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 This paper introduces a new comprehensive four-parameter distribution called the modified 
generalized linear failure rate (MGLFR) distribution. The method generalizes some well-known 
and most commonly used distributions in reliability such as exponential, Rayleigh, linear failure 
rate, generalized linear failure rate and modified Weibull distribution. The study also investigates 
some essential properties of this new distribution and considers the problem of the evaluation of 
system reliability by describing the lifetimes of components based on a fuzzy MGLFR 
distribution and by developing fuzzy reliability characteristics. The results can be applied to 
determine the reliability of real objects where parameters of lifetime variable are subject to 
uncertainty. 
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1. Introduction  
 

 
There are literally numerous distributions for modeling lifetime data such as exponential, Weibull, 
Rayleigh, linear failure rate or generalized exponential distributions. Reliability has always been a key 
role in designing engineering systems. The most frequently used functions in lifetime data analysis and 
reliability engineering are the reliability function (survival function), and hazard function. Survival 
function gives the probability of an item operating for a certain amount of time without failure. 
Exponential distribution maintains only constant hazard function whereas Rayleigh, linear failure rate 
and generalized exponential distribution may have only monotone hazard functions. The Weibull 
distribution function was introduced by Fisher and Tippett in 1928. The Swedish physicist Wallodi 
Weibull (1939) used this probability distribution for describing the lifetime of components with 
variable failure rate. Burr (1942) introduced twelve different forms of cumulative distribution functions 
for modeling lifetime data. Among those distributions, Burr Type X and Burr Type XII are the most 
popular ones.  
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Surles and Padgett (2001) introduced two-parameter Burr Type X distribution and correctly named as 
the generalized Rayleigh (GR) distribution. They showed that the GR distribution could be used quite 
effectively in modeling strength data and in modeling general lifetime data. Mudholkar and Srivastava 
(1993) introduced the exponential Weibull family, which contains important physical interpretation. 
Gupta and Kundu (1999a) introduced generalized exponential distribution (GED). The two-parameter 
GED can have non-increasing and non-decreasing failure rates depending on the shape parameter. 
Sarhan and Zaindin (2009) introduced a new three-parameter distribution called the Modified Weibull 
distribution (MWD). This distribution generalizes the well-known (1) exponential distribution, (2) 
linear failure rate distribution, (3) generalized exponential distribution, and (4) generalized Rayleigh 
distribution. The MWD can be used to describe several reliability models. Sarhan and Kundu (2009) 
introduced generalized linear failure rate distribution. It can have increasing, decreasing and bathtub 
shaped hazard functions.  
 
There are several methods and models in classical reliability theory, which assume that all parameters 
of lifetime density functions are precise. However, in the real world applications, randomness and 
fuzziness are often mixed up in the lifetimes of systems. However, the parameters sometimes cannot 
record precisely due to machine errors, experiment, personal judgment, estimation or some other 
unexpected situations. When parameter in the lifetime distribution is fuzzy, the conventional reliability 
system may have difficulty for handling reliability and hazard functions. The theory of fuzzy reliability 
was proposed and development by several authors (Cai et al., 1991, 1993; Cai, 1996; Chen & Mon, 
1993; Hammer, 2001; Onisawa & Kacprzyk, 1995; Utkin & Gurov, 1995).  
 
Aliev and Kara (2004) considered fuzzy system reliability analysis using time dependent fuzzy set and 
the concept of alpha-cut. Utkin (1994) discussed imprecise reliability models for the general lifetime 
distribution classes. He applied the theory of imprecise probability to reliability analysis. Wu (2006) 
considered fuzzy Bayesian system reliability assessment based on exponential distribution. Guo et al. 
(2007) proposed a credibility hazard concept associated with fuzzy lifetimes. Guo et al. (2007) 
considered random fuzzy variable modeling on repairable system. Yao et al. (2008) applied a statistical 
methodology in fuzzy system reliability analysis and provided a fuzzy estimation of reliability.  
Karpisek et al. (2010) described two fuzzy reliability models based on the Weibull fuzzy distribution. 
Baloui Jamkhaneh and Nozari (2012) investigated fuzzy system reliability analysis based on 
confidence interval.  Garg et al. (2013) considered reliability analysis of the engineering systems using 
intuitionistic fuzzy set theory. Pak et al. (2013) presented a Bayesian approach to estimate the 
parameter and reliability function of Rayleigh distribution from fuzzy lifetime data. Baloui Jamkhaneh 
(2011, 2014) evaluated reliability function using fuzzy lifetime distribution.  
 
The aim of this paper is to introduce the modified generalizes linear failure rate distribution 
(MGLFRD). We consider the problem of the evaluation of system reliability, in which the lifetimes of 
components are described using MGLFR distribution with fuzzy parameter.  

 
2. Modified generalized linear failure rate distribution 

In this section, we introduce a new four-parameter distribution function called as modified generalized 

linear failure rate distribution with four parameters , , ,a b c   denoted as MGLFRD( , , , )a b c  . Lifetime 

random variable of X with MGLFR distribution has probability density function as follows 

1 1( , , , , ) ( )[1 exp( ( ))] exp( ( )) ,

0, 0, 0, 0, 0

c c cf x a b c a bcx ax bx ax bx

x a b c

 



       

      

(1) 

and its distribution function is as follows, 
 

( , , , , ) [1 exp( ( ))] , 0, 0, 0, 0, 0.cF t a b c at bt t a b c                                                  (2) 
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It is immediate that from MGLFRD ( , , , )a b c  , the following special cases can be derived: 

 
a) Linear failure distribution ( , )LFRD a b , when 1, 2c    

 
2( ) ( 2 )exp( ( )) , 0, 0, 0f x a bx ax bx x a b       .                                                               (3) 

 
b) Generalized exponential distribution ( , )GE a  , when 0b  , 

 
1( ) [1 exp( ( ))] exp( ( )) , 0, 0, 0, 0f x a ax ax x a c         .                                             (4) 

 
c) Generalized Rayleigh distribution ( , )GRD b  , when 0, 2a c  . 

 
2 1 2( ) 2 [1 exp( ( ))] exp( ( )) , 0, 0, 0f x bx bx bx x b         .                                             (5) 

 
d) Exponential Weibull distribution ( , , )EW b c  , when 0a  , 

 
1 1( ) [1 exp( )] exp( ) , 0, , 0, 0, 0c c cf x bcx bx bx x b c          .                                    (6) 

 
e) Weibull distribution ( , )W b c , when 0, 1a   . 

 
1( ) exp( ) , 0, , 0, 0c cf x bcx bx x b c                                                                                   

(7) 

 
f) Exponential distribution ( )E a  , when 1, 0b   , 

 
( ) exp( ) , 0, 0f x a ax x a                                                                                                         (8) 

  
g)  Generalized Linear Failure Rate Distribution ( , , )GLFRD a b  , when 2c  , 

 
2 1 2( ) ( 2 )[1 exp( ( ))] exp( ( )) , 0, 0, 0, 0f x a bx ax bx ax bx x a b            .           (9) 

  
h) Modified Weibull Distribution MWD( , , )a b c , when 1  , 

 
1( ) ( )exp( ( )) , 0, 0, 0, 0c cf x a bcx ax bx x a b c        .                                                 (10) 

 
3. Statistical properties of MGLFRD 

3.1 The quantile thq  ( qx )  

 

The quantile thq of the ( , , , )MGLFRD a b c  is given by 
 

0
( , , , , ) ( , , , , )

qx

qq f x a b c dx F x a b c                                                                                     

(11) 

 

So, the qx  of ( , , )MGLFRD a b  can be obtained with equation as follows, 
1

(1 ) 0.c
q qbx ax Ln q                                                                                                                

(12) 
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i) if 1c   , then 

1

(1 )
q

Ln q
x

a b

 



 

ii) if 2c   , then 

1
2 4 (1 )

2
q

a a bLn q
x

b

   
  

 
iii) if 0.5q  in i and ii, then we will gain distribution median. 
 

3.2 Moments 

The following Lemma gives the kth moment of ( , , , )MGLFRD a b c  , when 1  . 

Lemma 1: If X has ( , , , )MGLFRD a b c  , then the kth moment of X ( ( )k ), is given as follows: 

for 0, 0a b  :  

(13) 

( )

10

1
( 1)( 1)

( 1)

i

k

k k
ic c

k
ic

b i









 
  

 


                                                                                                 

for 0, 0a b  : 

(14) ( )
( )

1
0 0

1 (0) ( 1) ( )
( 1) [ ]

! [ ( 1)] [ ( 1)]

j
k i i

k j k j c
i j

w a k j bc k j c

i j a i a i


 

 

   
 

       
   

  
                                         

Proof: under definition of kth moment, we will have  

( )

0

( , , , , ) ,k kx f x a b c dx 


                                                                                           
(15) 

then 

( ) 1 1

0

( )[1 exp( ( ))] exp( ( )) ,k k c c cx a bcx ax bx ax bx dx 


                                      
(16) 

since 0 exp( ( ) 1 , 0cax bx x     , by using the binomial series expansion we have 

 

1

0

1
[1 exp( ( ))] ( 1) exp( ( )c i c

i

ax bx i ax bx
i

 




 
       

 
                                                 

(17) 

then  

( ) 1

00

1
( ) ( 1) exp( ( 1)( ))k k c i c

i

x a bcx i ax bx dx
i


 

 




 
      

 
                                     

(18) 
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Since the inner quantity of the summation is computable, interchanging the integration and summation 
yields, 

( ) 1

0 0

1
( 1) ( ) exp( ( 1)( ))k i k c c

i

x a bcx i ax bx dx
i


 






 
      

 
                                      

(19) 

i) if 0, 0a b   then 

1 1

1
0 0

( 1)
( )exp( ( 1)( )) exp( ( 1) )

(( 1) )

k c c k c c

k

c

k
b

cx a bcx i ax bx dx bcx i bx dx

i b

 
  



 
       


          

 

(20) 

then 

( )

10

1
( 1)( 1)

( 1)

i

k

k k
ic c

k
ic

b i









 
  

 


                                                                                   

(21) 

ii) if 0, 0a b   , using the Taylor expansion of the function exp( ( 1) )ci bx  given by 

 
( )

( )
0

0

(0)
exp( ( 1) ) , (0) exp( ( 1) )

!

j j
c j j ci

i xj
j

w d
i bx x w i bx

j dx






                                        (22) 

so 
( )

( ) 1

0 0 0

( )

1
0 0

1 (0)
( 1) ( ) exp( ( 1) )

!

1 (0) ( 1) ( )
( 1) [ ].

! [ ( 1)] [ ( 1)]

j
k i k j ci

i j

j
i i

k j k j c
i j

w
x a bcx i ax dx

i j

w a k j bc k j c

i j a i a i


 




 
 

 

 

   
 

 
     

 

       
   

  

 


                           (23) 

 
3.3 Distribution of order statistics 

 
Let 1 2, ,..., nX X X be a random sample from ( , , , )MGLFRD a b c  . Let 1 2 ... nY Y Y    denote the 

order statistics obtained from this sample. Then PDF of iY  is given by, 

 

1

1

0

0

!
( ) ( , , , , ) ( , , , , ) (1 ( , , , , ))

( 1)!( )!

!
( , , , , ) ( 1) ( , , , , ))

( 1)!( )!

! ( , , , , ( ))
( 1) ( , )

( 1)!( )!

i n i
i

n i
j j i

j

n i
j

j
j

n
g y f y a b c F y a b c F y a b c

i n i

n in
f y a b c F y a b c

ji n i

n in f y a b c i j
k n i

ji n i i j

  

 



 


 







 
 

 
  

   

  
     

   




0

( , , , , ))
n i

i j
j

f y a b c 






                           

(24) 

where 

1
( 1)

1
( , ) ,

j

j r

n n i
n

i j
k n i r

i j
 

   
   

   


                                                                      

(25) 

Lemma 2: If 1 2, ,..., nX X X  be a random sample from ( , , , )MGLFRD a b c  . Then  nY  follows 
( , , , )MGLFRD a b c n  . 
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Remark: Consider a parallel system of k identical and independent components, when each component 

has follows ( , , ).MWD a b c  In this case, the distribution function of a parallel system is as

( , , , )MGLFRD a b c k .  

Lemma 3: Let iY  denote the ith order statistics,  then the kth moment of iY  ( ( )k ), is given as follows: 

for 0, 0a b  :  

( )

10 0

1
( 1)( 1)

( , )

( 1)

i j m
i jn i

k
jk k

j mc c

k
mc k n i

b m








 

 

 
  

 


                                                          

 

(26) 

for 0, 0a b  : 

( )
( )

1
0 0 0

1 (0) ( 1) ( )
( , ) ( 1) [ ]

! [ ( 1)] [ ( 1)]

ln i
i jk m m

i j j k l k l c
m l j

w a k l bc k l c
k n i

l a m a mm


 

  


    
  

       
   

  
          

(27) 

3.4 Stress-strength parameter 

Suppose that X and Y are two independent MGLFR RVs with respective parameters 1( , , , )a b c    and 

2( , , , )a b c  having PDFs (.)Xf and (.)Yf , respectively. Let X be the strength of a system, which is 

subjected to stress Y; therefore the stress-strength measures the system performance. Then stress-
strength parameter, i.e. ( )R P Y X  , is as follows, 

1
1 2

1 20 0

( ) ( ) ( ) (1 ( , , , , )) ( , , , , )Y X YR P Y X P Y X Y y f y dy F y a b c f y a b c dy


 
 

 

       
                                                                   

(28) 

3.5 Reliability function 

If X has ( , , , )MGLFRD a b c  , then the reliability function at time t  is given as follows: 

 

( , , , , ) 1 [1 exp( ( ))] , 0 , 0, 0, 0 , 0.cS t a b c at bt t a c b                                       (29) 

This shows that increasing   results upper reliability. If 1  then
 

( ) exp( ( )),cS t at bt   the higher 

values of a and b result less reliability. 
 
3.6 Hazard function 

 
If X has ( , , , )MGLFRD a b c  , then the hazard function at time t , is given as follows:

 
 

1 1( ) ( )[1 exp( ( ))] exp( ( ))
( )

( ) 1 [1 exp( ( ))]

c c c

c

f t a bct at bt at bt
h t

S t at bt





       
 

   
 ,                                   

(30) 

if 1   then 1( ) ch t a bct    . In addition, if 1c  , then the hazard function is a constant function, if 

2c  , then the hazard function is an ascending line, If 3c  , then the hazard function is ascending 

curve. The reversed hazard function of ( , , , )MGLFRD a b c  is: 
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1 1

1

( , , , , ) ( )[1 exp( ( ))] exp( ( ))
( , , , , )

( , , , , ) [1 exp( ( ))]

( )exp( ( )) ( , , , ,1)
( , , , ,1)

[1 exp( ( ))] ( , , , ,1)

c c c

c

c c

c

f t a b c a bct at bt at bt
r t a b c

F t a b c at bt

a bct at bt f t a b c
r t a b c

at bt F t a b c





 





 

 



     
 

  

  
  

  

                                  

 

(31) 

4. Fuzzy reliability function 
 
Sometimes we are faced with situations that the parameters of lifetime variable cannot be expressed as 
crisp values. They can be stated as “approximately”, “around”, “between”, or “about”.  Fuzzy sets 
theory is a useful tool for conveying these expressions into mathematical functions. In this case, 
reliability theory should be considered with respect to fuzzy rules. Buckley (2006) analyzed probability 
density functions when their parameters are fuzzy. We may consider the MGLFR distribution with 
fuzzy parameters and trapezoidal fuzzy number of a that is replaced instead of a  in MGLFR 
distribution. In this case, we show the fuzzy probability of obtaining a value in the interval  

* * *[ , ], 0c d c   is as * *( )P c X d  and compute its  cut as follows: ( For more details, refer to 

Buckley, 2006) 
*

*

* *( )[ ] { ( , , , , ) [ ]} [ [ ], [ ]]
d

L U

c
P c X d f x a b c dx a a P P           ,                              

(32) 

where 
*

*
[ ] min{ ( , , , , ) [ ]}

d
L

c
P f x a b c dx a a     ,

*

*
[ ] max{ ( , , , , ) [ ]}

d
U

c
P f x a b c dx a a     .       

   

(33) 

We represent parameter a with a trapezoidal fuzzy number as 1 2 3 4( , , , )a a a a a such that we can 

describe a membership function  ( )a x   in the following manner: 

1
1 2

2 1

2 3

4
3 4

4 3

,

1 ,
( )

,

0 , not

a

x a
a x a

a a

a x a
x

a x
a x a

a a




  


 

 
  

 



                                                                                     

 

(34) 

 

The  cut a denote as 1 2 1 4 4 3[ ] [ ( ) , ( ) ]a a a a a a a        

Fuzzy reliability (or fuzzy survival) function ( ( )S t ) is the fuzzy probability a unit survives beyond 

time t. Let the random variable X denote lifetime of a system component, also let X follow fuzzy 

density function ( , )f x   and fuzzy cumulative distribution function ( ) ( )XF t P X t   where 

parameter   is a fuzzy number, in these conditions the fuzzy reliability function at time t  is defined as 
(See Baloui Jamkhaneh, 2014): 
 

( )[ ] ( )[ ] { ( , ) [ ]} [ ( )[ ], ( )[ ]] , 0L U

t
S t P X t f x dx S t S t t       



       ,          (35) 

where  

( )[ ] min{ ( , ) [ ]}L

t
S t f x dx    



      and  ( )[ ] max{ ( , ) [ ]}U

t
S t f x dx    



   . (36) 

Therefore, fuzzy reliability function based on fuzzy MGLFRD distribution is as follows: 
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1 1( , , , )[ ] { ( )[1 exp( ( ))] exp( ( )) [ ]}c c c

t

S t b c a bcx ax bx ax bx dx a a   


          ,          

 

(37) 

( , , , )[ ] {1 [1 exp( ( ))] [ ]}, 0, 0, 0, 0cS t b c at bt a a t c b              .                       (38) 

 

According to the function of 1 [1 exp( ( ))]cat bt     that is decreasing in terms of a , we have: 
 

4 4 3 1 2 1( , , , )[ ] [1 [1 exp( (( ( ) ) ))] ,1 [1 exp( (( ( ) ) ))] ]c cS t b c a a a t bt a a a t bt                
 

(39) 

Upper and lower bound of ( , , , )[ ]S t b c    are two dimensional functions in terms of  and t (

10   and 0t ). For any particular value of 0t , 0( , , , )[ ]S t b c    is a fuzzy number. Finally, 

0 0 0 0 0 0( , , , )[ ] [ ( )[ ], ( )[ ]]L US t b c S t S t    is 0 -cut of fuzzy reliability of a unit. In this method, for 

any particular level of 0 , upper and lower bound of 0( , , , )[ ]S t b c    are two functions in terms of t . 

So, in this case reliability curve is like a band with upper and lower bound whose width depends on the 
ambiguity parameter (See Baloui Jamkhaneh, 2011). Fig. 1 shows  cut of fuzzy reliability with    
0 and 1. Fig. 2 shows that by increasing of the value of c , when t is small, we may find higher 
reliability band and for large value of t, we may find lower reliability band. 

 
Fig. 1.  cut of fuzzy reliability for different t  Fig. 2.  cut of fuzzy reliability for different c  

  

Fig. 3 shows the behavior of reliability band ( )[0]S t with 2c b   under various conditions. This 

figure shows that decreasing   results lower reliability band, which means the reliability will be lower 
under these conditions. 

 
Fig. 3.  cut of fuzzy survival ( 0  ) for different   

 
 
If 1   then fuzzy reliability fuzzy is as follows, 
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4 4 3 1 2 1( )[ ] [exp( (( ( ) ) )),exp( (( ( ) ) ))]c cS t a a a t bt a a a t bt           .                               

(40) 

 

For 0t , reliability function is a fuzzy number and membership function of 0( )S t  is as follows, 

0 4 0

3 0 4 0

0

1 0 0

1 0 2 0

4 0 0 3 0 0

3 0 0 2 0 0( )

2 0 0 1 0 0

, exp{ )} exp{ }

( ) 1 , exp{ )} exp{ }

, exp{ )} exp{ }

c

c

bt a t
c c

a t a t

c c

S t

a t bt
c c

a t a t

xe e
a t bt x a t bt

e e

x a t bt x a t bt

e xe
a t bt x a t bt

e e





 



 

 
     




      


      
 


           

 
 
 

(41) 

for every b , c , the value of 0
cbte  is greater than or equal to 1 and 0

cbte  is a non-decreasing function of 
b . If 0b  , then fuzzy number of reliability will have its maximum value with the lowest uncertainty. 
As the values of b increases, we get lower values for fuzzy numbers of reliability with more 
uncertainty. 
 
5. Fuzzy hazard function 
 

Another fuzzy characterizes of the lifetime distribution is the fuzzy hazard function ( )h t . This function 

is also known as the instantaneous failure rate function. We propose the concept of a fuzzy hazard 
function based on the fuzzy probability measure and named  cut hazard band. The fuzzy hazard 

function ( )h t is the fuzzy conditional probability of an item failing in the short time interval t to (t + dt) 

given that it has not failed at time t. Mathematically, we would define the fuzzy hazard function as 
 

0 0

'

( ) ( ) ( )
( )[ ] lim {lim [ ]}

( )

( ) ( )
{ [ ]} { [ ]}.

( ) ( )

t t

P t X t t X t S t S t t
h t a a

t tS t

S t f t
a a a a

S t S t

 

 

   

       
  

 


   


 

 

                                

(42) 

 

The fuzzy MGLFRD distribution has the following fuzzy hazard function, 

(43) 
 

1 1( )[1 exp( ( ))] exp( ( ))
( )[ ] { [ ]}

1 [1 exp( ( ))]

c c c

c

a bct at bt at bt
h t a a

at bt






 

      
 

   
 ,                             

If 1   then  

(44) 1( )[ ] { [ ]}ch t a bct a a     ,                                                                                      

and  cut of ( )h t is as follows, 

 
1 1

1 2 1 4 4 3( )[ ] [ ( ) , ( ) ]c ch t a a a bct a a a bct                                                                      (45) 

 
i) If 1c  , then the hazard function is a fuzzy number (see Fig. 4)  
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Fig. 4. membership function and  cut ( 0.6  ) of fuzzy hazard ( 1c  ) 

 
ii) If 2c  , then for every  cut, the hazard band is ascending with linear upper and lower bounds. 
 

 
Fig. 5.  cut ( 0,1  ) of fuzzy hazard ( 2c  ) 

 
iii) If 3c  , then for every  cut, the hazard band is ascending with curve trend behavior in upper and 
lower bound. 

 
Fig. 6.  cut ( 0,1  ) of fuzzy hazard ( 3c  ) 
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6. Conclusions 
 

In this paper, we have introduced a new four-parameter modified generalized linear failure rate 
distribution and different properties of the new model have been presented. It is observed that the 
proposed MGLFR distribution has several desirable properties and several existing well known 
distributions can be obtained as special cases of this distribution. It is observed that the MGLFR 
distribution can have non-decreasing, non-increasing and bathtub shaped hazard rate functions, which 
are quite desirable for data analysis purposes. The fuzzy probability theory has been successfully 
applied to the reliability system in this paper. Whenever, the lifetimes of components and parameters 
follow randomness and fuzziness, respectively,  conventional reliability system is not feasible. Thus, 
we have applied successfully the fuzzy distribution to overcome this difficulty.  
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