 0 0], v5=[0 -1 0], v6=[0 0 -1]), and the minimal basis, with N+1 
vectors (v1=[1 0 0], v2=[0 1 0], v3=[0 0 1], v4=[-1 -1 -1]). 
 
At each iteration, the PS algorithm searches a set of points, called a mesh, around the current point (the 
point computed at the previous step of the algorithm) for a point that improves the objective function 
value. The mesh is formed by (MathWorks, 2012): 
 

1. Generating a set of vectors {di} by multiplying each pattern vector vi by a scalar Δm, called the 
mesh size. 

2. Adding the current point to the {di}. 
 
The pattern vector that produces a mesh point is called its direction. After generation of mesh the PS 
algorithm polls the points in the current mesh by computing their objective function values. If the PS 
algorithm finds a point in the mesh that improves the objective function value, the new point becomes 
the current point in the next iteration. In this case the mesh size Δm is multiplied by 2 (expansion 
factor). Otherwise, the poll is called unsuccessful, the current point remains in the next iteration and the 
mesh size Δm is multiplied by 0.5 (contraction factor). The PS algorithm stops when any of the 
following conditions occurs (MathWorks, 2012): 
 

 The mesh size is less than mesh tolerance. 
 Maximal number of iterations is reached. 
 Total number of objective function evaluations is reached. 
 Time limit is reached. 
 The distance between the point found in two consecutive iterations and the mesh size are both 

less than a set tolerance. 

 The change in the objective function in two consecutive iterations and the mesh size are both 
less than function tolerance. 

 
It should be noted that the implementation of the PS algorithm in the Matlab programming 
environment allows for customization of the PS algorithm by defining polling, searching, and other 
functions. For a detailed description of the PS algorithm, its variants and other direct search algorithms 
refer to Lewis et al., (2000), Torczon, (1989, 1997), Kolda et al. (2003) and Audet and Dennis, (2006).  
 
3. Case studies 
 
To investigate the applicability of the PS algorithm for solving machining optimization problems, six 
research papers dealing with machining optimization were considered. In order to facilitate validation 
and comparison of obtained optimization solutions this paper considered only mathematical models 
developed using polynomial equations. For the purpose of optimization, the related m.files for the 
considered mathematical models were developed in Matlab. In an initial attempt this study was not 
focused on the analysis of the effects of main control parameters of the PS algorithm on the quality of 
optimization solutions obtained and convergence speed. Therefore in all case studies considered the PS 
algorithm was implemented with the following values of main control parameters. 
 

Poll Mesh 
  poll method: maximal basis 2N   initial size: 1 
  complete poll: off   expansion factor: 2 
  polling order: consecutive   contraction factor: 0.5 
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Prior to the application, the PS algorithm takes at least two input arguments, namely the definition of 
the mathematical model i.e. objective function and a start point – initial solution. For each case study 
the optimization was attempted starting from three different initial solutions that are: all machining 
parameter values set on low level (–1) – “PS solution 1”, all machining parameter values set on centre 
level (0) – “PS solution 2” and all machining parameter values set on high level (+1) – “PS solution 3”. 
All computations were run on Intel Core2Duo T5800 with 4 GB RAM. 
 
3.1. Single objective machining optimization examples 
 
3.1.1. Abrasive waterjet machining 
 
Çaydaş and Hasçalik (2008) investigated the abrasive waterjet machining process through the 
application of artificial neural networks and regression analysis. Using the obtained experimental data 
the authors developed mathematical models to predict surface roughness (Ra) using machining 
parameters of traverse speed (V), waterjet pressure (P), standoff distance (h), abrasive grit size (d) and 
abrasive flow rate (m). The final mathematical model for the prediction of Ra was obtained as: 
 

 (1) 

 

The range of machining parameter values used in experimental process was selected to present the 
constraints of the optimization problem as given in Eq. (2).  
 

 mm/min 150  V  50   

(2) 

(MPa) 250  P  125   

(mm) 4h   1   

(µm) 120  d  60   

(g/s) 3.5  m  0.5   
 

Considering the constraints given in Eq. (2), the PS algorithm was used to optimize Eq. (1). The 
obtained optimization solutions and optimization solutions obtained by past researches using meta-
heuristic algorithms (Zain et al., 2011; Yusup et al., 2013) are given in Table 1.  
 
Table 1  
Comparison of optimization solutions for abrasive waterjet machining process 

Approach V (mm/min) P (MPa) 
h 

(mm) 
d (µm) 

m 
(g/s) 

Minimal Ra 
Computational 

time (s) 
Number of 
iterations 

GA Zain et al. (2011) 50.024 125.018 1.636 94.73 0.525 1.5549   
SA Zain et al. (2011) 50.003 125.029 1.486 107.737 0.5 1.5355   
ABC Yusup et al. (2013) 50 125 1.55 102.521 0.5 1.5223   

PS 
PS solution 1 50 125 1.545 102.494 0.5 1.5223 1.16 66 
PS solution 2 50 125 1.545 102.494 0.5 1.5223 1.53 88 
PS solution 3 50 125 1.545 102.494 0.5 1.5223 1.78 104 

 
It can be observed from Table 1 that the PS algorithm gives better results than the genetic algorithm 
(GA) and simulated annealing (SA) obtained previously by (Zain et al., 2011). The optimization results 
are comparable with the results of ABC algorithm as previously reported by Yusup et al. (2013). The 
optimization results indicate that PS algorithm, starting from three different initial points, successfully 
avoided the local minimum entrapment problem. However, it should be noted that in this case study the 
initial point had great impact on the convergence speed of the PS algorithm (Fig. 1). As can be 
observed only 66 iterations were needed to find the optimal solution when starting the optimization 
from lower bound [50 125 1 60 0.5] as initial point, whereas 104 iterations were needed when starting 

2 2 2

2 2

5.07976 0.08169 0.07912 0.34221 0.08661

       0.34866 0.00031 0.00012 0.10575

        0.00041 0.07590 0.00008 0.00009

        0.03089 0.00513

aR V P h d

m V P h

d m V m P m

h m d m
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the optimization from upper bound [150 250 4 120 3.5] as initial point. Considering that the surface 
roughness mathematical model was complex having five independent variables as well interaction and 
quadratic terms, the computational time less than 2s indicate that the application of PS algorithm 
represents an efficient alternative for solving machining optimization problems. 
 

 
Fig. 1. Convergence of the PS algorithm 

 
3.1.2. Turning process 
 
In an attempt to optimize turning parameters so as to minimize surface roughness, Bhushan et al. 
(2012) presented an integrated approach consisting of regression analysis and GA. On the basis of the 
experimental results, Bhushan et al. (2012) developed the following mathematical model for the 
prediction of surface roughness: 
 

 (3) 

 
where A = cutting speed, B = feed rate, C = depth of cut and D = nose radius. 
The range of machining parameter values used in experimental process was selected to present the 
constraints of the optimization problem as given in Eq. (4).  
 

(m/min) 210 A   90   

(4) 
(mm/rev) 0.25  B  0.15   

(mm) 0.6  C  0.2   

(mm) 1.2  D  0.4   

 
The optimization solution of the afore-mentioned optimization problem using the PS algorithm and 
optimization solution obtained Bhushan et al. (2012) are given in Table 2. 

 
Table 2  
Comparison of optimization solutions for turning process 

Approach 
Cutting speed 

(m/min) 
Feed rate 
(mm/rev) 

Depth of cut 
(mm) 

Nose radius 
(mm) 

Minimal Ra 
Computational 

time (s) 
Number of iterations 

GA Bhushan et al. (2012) 207.055 0.151 0.201 1.199 1.06509*   

PS 
PS solution 1 90 0.15 0.2 1.2 1.28744 1.14 40 
PS solution 2 210 0.15 0.2 1.2 1.04984 1.41 82 
PS solution 3 210 0.15 0.2 1.2 1.04984 1.18 56 

* Corrected value   

 
Unlike the previous study, although the objective function was simpler containing fewer independent 
variables, local solution entrapment was observed. However, comparison of optimization results from 

2

2

0.72412 0.00324 0.19694 4.19915 0.18753 0.0000174

       3.42419 3.33125 0.56484

aR A B C D A

C B C C D
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Table 2 indicate that the PS algorithm yielded better results than the GA obtained previously by 
Bhushan et al. (2012).  
 
3.1.3. Turn-milling machining process 
 
Savas and Ozay (2008) investigated tangential turn-milling machining process. The study was aimed at 
determination of optimum machining parameter values at which surface roughness is minimal by using 
GA. According to the experiment data obtained the following mathematical model for surface 
roughness was obtained: 
 

   
   

2 20.000008 0.0082 2.8734 0.00003 0.0135 1.9924

       0.0171 0.4677 0.2525 0.4087 5.3

aR N N n n

f a

          

      
 (5) 

 
where N = workpiece speed, n = tool speed, f = feed rate and a = depth of cut. 
The constraints for the machining parameters used in optimization are given in Eq. (6). 
 

(rev/min) 700  N  300   

(6) 
(rev/min) 003n   150   

(mm/min) 20  f  3   

(mm) 1  D  0.1   
 

The optimization solution of the afore-mentioned optimization problem using the PS algorithm and 
optimization solution obtained by Savas and Ozay (2008) are given in Table 3. 
 
Table 3  
Comparison of optimization solutions for turn-milling machining process 

Approach 
Workpiece speed 

(rev/min) 
Tool speed 
(rev/min) 

Feed rate 
(mm/min) 

Depth of cut 
(mm) 

Minimal Ra 
Computational 

time (s) 
Number of iterations 

GA Savas and Ozay (2008) 511.9 224.9 3.2 0.1 0.439437*   

PS 
PS solution 1 512.5 225 3 0.1 0.436558 1.24 62 
PS solution 2 512.5 225 3 0.1 0.436558 1.28 66 
PS solution 3 512.5 225 3 0.1 0.436558 1.51 78 

* Corrected value   

 
Analysis of obtained optimization results given in Table 3 indicates again the efficiency of the PS 
algorithm in determining optimization solution which is better than the one obtained by the GA. 
 
3.1.4. Drilling process 
 
Kilickap et al. (2011) presented a GA based methodology for optimization of drilling parameters 
considering surface roughness as objective function in drilling of AISI 1045. Mathematical prediction 
model of the surface roughness was obtained as  
 

, (7) 

 
where x1 = cutting speed, x2 = feed rate, x3 = cutting environment. 
The constraints for the machining parameters used in optimization are given in Eq. (8). 
 

(m/min) 15   x 5 1   

(8) (mm/rev) 30  x 0.1 2 .  
3   x 1 3   

 

The optimization solution of the afore-mentioned optimization problem using the PS algorithm and 
optimization solution obtained Kilickap et al. (2011) are given in Table 4. 

2
1 2 3 14.115 0.82767 8.225 0.135 0.0538aR x x x x        
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Table 4  
Comparison of optimization solutions for drilling process 

Approach 
Cutting speed 

(m/min) 
Feed rate 
(mm/rev) 

Cutting environment Minimal Ra 
Computational 

time (s) 
Number of iterations 

GA Kilickap et al. (2011) 7.62 0.1 1 1.89   

PS 
PS solution 1 7.692 0.1 1 1.88924 1.04 48 
PS solution 2 7.692 0.1 1 1.88924 1.13 68 
PS solution 3 7.692 0.1 1 1.88924 1.21 70 

 
Optimization solutions obtained by the PS algorithm are comparable with the optimization solutions 
obtained by using the GA. It can be also observed that convergence to the optimal point of the PS 
algorithm was not affected by the selection of initial point. 
 

3.2. Multi-objective machining optimization examples 
 

In multi-objective optimization of the machining processes, instead of treating two objective functions 
(responses) separately, both are to be simultaneously optimized. 
 

3.2.1. Electrical discharge machining process 
 

Maji and Pratihar (2011) modeled input-output relationships of an electrical discharge machining 
process based on the experimental data (collected according to a central composite design) using 
regression analysis. Three machining parameters, such as peak current (Ip), pulse-on-time (Ton) and 
pulse-duty-factor (t), and two process responses, namely, material removal rate (MRR) and surface 
roughness (SR) were considered in the study. Both MRR and SR were expressed separately, as given in 
Eq. (9) and Eq. (10), respectively: 
 

5 2

7 2 4 2 5

5

0.112931 0.0170470 0.000222059 0.0190297 7.23331 10

            2.43026 10  3.03374 10 1.58294 10

            0.00148333 3.96310 10

p on p

on p on

p on

MRR I T t I

T t I T

I t T t



  



          

         

      

 (9) 

 

 (10) 

 

Maji and Pratihar (2011) formulated the multi-objective problem considering both MRR and SR as 
given bellow: 
 
Maximize 1/

subject to: 6 18 (A),

                 50 750 (μs),

                  4 12.

p

on

Y MRR SR

I

I

t

 

 

 

 

 (11) 

 
The obtained optimization solution obtained using the PS algorithm and the solution obtained by Maji 
and Pratihar (2011) by using the binary coded GA are compared in Table 5. 
 
Table 5 
Comparison of optimization solutions for electrical discharge machining process 

Approach 
Peak current, Ip 

(A) 
Pulse-on-time, 

Ton (µs) 
Pulse-duty-

factor, t 
Y 

MRR 
(g/min) 

SR 
(µm) 

Computational 
time (s) 

Num. of 
iterations 

GA Maji & Pratihar, 2011 17 138 11 0.745349 0.608957 7.331776   

PS 
PS solution 1 18 50 12 0.833964 0.676512 6.351134 0.85 32 
PS solution 2 18 50 12 0.833964 0.676512 6.351134 0.9 42 
PS solution 3 18 50 12 0.833964 0.676512 6.351134 0.98 50 

 

2

6 2 2

4

1.76966 0.882071 0.00686577 0.447132 0.0373631

       9.89173 10  +0.0221831 0.000517857

       0.0109375 2.76786 10

p on p

on p on

p on

SR I T t I

T t I T

I t T t
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The obtained optimization results indicate that the PS algorithm can be efficiently used for solving 
multi-objective machining optimization problems formulated based on classic weighted sum method. 
Fast computational time and avoidance of local optima entrapments confirm the validity on the use of 
the PS algorithm. From Table 5, it is obvious that the optimal solution obtained by the PS algorithm 
actually represents the boundary points of the machining parameter values in the covered experimental 
hyperspace. 
 
3.2.2. Wire electrical discharge machining process 
 
Rao and Pawar (2009) investigated the wire electrical discharge machining (WEDM) process. The 
authors developed mathematical models for correlating different machining parameters and cutting 
speed (Vm) and surface roughness (Ra). The developed mathematical models by for Vm and Ra are 
given by Eqs. (12) and (13), respectively, whereas Eq. (14) gives the surface roughness constraint. 
 

1 2 3 4 1 2

1 3 1 4 2 3 2 4

2 2 2 2
3 4 1 2 3 4

1.555 0.1095 0.187 0.0929 0.1279 0.0393

       0.0793 0.01188 0.01688 0.0493

       0.0606 0.03219 0.02031 0.0909 0.06094

mV x x x x x x

x x x x x x x x

x x x x x x

           

           

          

 (12) 

1 2 3 4 1 2

1 3 1 4 2 3 2 4

2 2 2 2
3 4 1 2 3 4

3.6 0.2979 0.2979 0.1479 0.03542 0.021875

       0.2031 0.04062 0.01562 0.1531

       0.1031 0.3182 0.3807 0.4057 0.2682

aR x x x x x x

x x x x x x x x

x x x x x x

           

           

          

 (13) 

0per aR R   (14) 

where x1 = pulse-on time, x2 = pulse-off time, x3 = peak current, x4 = servo feed setting and Rper is the 
permissible value of surface roughness. 
 
The upper and lower bound values for the machining parameters used by Rao and Pawar (2009) are as 
given as: pulse-on time (µs) = 4 – 8; pulse-off time (µs) = 10 – 30; peak current (A) = 90 – 140; servo 
feed setting = 30 – 50. In order to determine optimal machining parameter values such that permissible 
surface value of Rper = 2 μm is obtained and cutting speed is maximized at the same time, different 
meta-heuristic algorithms were previously applied (Rao & Pawar, 2009; Rao, 2011; Rao & Kalyankar, 
2013) (Table 6). For solving nonlinear constraint problems, as in this case study, the PS algoritm uses 
augmented Lagrangian approach, in which the bounds and linear constraints are handled separately 
from nonlinear constraints. A subproblem is formulated by combining the objective function and 
nonlinear constraint function using the Lagrangian and the penalty parameters. A sequence of such 
optimization problems are approximately minimized using the PS algorithm such that the linear 
constraints and bounds are satisfied (MathWorks, 2012). The optimization solutions obtained using the 
PS algorithm are given in Table 6. 
 
Table 6  
Comparison of optimization solutions for wire electrical discharge machining process 

Approach 
Pulse on  
time (μs) 

Pulse off 
time(μs) 

Peak current 
(A) 

Servo 
feed 

Vm 
(mm/min) 

Rper 
(µm) 

Comp. 
time (s) 

Num. of 
iterations 

ABC Rao and Pawar (2009) 8 30 132.57 50 1.420907* 1.998325   
PSO Rao (2011) 4 23.23 140 50 1.420498 1.998649   
MHS Rao (2011) 8 29.66 134.15 50 1.414212* 1.972583   
SA Rao (2011) 8 29.66 134.15 50 1.414212 1.972583   
SFL Rao (2011) 7.972 29.8 133.375 50 1.417831* 1.994749   
TLBO Rao & Kalyankar, 2013 4 22.937 140 50 1.4287 2.018925   

PS 
PS solution 1 - - - - no feasible solution found - - 
PS solution 2 8 30 132.825 49.84 1.4205 2.00 7.46 4 
PS solution 3 8 30 140 44.79 1.3997 2.00 1.05 5 

* Corrected values   

 

When solving nonlinear constrained optimization problems, as in this case study, the selection of 
starting point resulted in three different optimization solutions. Namely, no feasible solution was found 
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when starting the optimization from lower bound [4 10 90 30] as the initial point. PS optimization led 
to the maximum Vm of 1.3997 mm/min (local maximum) when starting the optimization from upper 
bound [8 30 140 50] as the initial point. However, the best obtained solution by the PS algorithm was 
obtained when starting the optimization from [6 20 115 40] as the initial point. It is interesting to note 
that this solution was found only in four iterations, requiring however, computational time of about 8 s. 
When comparing the optimization solution obtained by the PS algorithm with the solutions of other 
meta-heuristic algorithms it can be observed that the PS algorithm solution is comparable to the 
solution obtained by the particle swarm optimization (PSO) algorithm, and better than solutions 
obtained by SA, shuffled frog leaping (SFL) algorithm and modified harmony search (MHS) algorithm, 
all reported by Rao (2011). As can be seen from Table 6, the best optimization solution was obtained 
by the artificial bee colony (ABC) algorithm (Rao and Pawar, 2009). 
 
4. Conclusions 
 
This paper has introduced a new approach based on the PS algorithm for solving machining 
optimization problems. The PS algorithm has been used to solve both the single- and multi-objective 
optimization problems which had been solved by the past researchers using meta-heuristic algorithms. 
The conclusions of this research are summarized in the following points: 
 

 Convergence of the PS algorithm, i.e. the number of required iterations and computational time 
greatly depends on the selection of the initial solution. The effectiveness of the PS algorithm 
appears to rely on how close the initial point is to the optimal point. 

 Unlike meta-heuristic algorithms, the PS algorithm consistently produces the same solutions 
when the optimization is started from the same initial point. 

 In the case of solving single-objective optimization problems, the optimization solutions 
obtained by the PS algorithm are better or at least comparable with the optimization solutions 
obtained by using meta-heuristic algorithms such as GA, SA and ABC algorithm. 

 The PS algorithm can be efficiently used for solving multi-objective machining optimization 
problems formulated on the basis of the classic weighted sum method. 

 Although the PS algorithm has yielded comparable or better optimization solutions than the 
optimization solutions obtained by several meta-heuristic algorithms such as PSO, SA, SFL and 
MHS, when solving nonlinear constrained machining optimization problems, the PS algorithm 
has faced convergence problems. The comparative analysis of optimization results has indicated 
that the priority in this case should be given to the ABC algorithm, which has powerful 
mathematical tools to guide the exploration of optimization space. 

 
In conclusion, it has been found that the PS algorithm is an efficient optimization method and its 
overall performance has shown that it is well suited for solving machining optimization problems. 
Considering that the previous researchers have adjusted the main parameters of GA and ABC algorithm 
(Yusup et al., 2013; Bhushan et al., 2012; Kilickap et al., 2011; Maji & Pratihar, 2011), while in this 
paper the PS optimization solutions have been obtained without any adjustments of the main PS 
algorithm parameters such as mesh size, expansion and contraction factor values, one can conclude that 
deterministic direct search methods, such as the PS algorithm, have good competitive potential in 
solving machining optimization problems against stochastic direct search methods such as meta-
heuristic algorithms. The main scope of future work will be the analysis of the PS algorithm parameters 
and selection of initial solutions by the use of Taguchi’s experimental design technique and the 
application with comparative analysis of other direct search methods for solving machining 
optimization problems. Attempts will also be made to investigate the efficiency of a combined 
optimization approach by integrating deterministic and stochastic direct search methods. 
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