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 This paper presents an experimental investigation on cutting temperature during hard turning of 
EN 24 steel (50 HRC) using TiN coated carbide insert under dry environment. The prediction 
model is developed using response surface methodology and optimization of process parameter is 
performed by desirability approach. A stiff rise in cutting temperature is noticed when feed and 
cutting speed are elevated. The effect of depth of cut on cutting temperature is not that much 
significant compared with cutting speed and feed as observed from main effects plot. The 
response surface second order model presented high correlation coefficient (R2 = 0.992) 
explaining 99.2 % of the variability in the cutting temperature which indicates the goodness of fit 
for the model to the actual data and high statistical significance of the model. The experimental 
and predicted values are very close to each other. The calculated error for cutting temperature lies 
between 1.88-3.19 % during confirmation trial. Therefore, the developed second order model 
correlates the relationship of the cutting temperature with the process parameters with good 
degree of approximation. The optimal combination for process parameter is depth of cut at 
0.2mm, feed of 0.1597 mm/rev and cutting speed of 70m/min. Based on these combination, the 
value of cutting temperature is 302.950C whose desirability is one. 
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1. Introduction  
 
During metal machining, heat is generated at three regions such as primary shear zone, secondary 
deformation zone at the chip-tool interface and at the worn out flanks. The possible detrimental effects 
of high cutting temperature on cutting tool are rapid tool wear, which reduces the tool life. This causes 
the plastic deformation of the cutting edges of the tool material, thermal flaking and fracturing of the 
cutting edges due to thermal shocks and accelerates the built-up-edge formation. This also causes 
dimensional inaccuracy, surface damage by oxidation, rapid corrosion etc. induction of tensile residual 
stresses and microcracks at the surface. Hence, reduction of cutting temperature is utmost important 
task in metal machining. 

Hard turning is recent emerging technology, which replaces traditional grinding operation. The major 
application area of hard turning is the bearing industry. Traditionally, grinding has been a utilized a 
suitable way for machining hardened materials above 50 RC. Grinding consumes at least five times 
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more energy per metal removal than cutting. Therefore, cutting is more energy efficient than grinding. 
The advantages of hard turning than grinding are reduction of manufacturing cycles, manufacturing 
costs, decrease of set up time, reduction of number of necessary machine tools, achievement of 
comparable surface finish, elimination of part distortion caused by heat treatment, elimination of 
environmentally harmful coolant, low capital investment cost, low energy consumption. Due to this, 
hard turning has been considered as preferred application than grinding in majority of applications. 
However, the limitations of hard turning are the uncertainties related to the surface integrity and part 
accuracy, tool wear pattern and tool life predictions and economic feasibility. Therefore, research in 
field of hard turning will be worthy enough to take the advantages. This may produce economical 
machining and alternative to costly grinding process. 

2. Review of literature and objectives 

In order to achieve the objectives of this research, a literature review was conducted. Huang et al. 
(2007) suggested that abrasion, adhesion and diffusion primarily govern the CBN tool wear in hard 
turning. Models have been proposed to predict the flank and crater-wear propagation and evaluate the 
relative importance of each wear mechanism. Performance of CBN tools while machining 100Cr6 was 
studied in detail by Yallese et al. (2009). The authors recommend a cutting speed range of 90-
220m/min in which the tool-work combination yields a good result in terms of wear, roughness and 
temperature at chip-tool interface. The authors also have detected significance of radial force and feed 
rate in this paper.  

Tamizharasan et al. (2006) proposed that as an alternative to grinding, the hard turning produced better 
surface finish, lower flank wear rate and high material removal on the selected crank pin material by 
low content CBN tool. Thamizhmanii and Hasan (2008) concluded that the surface roughness was low 
by CBN at high cutting speed but the flank wear was high during machining stainless steel (45-55 
HRC). The surface roughness was high for PCBN tool than CBN tool and flank wear recorded was low 
for PCBN tool than CBN tool. The CBN tool was unable to withstand heat at cutting zone and hence 
more flank wear occurred than PCBN tool. More crater wear formed on PCBN tools whereas CBN tool 
produced less crater wear. The formation of crater wear on the rake face was due to rough surface of 
saw tooth chips.  

Thamizhmanii et al. (2008) analyzed the surface roughness produced by turning process on hard 
martensitic stainless steel (45-55 HRC) by CBN cutting tool. Low surface roughness was produced at 
cutting speed of 225 m/min with feed rate of 0.125 mm/rev and 0.50 mm depth of cut. It was always 
advisable to turn the hard martensitic stainless steel at medium level cutting speed (175 m/min), high 
feed rate and high depth of cut. At this parameter, the intensity of heat was not so high to affect the 
flank wear. XuePing Zhang et al. (2006) investigated the surface integrity of hardened bearing steel 
(62-63 HRC) using CBN insert. Super-finish hard turning process could generate a superior surface 
integrity in terms of surface finish, residual stresses, and thermal damage layer when the hard turning 
parameter combination was appropriately selected. Feed rate was the most important impact on the 
surface finish. Tugrul Ozel et al. (2005) found that, workpiece hardness, cutting edge geometry, feed 
rate and cutting speed were statistically significant on surface roughness in turning hardened AISI H13 
hot work tool steel (55HRC) using CBN inserts. Especially honed edge geometry and lower workpiece 
surface hardness resulted better surface roughness, lower tangential and radial forces. Ozel and Karpat 
(2005) observed that low CBN content insert with honed edge geometry performed better in terms of 
surface roughness and tool wear in finish hard turning of AISI H13 steel. Mahfoudi et al. (2008) found 
that high speed machining (300 and 400 m/min) of a 50 HRC hardened steel (AISI 4140/ 42CrMo4) 
with a PCBN tool could be acceptable for industrial application providing very good surface roughness 
with significant tool life.  

Derakhshan and Akbari (2009) obtained best surface quality in hard turning of AISI 4140 steel (45-65 
HRC) with CBN tool with Ra being 0.175 μm. The feasibility of hard turning instead of grinding in 
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many industrial applications was observed. Coelho et al. (2007) observed that TiAlN-nanocoated 
PCBN tool performed better in terms of tool wear and surface roughness than TiAlN and AlCrN in 
machining AISI 4340 steel. This was because of hot hardness and the availability of an oxidizing layer. 
The tool wear was found to be low for TiAlN-nanocoating followed by TiAlN, AlCrN and uncoated 
PCBN. Forces behaved the same trend. Ra values were between 0.7 and 1.2 µm with no large 
differences amongst the tools.  

Park (2002) observed that PCBN insert performed better in cutting force and surface roughness than 
ceramic tool in turning hardened SKD 11 steel (58-60 HRC). The radial force was the largest force 
component regardless the type of tool used. The PCBN tools transferred the generated heat more 
effectively than the ceramic tools due to their higher thermal conductivity. Sahin and Motorcu (2008) 
found that the surface roughness produced by CBN cutting tools were lower than those of mixed 
ceramic insert during turning AISI 1050 steel (484HV). Higher significance on the surface finish value 
was feed rate for all cutting tool materials.  

Sahin (2009) indicated that the CBN cutting tool showed the best performance than that of ceramic 
based cutting tool during turning AISI 52100 steel (659HV). Cutting speed exerted the greatest effect 
on the tool wear, followed by the hardness of cutting tool, lastly the feed rate. Jacobson (2002) 
examined the surface integrity of M50 steels (61 HRC) using ceramic and CBN insert. It was found 
that both effective rake angle and tool nose radius affected the residual stress generated. Higher 
negative rake angle and smaller nose radius create a more compressive residual stress profile. Depth of 
cut did not affect the amount of residual stress generated in hard turning. The hot pressed ceramic 
produced a better surface than the whisker ceramic.  

Yallese et al. (2005) investigated the effect of process parameters on ceramic and CBN tool wear in the 
hard turning of X200Cr12 steel (60 HRC). Cutting speed up to 180 m/min was found to be limiting 
factor for both cutting tool materials. Under limiting wear criteria, surface roughness was higher for 
ceramic tool than CBN tool. The optimal cutting speed was found to be 120 m/min using CBN tool and 
60 m/min for ceramic insert.  

Tugrul Ozel et al. (2007) found that neural network model was suitable to predict tool wear and surface 
roughness patterns for a range of cutting conditions in finish hard turning of AISI D2 steels (60 HRC) 
using ceramic wiper (multi-radii) design inserts. Lalwani et al. (2008) studied the effect of cutting 
parameters on cutting forces and surface roughness in finish hard turning using coated ceramic tool 
applying RSM and sequential approach using face centered CCD. A linear model fitted well to the 
variation of cutting forces and a non-linear quadratic model found suitable for the variation of surface 
roughness with significant contribution of feed rate. Depth of cut was significant to the feed force. For 
the thrust force and cutting force, feed rate and depth of cut contributed more.  

Horng et al. (2008) developed RSM model using CCD in the hard turning using uncoated Al2O3/TiC 
mixed ceramics tool for flank wear and surface roughness. Flank wear was influenced principally by 
the cutting speed and the interaction effect of feed rate with nose radius of tool. The cutting speed and 
the tool corner radius affected surface roughness significantly. Singh and Rao (2007) developed 
mathematical model for surface roughness using RSM. Feed was the dominant factor determining the 
surface finish followed by nose radius and cutting velocity in finish hard turning of the bearing steel 
AISI 52100 using mixed ceramic inserts. Though, the effect of the effective rake angle on the surface 
finish was less, the interaction effects of nose radius and effective rake angle were considerably 
significant.  

Basak et al. (2007) carried out the optimization of a finish hard turning process for the machining of D2 
steel with ceramic tools using neural network models to predict the surface roughness and tool wear as 
functions of cutting speed, feed, and machining time and found suitable to choose the appropriate 
process parameters. Singh and Rao (2007) described the effect of the tool geometry and cutting 
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conditions on the surface finish during hard turning of bearing steel with mixed ceramic insert by 
developing first and second-order mathematical models by RSM. The model was found to correlate 
very well with the experimental results. Sahoo and Sahoo (2012) studied some machinability studies on 
flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 
steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. 
Sahoo and Sahoo (2011) developed the mathematical model and parametric optimization for surface 
roughness in turning D2 steel using TiN coated carbide insert using Taguchi and RSM. RSM model 
can be effectively utilized to predict the surface roughness in turning D2 steel. Sahoo et al. (2013) 
developed flank wear model in turning hardened EN 24 steel with PVD TiN coated mixed ceramic 
insert under dry environment. Machining time has been found to be the most significant parameter on 
flank wear followed by cutting speed and feed as observed from main effect plot and ANOVA study. 

Grinding is observed to be slow and costly process. The machining performance of PCBN and ceramic 
tool materials has been extensively studied. However their cost is very high. Multilayer coated carbide 
insert is the proposed alternative due to its economic feasibility. However their application to turn 
hardened steel is very limited. It seems essential to investigate the performance of these inserts so as to 
investigate usability of such tools in order to attain higher productivity. Therefore the objective of the 
present work is to have a systematic study on cutting temperature in hard turning as it is the most 
important indices of machinability study. The mathematical model has been developed to predict the 
cutting temperature using response surface methodology. The parametric optimization is highly 
essential for successful implementation of such tools in hard turning which has been presented in this 
paper using desirability approach. 

3. Experimental details 

For the experimental investigations, test samples EN24 (medium carbon low alloy high strength) steel 
in the form of round bar was used. Such steel is a difficult-to-machine material because of its high 
hardness, low specific heat and tendency to get strain hardened. The dimension of workpiece is of 
diameter 45 mm and 100mm length and heat treated to 50 HRC. Axles and axle components, arbors, 
extrusion liners, magneto drive coupling, shaft and wheels, pinions and pinion shafts are the application 
range of EN24 alloy steel. The machine tool used was a high rigid conventional lathe (Model: HMT, 
NH22) which has spindle speed of 2040 rpm (maximum) and power of 11 KW. Commercially 
available coated carbide inserts (TiN/TiCN/Al2O3/TiN) of ISO designation CNMG 120408 (800 
diamond shaped insert) have been used in the experiment. Inserts are mounted on PCLNR2525 M12 
tool holder. The outer rust layers of heat treated workpieces were removed by machining to obtain the 
desired diameter. The cutting parameters and their levels are shown in Table 1.  

The experiment has been designed as per Taguchi L16 orthogonal array. All 16 experimental runs have 
been conducted with new cutting edge each under dry cutting environment. Each experiment is 
repeated twice and average value was reported. The response i.e. cutting temperature (T) is measured 
by Fluke Ti32 IR camera respectively. The machining length was fixed as 60 mm for each run. 

Table 1  
Process parameters and their levels 

Parameters Notation Unit Levels of factors 
Level 1 Level 2 Level 3 Level 4 

Depth of cut d mm 0.2 0.4 0.6 0.8 
feed f mm/rev 0.04 0.08 0.12 0.16 

Cutting speed v m/min 70 130 190 250 
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4. Results and discussions 

The cutting temperature values at different experimental conditions have been presented in Table 2. 
The results pertaining to effects of process parameters on cutting temperature (T in 0C), prediction 
model development by response surface methodology and parametric optimization using desirability 
approach are discussed. 

Table 2  
Experimental results   

Run No Process parameters           Cutting Temperature 
d f v T (0C)  

1 0.2 0.04 70 325  
2 0.2 0.08 130 390  
3 0.2 0.12 190 461  
4 0.2 0.16 250 541  
5 0.4 0.04 130 390  
6 0.4 0.08 70 381  
7 0.4 0.12 250 478  
8 0.4 0.16 190 396  
9 0.6 0.04 190 402  

10 0.6 0.08 250 428  
11 0.6 0.12 70 442  
12 0.6 0.16 130 395  
13 0.8 0.04 250 391  
14 0.8 0.08 190 443  
15 0.8 0.12 130 462  
16 0.8 0.16 70 481  

 

4.1 Effects of process parameters on cutting temperature 

From the experimental results, the variations of cutting temperature value at different cutting conditions 
have been displayed in Fig.1 as main effects plot. The cutting temperature value increases with 
increasing cutting speed, feed and depth of cut. A stiff rise in cutting temperature is noticed when feed 
and cutting speed are elevated. The effect of depth of cut on cutting temperature is not that much 
significant compared to cutting speed and feed as observed from main effect plot. 
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Fig. 1. Main effects plot for cutting temperature 
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4.2 Prediction model using response surface methodology 

RSM (Response surface methodology) is a combination of mathematical and statistical techniques 
which is useful for the modeling and analysis of the problem. RSM determines the suitable 
approximation for the true functional relationship between the response and the set of independent 
variables (Montgomery, 1997). RSM is commonly approximated by polynomial functions where 
models are obtained by conducting small number of experiments using design of experiment. The 
response function representing the cutting temperature and independent input variables can be 
expressed as 

T = f (d, f, v) (1) 

where T is the desired response and f is the response function. RSM is a model building technique 
based on statistical design of experiments and least square error fitting. The second order polynomial 
regression equation (quadratic model) has been used to represent the response surface for factors. 

T = ko + k1 d + k2 f + k3 v + k4 d2 + k5 f2 + k6 v2 + k7 df + k8 fv + k9 dv, (2) 

where ko is the free term of the regression equation, the coefficients k1, k2 and k3 are linear terms, k4, k5 
and k6 are the quadratic terms and k7, k8 and k9 are the interaction terms respectively. The value of the 
coefficients is calculated by the regression method. When the data are analyzed for cutting temperature, 
the following response function second order equations are obtained in uncoded units as. 

T = 185.93 +334.51 d + 1053.98 f +0.88 v + 284.38 d2 – 6406.25 f2 + 0.00 v2 – 590.91 
df – 3.19 dv + 2.24 fv 

R2 = 99.2 %, R2 (adj) = 98 %  

 

(3) 

The response surface second order model presented high correlation coefficient (R2 = 0.992) explaining 
99.2 % of the variability in the cutting temperature. Higher R2 (coefficient of correlation) indicates the 
goodness of fit for the model to the actual data and high statistical significance of the model. R2 
adjusted statistical analysis has been included in the model because greater R2 value may not indicate 
the accuracy of model. The R2 and adjusted R2 values are very close and does not differ so much. The 
R2 adjusted values for cutting temperature is 98 % which indicates 98 % of variability is explained by 
the model after considering the significant factors. It concludes that unnecessary terms are not included 
in the model. It indicates good correlations between the experimental and predicted values of cutting 
temperature. To justify the fitness of mathematical model, ANOVA (analysis of variance) and F-ratio 
have been studied for a confidence level of 95 %. Table 3 represents the ANOVA of second order 
model. It is found to be significant as its p-value is less than 0.05 and calculated F-ratio is more than 
standard tabulated value. 

Table 3  
ANOVA for cutting temperature model 
Source DF Seq SS Adj SS Adj MS F P Remarks 
Regression 9 40181.5   40181.5 4464.61 84.71 0.000 Significant 
Linear 3 22064 2459.4 819.81 15.55 0.003  
Square 3 4775.3 4775.3 1591.75 30.2 0.001  
Interaction 3 13342.2 13342.2 4447.41 84.38 0.000  
Residual Error 6 316.2 316.2 52.7    
Total 15 40497.7      

 

Normal probability plot of models (Fig. 2) shows that the residuals (error = model value – actual value) 
fall on a straight line justifying that the errors are distributed normally and the terms mentioned in the 
model are significant. The data closely follows the straight line which is observed from Anderson-
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Darling tests (Fig. 3). Since P value is greater than 0.05 (at 95 % confidence level), it signifies that the 
data follow a normal distribution and the model developed by Eq. (3) is suitable and quite adequate. 
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Fig. 2. Normal probability plot of the residuals Fig. 3. Anderson Darling test for normality for 
cutting temperature 

The graphs of residuals vs. fitted values for all cutting temperature are shown in Fig. 4. No unusual 
structure is apparent. As its standardized residual is within the range of -3 to 3, the model proposed is 
significant. The graph of residual vs. order of data (Fig. 5) shows the residual for the run order of 
experiment. This implies that the residuals are random in nature and don’t exhibit any pattern with run 
order. Also fig of residual vs. order of data revealed that there is no noticeable pattern or unusual 
structure present in the data.  
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Fig. 4. Residuals vs. fitted values Fig. 5. Residuals vs. order of the data 

 

The experimental and predicted values are very close to each other observed from Table 4. Thus, the 
developed mathematical models can be effectively utilized for prediction of cutting temperature in hard 
turning. In order to check the adequacy of the developed model, confirmation experiments are carried 
out. For confirmation test, the two new sets of experiments were designed taking combinations of 
process parameters apart from the existing experimental plan (1c and 2c). The process parameters used 
in the confirmation trials are mentioned in the Table 5. Table 5 shows the comparison of cutting 
temperature between the experimental value and model value. It is evident from the table that, the 
calculated error for cutting temperature (T) lies between 1.88-3.19 %. Therefore the developed second 
order Eq. (3) correlates the relationship of the cutting temperature with the process parameters with 
good degree of approximation of the true functional relationship among them. 
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Table 4  
Experimental vs. predicted values for T  

Run No Experimental values Predicted values 
T   T 

1 325   325.273 
2 390   390 
3 461   461 
4 541   538.273 
5 390   385.023 
6 381   385.159 
7 478   477.523 
8 396   404.659 
9 402   406.977 
10 428   428.477 
11 442   437.841 
12 395   386.341 
13 391   391.136 
14 443   437.136 
15 462   467.864 
16 481   483.318 

 

Table 5  
Comparison of results obtained from experiment with model 

Test               Process parameters Experiment Model (Eq.3) Error (%) 
 d f v T  T  T  

1c 0.1 0.05 50 313  303  3.19  
2c 0.3 0.1 200 372  365  1.88  

 

4.3 Parametric optimization using desirability approach 

The desirability-based optimization of the RSM was also carried out for the optimization of cutting 
temperature, which is a unique and powerful optimization procedure. In the desirability function 
approach, the measured properties of each predicted response are transformed into a dimensionless 
desirability value d. The scale of the desirability function ranges between d = 0, which suggests that the 
response is completely unacceptable, and d = 1, which suggests that the response is exactly of the target 
value. The value of d increases as the desirability of the corresponding response increases 
(Montgomery, 1997). The optimization analysis was carried out using the MINITAB-14 software. The 
optimization is carried out for a combination of goals. The goal used for the cutting temperature is 
‘minimize’. Different best solutions were obtained using the desirability-based approach. The solution 
with the highest desirability is preferred. The optimization solution is shown in Fig. 6.  
 

 

Fig. 6. Optimization of cutting temperature by desirability approach 
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It gives the desirability value for both factors and responses individually. The optimal combination for 
process parameter is depth of cut at 0.2mm, feed of 0.1597 mm/rev and cutting speed of 70m/min. 
Based on these combination, the value of cutting temperature is 302.950C whose desirability is one. 
 
5. Conclusions 

Based on the above analysis, following conclusions may be drawn: 

1. The cutting temperature value increases with increase of cutting speed, feed and depth of cut. A stiff 
rise in cutting temperature is noticed when feed and cutting speed are elevated. The effect of depth of 
cut on cutting temperature is not that much significant. 

2. The response surface second order model presented high correlation coefficient (R2 = 0.992) 
explaining 99.2 % of the variability in the cutting temperature. Higher R2 indicates the goodness of fit 
for the model to the actual data and high statistical significance of the model. 

3. ANOVA of second order model found to be significant as its p-value is less than 0.05. 

4. Normal probability plot of models shows that the residuals fall on a straight line justifying that the 
errors are distributed normally and the terms mentioned in the model are significant.  

5. The experimental and predicted values are very close to each other. The calculated error for cutting 
temperature lies between 1.88-3.19 % during confirmation trial. Thus, the developed mathematical 
models can be effectively utilized for prediction of cutting temperature in hard turning. 

6. The optimal combination for process parameter is depth of cut at 0.2mm, feed of 0.1597 mm/rev and 
cutting speed of 70 m/min. Based on these combination, the value of cutting temperature is 302.950C 
whose desirability is one. 
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