
 

* Corresponding author. Tel.: +001-812- 461-5385 Fax: +001-812-464-1718 
E-mail: gblack@usi.edu (G. Black)  
 
© 2014 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2013.11.006 
 
 

 
 

International Journal of Industrial Engineering Computations 5 (2014) 249–264 

 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 

 
 
 

 

 

 
 
Proactive inventory policy intervention to mitigate risk within cooperative supply chains 

 

 
Takako Kuranoa, Kenneth N. McKaya and Gary W. Blackb*  
 
 
 
 
 
aDepartment Of Management Sciences, University of Waterloo, Waterloo, ONT, N2L 3G1, Canada 
bCollege of Business, University of Southern Indiana, Evansville, IN 47712, U.S.A 

C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received July 2 2013 
Received in revised format            
September 7   2013 
Accepted November 23 2013 
Available online  
November 27  2013 

 This exploratory paper will investigate the concept of supply chain risk management involving 
supplier monitoring within a cooperative supply chain.  Inventory levels and stockouts are the 
key metrics.  Key to this concept is the assumptions that (1) out-of-control supplier situations are 
causal triggers for downstream supply chain disruptions, (2) these triggers can potentially be 
predicted using statistical process monitoring tools, and (3) carrying excess inventory only when 
needed is preferable as opposed to carrying excess inventory on a continual basis. Simulation 
experimentation will be used to explore several supplier monitoring strategies based on statistical 
runs tests, specifically "runs up and down" and/or "runs above and below" tests. The sensitivity of 
these tests in detecting non-random supplier behavior will be explored and their performance will 
be investigated relative to stock-outs and inventory levels. Finally, the effects of production 
capacity and yield rate will be examined. Results indicate out-of-control supplier signals can be 
detected beforehand and stock-outs can be significantly reduced by dynamically adjusting 
inventory levels.  The largest benefit occurs when both runs tests are used together and when the 
supplier has sufficient production capacity to respond to downstream demand (i.e., safety stock) 
increases.  When supplier capacity is limited, the highest benefit is achieved when yield rates are 
high and, thus, yield loss does not increase supplier production requirements beyond its available 
capacity. 
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1. Introduction  
 

The recent economic crisis has forced many manufacturing firms to restructure their business models 
by reducing inventory levels, preventative maintenance and employing other cost cutting strategies.  In 
turn, these practices have reduced the robustness of supply chains and, in turn, many customers find 
themselves increasing their own inventory levels to compensate or reacting just-in-time to impacts 
associated with supply chain disruptions (e.g., stock-outs).  In lean production, recovering from such 
disruptions is a critical, yet difficult, task after the disruption has already occurred.  It has been reported 
that firms suffering from supply chain disruptions experienced 33-40% lower stock returns relative to 
industry benchmarks, and that disruptions not only impact immediate performance but also long-term 
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performance (Tang, 2006).  Thus, when possible, it is crucial to prevent the impacts of disruptions 
proactively, as well as being adept at recovering from such impacts that have already occurred.  
 
Supply chain risk management (SCRM) has been brought to the forefront in recent years and is 
reported to be the second largest concern to executives after supply chain visibility (Butner, 2010).  
SCRM is a broad area including topics such as material/information flows, financial arrangements, 
production methods and delivery models.  Most literature focuses on conceptual frameworks and 
concepts.  Discussion of mathematical models is limited (Giunipero, 2008).   
 
A key aspect of supply chain risk management is inventory management (Caballini & Revetria, 2008).  
In the past, supply chain partners have been reluctant to share operational information and, thus, 
inventory risk mitigation has been done in isolation using practices such as safety stock.  However, 
recently there are increasing cooperation and information sharing in supply chains (Albani & Dietz, 
2009) and (Goswami et al., 2013).  When operational information about key parameters (e.g., inventory 
level, yield rate) is shared with a partner, he can be more proactive in establishing his own inventory 
risk control policies in accordance with an acceptance risk level. 
 
Accordingly, this exploratory paper will examine a proactive approach to supply chain risk 
management using a dynamic inventory policy based on cooperative supplier monitoring.  The 
effectiveness of this policy will be studied in various cases.  Research questions to be investigated 
include the following:  

1. How effective is the supplier monitoring strategy at mitigating risk? 
2. How do inventory levels change due to implementing the supplier monitoring strategy? 
3. How well do the various statistical control tests investigated perform in mitigating risk? 
4. What effect do operational factors such as supplier yield rate and production capacity have on 

the ability to successfully employ the supplier monitoring strategy?   
 
2.  Literature Review 
 
This review focuses on key areas underlying the motivation and methodology used in this paper, 
namely supply chain risk management, inventory control in supply chains, supply chain modeling 
approaches, inventory monitoring using statistical methods, and the trend towards increased 
cooperation and information sharing among supply chain partners. 
 
Supply chain networks are inherently vulnerable to disruptions, and failure in any network element can 
cause the entire supply chain to fail (Rice & Caniato, 2003).  Although many firms have not been able 
to quantify the cost of supply chain disruptions (Blackhurst et al., 2005), a company surveyed by Rice 
& Caniato (2003) estimated a $50-100 million cost impact for each day that a disruption impacts its 
supply network.  Other literature has studied the impact of supply chain disruptions (Hendricks & 
Sinfhal, 2003) and (Knight & Pretty, 1996), and the results indicate that disruptions will negatively 
affect the performance and business continuity of a firm.  Also, current trends with global sourcing, 
increased responsiveness, higher agility levels and lower inventory levels will increase the potential for 
disruptions to occur (Blackhurst et al., 2005).  These results demonstrate the perceived importance of 
supply chain risk management.    
 
According to Tang (2006), supply chain risk management involves the risk event, the resultant impact 
and the risk mitigation approach utilized.  Supply chain risk is defined as “variation in the distribution 
of possible supply chain outcomes, their likelihood and their subjective values” (March & Shapira, 
1987).  There are two types of supply chain risks: operational risk and disruption risk.  Operational risk 
involves inherent uncertainties related to demand, supply and cost.  Disruption risk involves events 
such as natural disasters, terrorist attack and economic crises (Tang, 2006).  Although the business 
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impact of disruption risk is often much greater than operational risk, operational risk is more 
predictable and, thus, easier to proactively manage.   
 
A typical risk management process widely suggested consists of a four-stage process involving risk 
identification, risk assessment, implementation of risk management and risk monitoring (Blackhurst et 
al., 2008), (Halikas et al., 2004), (Juttner et al., 2003) and (Wagner & Bode, 2008).  Examples of 
signals leading to risk identification include production interruptions, quality failures and delivery 
fluctuations.  Once the risk is identified, suitable management approaches are developed and 
implemented in the next two stages.  Consequently, ongoing monitoring is essential in order to identify 
and/or avoid similar risks in the future.  
 
Inventory control is a key part of supply chain management (Caballini & Revetria, 2008).  Demand 
fluctuations at a downstream customer are amplified as they move upstream throughout the supply 
chain.  This phenomenon, called the “bullwhip effect,” results in excessive inventory, revenue loss and 
inaccurate production planning (Lee & Wu, 2006).  The bullwhip effect can be reduced by better 
sharing and coordinating demand information to upstream supply sites as well as improving operational 
efficiency (Fransoo & Wouters, 2000) and (Disney & Towill, 2003).  
 
Giunipero (2008) stated that only 9% of supply chain management articles have used simulation or 
other modeling approaches.  Most research has only provided general concepts or frameworks.  
Mathematical supply chain modeling has received little attention with the exception of research 
focusing on general inventory flows/costs and transportation logistics (Beamon, 1998) and (Croom et 
al., 2000).  Due to the dynamic and inter-dependent nature of supply chains, a systems modeling 
approach is necessary (Perea et al., 2000).  Examples of modeling approaches used to study supply 
chains in a systematic fashion include control theory (or system dynamics), multi-agent models and 
operations research approaches.  There has been debate about which of these three methods is best at 
the operational level.  Riddals et al. (2000) suggest none of the core OR methods are suitable at the 
operational level and provide better insights at the tactical level.  Others suggest that a system dynamics 
or control theoretic approach is suitable.  For example, it has been claimed that system dynamics may 
be the best way to study phenomena such as how a small fluctuation at one end of supply chain is 
amplified as it proceeds throughout the chain (Moraga et al., 2008).  The importance of simulating 
supply chains using system dynamics has been emphasized in various studies (Lian & Jia, 2013), 
(Minegishi & Thiel, 2000), (Sterman, 2000) and (Towill, 1993).  
 
Aelker et al. (2013) discuss how the trend towards globalization has increased the complexity involved 
in managing supply chains.  New global markets, global sourcing and the need to reduce manufacturing 
costs have led to global dispersion of supply chains and increased complexity required to manage them.  
To assist supply chain managers in making complexity-optimized supply chain decisions, this paper 
examines a supply chain interpretation referred to as Complex Adaptive System (CAS) modeling for 
making complexity-optimized decisions within the semiconductor supply chain industry.  CAS systems 
are non-equilibrium systems characterized by a large number of interacting and evolving agents which 
learn, adapt and, therefore, can be useful in solving the global supply chain complexity dilemma. 
 
Hennies et al. (2013) conduct a comparative study of simulation-based supply chain modeling 
techniques while focusing on a fairly new simulation method called mesoscopic supply chain 
simulation (Reggelin & Tolujew, 2011).  Mesoscopic simulation is alleged to combine the advantages 
of discrete event and continuous event simulation in the context of supply chains (e.g., continuous 
inventory reduction and discrete event-based inventory replenishment) while overcoming several 
limitations (e.g., permit modeling of supply chain material and information flows at the aggregate level 
instead of the individual level).  The main benefit of the mesoscopic approach is that modeling efforts 
are balanced with the necessary level of detail which, in turn, facilitates quick and simple model 
creation and simulation.       
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Mobini et al. (2013) develop a simulation model to evaluate the performance of a wood pellet mill.  
Performance measures include energy consumption and CO2 emissions as well as cost to deliver wood 
pellets to customers.  The model is applied to an existing supply chain in British Columbia, Canada.    
Results suggest that cost can be reduced by 4.75% by blending 10% bark in the whitewood feedstock 
and by 1.5% by changing the drying fuel from sawdust to bark.  
 
Smew et al. (2013) present a simulation study on supply chain-level production and inventory control.  
The potential impact of the hybrid Kanban-CONWIP production control strategy is examined relative 
to the competing tradeoff between maximizing customer service level and minimizing work-in-process 
inventory.  Approaches involving simulation, Gaussian process modeling and optimization are 
investigated.  An optimization framework is proposed that yields reasonably accurate solutions that are 
computationally less expensive than simulation methods.   
      
Dominquez & Framinan (2013) introduce a multi-agent-based simulation platform (SCOPE) for 
simulating the order fulfillment process in a supply chain network.  The framework is composed of 
reusable elements (agents, objects) to facilitate modeling of real-world-scale supply chains involving 
many different enterprises, products and structures.  Each enterprise in the model can be customized 
with different policies and parameters for its various business functions.   
 
Literature discussing concepts or methods for ongoing monitoring of supply chain performance and 
dynamic adjustments of policies and settings is very limited.  Watts et al. (1994) suggest the use of 
statistical process control (SPC) methods to identify problems in reorder point systems using stock-outs 
as a trigger.  Hill (1996) discusses the use of SPC to monitor customer demand using CUSUM charts.  
Pfohl et al. (1999) study demand and inventory control charts using four inventory rules and three 
demand rules to determine replenishment policy.  Lee & Wu (2006) examine SPC-based inventory 
control techniques by modifying the approach of Pfohl et al. (1999) to include two common inventory 
replenishment policies, (s, Q) and (r, S).   
 

Sambasivan et al. (2009) conduct a comprehensive survey of performance measures used in supply 
chain management based on industry practitioner input from the Malaysian electronics manufacturing 
industry.  838 performance measures are classified in terms of material flow, fund flow, internal 
process flow, sales and service flow, information flow and partner evaluation.  Using confirmatory 
factor analysis, these metrics are further sub-classified into subgroups.  Finally, 159 important 
measures are identified, along with 135 measures currently in use.  Although the list of measures is 
extensive, none of them explicitly attempt to quantify inventory and stock-out effects related to 
dynamic supplier yield signals, as are considered in this research. 
 

Recent literature has begun to study collaboration among supply chain partners.  Albani & Dietz (2009) 
examine the increasing trend in inter-organizational cooperation and information sharing within 
modern supply chains.  Strong economic pressures due to competitiveness, globalization of sales and 
sourcing, technological innovations and shorter product lead times and life cycles are changing the way 
companies are doing business.  Business information related to production, product development, sales, 
delivery and services has been integrated in many cases, not only within a single company but also 
across its network of external partners.  Sometimes these cooperative networks are permanent (e.g., 
health care), and other times they are temporary (e.g., engineering projects).  In each case, the networks 
are dynamic due to new members joining and leaving.  In short, companies are now recognizing that 
their competitive strengths lie not only in their core competencies, but also in their ability to cooperate 
effectively with business partners. 
 

Goswami et al. (2013) also examine the need for collaborative information sharing among supply chain 
partners in terms of information visibility, namely the availability of relevant information for making 
supply chain decisions.  Three dimensions of information visibility are considered - variety, quality and 
transfer - in a comparative analysis of two supply chain management information systems (SCIS).  
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Results show both systems perform well in supporting information visibility.  However, they serve 
different and complementary purposes and, thus, supply chain characteristics need considered before 
choosing the most suitable SCIS. 
 
Pezeshki et al. (2013) consider a divergent supply chain consisting of a supplier and several retailers 
who cooperate with the supplier as sales agents (i.e., revenue sharing contracts).  Due to the retailers’ 
proximity to customers, they can provide more accurate demand forecasts to the supplier.  However, to 
ensure abundant supply and cope with demand variability, retailers have an incentive to exaggerate 
their private forecast information.  To cope with this, a reward-punish coordination strategy based on 
trust is proposed with the ability to reward or punish agents.  Results suggest the ‘Trust’ strategy 
outperformed the ‘No Trust’ strategy in all cases, thus suggesting that including trust in the design of 
supply chain coordination mechanisms may have a significant influence on the financial performance. 
 
Ramanathan (2014) use a simulation approach in conjunction with industrial data to investigate the 
benefits of supply chain collaboration.  Factors such as the number of collaborating partners, the level 
of investment in collaboration, and the duration of collaboration are studied in an attempt to quantify 
the optimal levels of collaboration at which maximum benefits are achieved. 
 
Cigolini et al. (2014) study the relationship between supply chain performance and configuration.  
Performance factors such as stockouts and inventory levels are studied relative to configuration factors 
such as the number of sources, number of levels, number of nodes and distance between nodes.  Results 
suggest lengthy supply chains do not affect retailer customer service level; however, they do require 
significant inventory stock.  Moreover, increasing the number of suppliers can deteriorate distributor 
and manufacturer performance.  Furthermore, collaboration (i.e., information sharing, reserved 
capacity) is useful to reduce supply chain variance.  Finally, splitting capacity among many retailers 
can lead to high stockouts along the supply chain. 
 
2.1  Research Synthesis and Problem Summary 
 
Although the aforementioned literature has applied SPC methods to monitor the customer’s own 
inventory behavior, none of this research has attempted to monitor supplier yield variability or other 
non-random performance patterns.  In the existing literature, the key issue has been to adjust one firm’s 
own inventory level for demand variability while ignoring the supplier’s role.  It is possible that 
monitoring and mitigating supply variability is just as critical as managing one’s own demand 
variability and/or that it is a complementary topic.  However, monitoring supplier variability requires 
collaborative information sharing between the supplier and downstream supply chain partner.  Previous 
research papers discussed above have confirmed that such collaboration is an increasingly prevalent 
practice in modern supply chains.   
 
In summary, the contribution of this paper is to explore supplier yield monitoring within the risk 
mitigation context of dynamic inventory control whenever collaborative information sharing exists 
within a supply chain.  As will be discussed in the following sections, a sequential four-stage supply 
chain model will be examined using simulation to study the effect of employing two statistical runs 
tests, both individually and in conjunction, to monitor supplier yield rate behaviour in an attempt to 
predict when holding extra safety stock can be desirable.  The subsequent impact on stockouts and 
inventory levels will be investigated in various cases and related to other factors such as production 
capacity. 
 
3.  Methodology 
 

In a supply chain, a disruption, such as a stock-out, can be amplified throughout the chain as it moves 
downstream towards the customer.  Avoiding such disruptions is a key goal in mitigating supply chain 
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risk.  Although an inventory policy change such as increasing safety stock can reduce the impact of an 
upstream supplier stock-out, it comes at a cost.  The challenge is to know when to increase safety stock 
to mitigate risk.  This paper will explore the use of a supplier performance monitoring to study 
how/when dynamic safety stock increases are cost-effective.   
 
There is an increasing level of information sharing among supply chain partners (Albani & Dietz, 
2009) and (Goswami et al., 2013).  When operational information about key parameters (e.g., inventory 
level, yield rate) is shared, the customer can establish his own policies in accordance with an 
acceptance risk level.  If he feels there is little risk, a low inventory level can be kept.  If risk exists, the 
inventory level can be increased.  This behavior was witnessed in McKay (1992) in which a scheduler, 
Ralph, monitored and regularly spoke to friends at key suppliers.  Although it was not a formal sharing 
of operational data and was not officially recognized by management, Ralph would use this enriched 
information (e.g., inventory level, production yield, quality level, delivery time) to adjust his strategies 
at his own plant.   
 
Although one could possibly rely on a human like Ralph to do the monitoring in an ongoing fashion, 
this paper will utilize methods from statistical process control, specifically run tests.  When the supplier 
provides periodic operational data to the customer, the customer analyzes this data via the runs test 
methodology to check for non-random behavior.  Such non-random patterns may signal that a supply 
disruption is imminent and, thus, prompt the customer to increase his safety stock.  Similarly, when the 
non-random pattern (i.e., risk) subsides, inventory levels can return to normal.  These run tests will be 
discussed further later in this section.   
   
This paper will use simulation experimentation to study the aforementioned strategy using a four-stage 
sequential supply chain as shown in Fig. 1. We will focus on the dynamic behaviour of the middle two 
stages (“Factory 1” and “Factory 2”) with the outer stages (“Supplier” and “Customer”) modeled as a 
passive source and sink, respectively. Since the main purpose of this exploratory research is to study 
the dynamics of the strategy and to investigate possibilities for further research, this supply chain 
configuration is a logical starting point.   
 

 
Fig. 1. Model Framework 

 
As shown, the four stages consist of the supplier, Factory 1, Factory 2 and the customer.  Orders are 
placed with upstream entities, product flows to downstream entities and key operational (performance) 
information flows to downstream entities.  The supplier and customer entities, for purposes of this 
research, are viewed as a source and sink.  The operation of Factory 1 and Factory 2 will be analyzed 
under the assumption that Factory 1 is the root cause of the supply disruptions.  Thus, how Factory 2 
can proactively manage these disruptions will be examined.  Further discussion of system parameters 
and assumptions appears in Section 4.0. 
 

Supplier Factory 1 Factory 2 Customer

Material Flow

Order information Flow

Performance information Flow
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Fig. 2 displays the causal loop diagram used to implement the simulation logic.  Positive feedback, 
shown with a ‘+’ arrow, implies the variables change in the same direction.  Negative feedback, shown 
with a ‘−’ arrow, implies the variables change in the opposite direction.   The mathematical equations 
used to describe the inventory system are as follows: 
 
Raw material inventory = initial raw inventory + (qty arrived‒production qty) (1) 
Finished goods inventory = initial f.g. inventory + (production qty‒qty shipped) (2) 

 
Fig. 2. Casual Loop Diagram for Simulation Variable Relationships 

The production quantity is based on the production schedule, which is specified when the order arrives.  
The daily production quantity in effect during the next order cycle is then given by: 
 
Production qty = min[(order qty + safety stock shortage)/cycle time, production capacity] (3) 
 
For example, suppose the target production quantity for the next 5-day order cycle is 220 units.  
However, production capacity is limited to 40 units per day.  In this case, the daily production schedule 
is 40 units on Day 1 through Day 5 and 20 units on Day 6. 
 
A shortage in safety stock may arise whenever safety stock is used to meet demand.  It can be 
computed as follows: 
 
Safety stock shortage = max[0,safety stock – (current inventory – order qty)]   (4) 
 
For example, suppose current raw material inventory is 170 units including safety stock of 30 units.  
Order quantity is fixed at 150 units for each 5-day order cycle.  When the order arrives, 150 out of 170 
units will be shipped, thus leaving 20 units in inventory.  Since safety stock is supposed to be 30 units, 
a safety stock shortage of 10 units exists.  Thus, a total of 150 + 10 = 160 units must be produced by 
the time the next order arrives.  Since the expected order cycle time is 5 days, the daily production 
schedule for each of the next 5 days will be 160 / 5 = 32 units per day (assuming sufficient production 
capacity exists). 
 
As stated, statistical runs tests will be used to monitor supplier performance.  Specifically, two types of 
runs tests will be used: “runs up and down” and “runs above and below” tests.  In the “runs up and 
down” test, the magnitude of consecutive observations is compared.  If the latter is larger, + is 
assigned; otherwise, – is assigned.  A “run” consists of a series of +’s or –’s.  The “runs above and 
below” test is similar; however, each observation is compared to the sample mean rather than an 
adjacent value.  If the value exceeds the mean, + is assigned; otherwise, – is assigned.  In each test, the 
total number of runs in the sequence is counted and compared to upper and lower critical values at a 
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desired level of significance (α).  If the total number of runs exceeds the upper critical value or falls 
below the lower critical value, then it is inferred that non-random variability exists and, thus, a potential 
supply chain disruption is likely.  In this case, proactive risk mitigation should be undertaken by 
increasing safety stock level. 
 
In conclusion, the proactive supplier monitoring strategy will be explored by the examining the 
following research questions, described in slightly more detail than stated in Section 1.0:  

1. How effective is the supplier monitoring strategy at reducing stock-outs? 
2. How much will average inventory levels increase when applying the strategy?  Since applying 

the strategy will dynamically increase safety stock when non-random supplier patterns are 
detected, it is expected to increase inventory levels to some extent. 

3. How do the different types of runs tests utilized affect the performance of the strategy? 
4. How do operating conditions, namely yield and capacity, affect the performance of the strategy?  

Increasing safety stock will trigger earlier order placement which, in turn, places an unexpected 
demand increase on the supplier.  If the supplier is operating close to its maximum capacity, it 
may not always be able to meet this demand increase.   

 
4.  Experimental Design 
 
Simulation experimentation using Simul8 software was used to generate the data.  The experimentation 
was conducted in two stages.  The first stage comparatively explored the performance of the various 
supplier monitoring strategies (i.e., run tests) under three yield rates.  Consequently, the second stage 
further studied the sensitivity of the chosen strategy to yield rate.  Performance measures include 
number of stock-outs and average inventory level. 
 
The first stage explored the following four cases, corresponding to possible combinations of usage of 
the “runs up and down” and “runs above and below” supplier monitoring strategies. 
 

Case 1: Strategy is not applied 
Case 2: Strategy is applied using runs up and down test 
Case 3: Strategy is applied using runs above and below test 
Case 4: Strategy is applied using both types of runs tests 

 
Each case was examined under three different yield rates: 95%, 90% and 85%.  50 simulation 
replications were run for each sub-case.  Table 1 shows the experimental parameter settings at Factory 
1 and Factory 2 which were selected based on preliminary experimentation.   
 
The supplier monitoring strategy will use yield rate as the monitored variable.  Thus, when the 
supplier’s yield rate shows variability in excess of what can be attributed to random fluctuations (i.e., 
runs test upper and lower critical values), the supplier will be deemed “out of control.”  In this case, 
safety stock will be increased by 30 units (i.e., one day’s expected demand).   To illustrate the logic, 
Fig. 3 and Fig. 4 display inventory levels with and without strategy employed.  In this example, a non-
random yield pattern at Factory 1 was detected by Factory 2 at Day 58.  Thus, Factory 2 increased its 
raw material safety stock by 30. Accordingly, as shown in Fig. 3, the raw material inventory level at 
Factory 2 increased slightly after Day 58 in comparison to the case when the inventory policy was not 
applied.  Fig. 4 displays a corresponding example where the finished goods inventory level at Factory 1 
has shifted ahead in time after Day 51 under the supplier monitoring strategy since Factory 2’s 
increased order quantity (i.e., safety stock) has necessitated placing the order at Factory 1 earlier than 
usual. Utilizing the strategy from Stage 1 which best mitigated stock-outs (i.e., Case 2, 3 or 4), the 
second stage of the experimentation further studied the sensitivity of the strategy to yield.  Yield rates 
between 80% and 100% (99% in some cases) were examined in increments of 1%.  Results were 
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compared to the baseline Case 1 (no strategy).  Again, 50 simulation replications were run in each 
experimental sub-case. 
 
Table 1  
Experimental Parameter Settings at Factory 1 and Factory 2 
 Factory 1 Factory 2 
Max production capacity (units/day) 39 42 
Production lines 3 3 
Initial finished goods inventory level (units) 170 60 
Safety stock of finished goods inventory (units) 20 30 
Initial raw material inventory level (units) 180 170 
Safety stock of raw material inventory (units) 60 20 
Reorder point of raw material inventory (units) 90 110 
Raw material order quantity (units) 150 150 
Delivery lead time of raw material supply (days) 1 3 
Simulation time period 100 days 
Order and shipment frequency Daily 
Order quantity 30 units/day 
Expected daily demand 30 units/day 
Safety stock increase when inventory policy changes 30 units 
Significance level for runs tests α = 0.1 
 

 

  
Fig. 3. Raw Material Inventory at Factory 2 With/Without 
Inventory Policy Change 

Fig. 4. Finished Goods Inventory at Factory 1 With/Without 
Inventory Policy Change 

 
5.  Experimental Results and Discussion 
 
As discussed in Section 4.0, Stage 1 of the experimentation examined four potential strategy cases 
under three different yield rates.  Table 2 shows the mean and standard deviation of the number of 
stock-outs at each inventory phase (Factory 1 raw material, Factory 1 finished goods, Factory 2 raw 
material and Factory 2 finished goods) for each of the four experimental strategy cases.  Since the 
simulation is set to provide sufficient raw materials for Factory 1, no stock-outs occurred in raw 
material inventory at Factory 1.  Table 3 shows the corresponding percentage decrease in stock-outs for 
Cases 2, 3 and 4 in relation to Case 1 (no supplier monitoring).  Thus, a negative number actually 
represents an increase in stock-outs.  
 
Table 2  
Mean and Standard Deviation of Number of Stock-outs 
  
  

95% yield 90% yield 85% yield 
Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

F1 Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
RAW St Dev 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
F1 Mean 4.44 5.00 5.34 5.34 9.52 10.76 11.60 11.80 16.70 16.78 16.74 16.72 
FG St Dev 0.50 0.67 0.56 0.52 1.50 1.70 1.44 1.26 1.49 1.34 1.45 1.44 
F2 Mean 13.34 9.30 5.48 4.88 19.70 17.92 17.50 17.04 28.56 28.50 28.38 28.38 
RAW St Dev 1.44 4.78 3.90 3.72 1.82 3.43 2.66 3.24 2.15 1.53 1.66 1.66 
F2 Mean 0.10 0.08 0.06 0.04 5.08 4.28 3.66 3.46 13.34 13.20 13.02 12.98 
FG St Dev 0.30 0.27 0.24 0.20 1.08 1.33 1.24 1.18 0.87 0.83 0.87 0.84 
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Table 3  
Percentage Reduction in Stock-outs 
  95% yield 90% yield 85% yield 
  Case2 Case3 Case4 Case2 Case3 Case4 Case2 Case3 Case4 
F1  FG -12.6% -20.3% -20.3% -13.0% -21.8% -23.9% -0.5% -0.2% -0.1% 
F2  RAW 30.3.% 58.9% 63.4% 9.0% 11.2% 13.5% 0.2% 0.6% 0.6% 
F2  FG 20.0% 40.0% 60.0% 15.7% 28.0% 31.9% 1.0% 2.4% 2.7% 

 
As shown in Table 2, stock-outs at both factories tend to increase as yield rate decreases which is 
intuitive based on the effect scrap has on production capacity.  From Table 3, we see that applying both 
runs tests in conjunction (Case 4) results in the largest reduction relative to Case 1 in stock-outs at 
Factory 2.  Thus, Case 4 appears to be most sensitive in detecting non-random supplier behavior.  
Finished goods stock-outs have increased at Factory 1due to the demand that Factory 2’s increased 
order quantity (i.e., safety stock) places upon Factory 1’s capacity.   Moreover, the “runs above and 
below” test (Case 3) does a better job overall at decreasing stock-outs at Factory 2 than the “runs up 
and down” test (Case 2).  Lastly, the relative advantage of applying supplier monitoring strategies tends 
to decrease as yield rate decreases.  This phenomenon will be discussed in more detail later in relation 
to production capacity. 
 
As stated before, average inventory level is the second performance measure considered.  Table 4 
shows the mean and standard deviation of inventory level for each case.  Table 5 shows the 
corresponding percentage increase in average inventory level for Cases 2, 3 and 4 in relation to Case 1.  
In this case, a negative number represents a decrease in average inventory level.  
 

Table 4  
Mean and Standard Deviation of Average Inventory Level 
  
  

95% yield 90% yield 85% yield 
Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

F1 Mean 113.40 113.16 112.79 112.78 111.18 110.76 110.53 110.42 109.92 109.68 109.69 109.66 
RAW St Dev 1.31 1.16 1.21 1.16 1.59 1.70 1.72 1.62 1.88 1.88 1.74 1.76 

F1 Mean 92.18 92.22 92.23 92.22 89.65 90.14 90.17 90.20 97.85 97.75 97.58 97.52 
FG St Dev 0.82 0.80 0.85 0.85 2.02 1.80 1.67 1.66 2.18 2.16 2.43 2.36 

F2 Mean 65.98 73.06 79.24 80.43 62.29 64.08 64.43 64.92 55.86 55.94 56.16 56.16 
RAW St Dev 1.32 7.83 6.79 6.36 1.48 3.18 2.69 3.13 0.98 1.02 1.24 1.24 

F2 Mean 45.48 46.34 47.08 47.22 41.15 41.74 41.89 42.06 35.96 35.98 36.03 36.03 
FG St Dev 0.65 1.12 0.90 0.84 0.97 1.35 1.15 1.29 1.28 1.26 1.27 1.26 

 
Table 5  
Percentage Increase in Average Inventory Level 
  95% yield 90% yield 85% yield 
  Case2 Case3 Case4 Case2 Case3 Case4 Case2 Case3 Case4 
F1 RAW -0.21% -0.54% -0.55% -0.38% -0.58% -0.68% -0.22% -0.21% -0.24% 
F1 FG 0.04% 0.05% 0.04% 0.55% 0.58% 0.61% -0.10% -0.28% -0.34% 
F2 RAW 10.73% 20.10% 21.90% 2.87% 3.44% 4.22% 0.14% 0.54% 0.54% 
F2 FG 1.89% 3.52% 3.83% 1.43% 1.80% 2.21% 0.06% 0.19% 0.19% 

 
From Table 4, we see that raw material and finished goods inventory levels at Factory 2 increase when 
the supplier monitoring strategies are used, which is intuitive since the additional safety stock carried 
whenever non-random supplier patterns are detected will lead to higher inventory levels.  Average 
inventory levels are highest under Case 4 when both runs tests are used in conjunction.  This finding 
also is intuitive, since two tests used in conjunction will be more sensitive than only one test.  Overall, 
raw material and finished goods inventory levels at Factory 2 decline as yield rate declines.  Finished 
goods inventory at Factory 1 varies by a much smaller proportion under supplier monitoring and can 
even decrease slightly at low yield rates (85%) due to the effect that yield loss and production capacity 
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have on inventory.  Changes in Factory 1 raw material levels are not particularly noteworthy due to the 
experimental parameter settings used and, in fact, are not of significance in this research since Factory 
1’s upstream suppliers are not modeled (i.e., only Factory 2’s upstream supplier is considered). 
 
In summary, Table 5 indicates that Case 4 (i.e., both runs tests used together) resulted in the highest 
overall increase in Factory 2 raw material and finished goods inventory levels (relative to Case 1).  
Furthermore, Factory 2 inventory levels decreased (relative to Case 1) as yield rate decreased due to the 
effect that yield loss has on inventory levels. In addition to stock-outs across the entire simulation 
timeframe, stock-outs after the inventory policy change point were examined as well.  As Fig. 5 shows, 
the policy change point is the time at which a non-random supplier pattern is detected for the first time. 
 

 
Fig. 5. Illustration of inventory policy change point 

Table 6 indicates that inventory policy changes occur more frequently when Case 4 is utilized.  Again, 
this indicates that Case 4 is a more sensitive strategy than either Case 2 or 3.  
 

Table 6  
Number of Times Inventory Policy Change Occurred in 50 Replications  
 Case 2 Case 3 Case 4 
95% yield 31 46 48 
90% yield 34 46 48 

85% yield 27 45 46 

 
In summary, since the primary experimental objective for Factory 2 is to reduce stock-outs by 
implementing supplier monitoring, the Case 4 strategy (both runs tests) will be selected to proceed to 
Stage 2 of the experimentation.  In Stage 2, Case 4 will be compared to the baseline Case 1 strategy (no 
supplier monitoring) to further examine the sensitivity of the strategy to yield rate.  As with Stage 1, 50 
simulation replications will be run in each experimental sub-case.  Results will be reported as averages 
across those 50 replications.   
 
Table 7 shows the number of stock-outs in Factory 2 raw material and finished goods, as well as the 
percent reduction, at yield rates between 80% and 99%.  Several observations are noteworthy.  First, no 
finished good stock-outs occur at yield rates 96% or above.  Second, the number of stock-outs in both 
Cases 1 and 4 has a strong inverse relationship with yield rate.  Specifically, they increase as yield rate 
decreases.  Third, the percent reduction in stock-outs (Case 4 vs. Case 1) has a strong direct 
relationship with yield rate.  Specifically, the stock-out reduction benefit by using the Case 4 supplier 
monitoring strategy increases as yield rate increases and decreases as yield rate decreases.  Although 
two percent reduction values (59.31% and 4.76%) may appear to be “outliers” relative to the overall 
trend, the low stock-out values achieved at those high yield rates can easily generate such results.  
Lastly, the benefit achieved using the Case 4 supplier monitoring strategy becomes insignificant at 
yield rates at/below 85%.   
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Table 7  
Number of Stock-outs and Percent Stock-out Reduction at Factory 2 vs. Yield Rate 
 Factory 2 Raw Material Factory 2 Finished Goods 

Yield Rate Case1 Case4 Percent Reduction Case1 Case4 Percent Reduction 
99% 4.70 0.00 100.00 0.00 0.00 n/a 
98% 8.06 3.28 59.31 0.00 0.00 n/a 
97% 11.84 3.46 70.78 0.00 0.00 n/a 
96% 13.34 4.88 63.42 0.00 0.00 n/a 
95% 14.82 6.02 59.38 0.30 0.12 60.00 
94% 16.02 7.56 52.81 0.84 0.80 4.76 
93% 16.64 11.32 31.97 2.18 0.90 58.72 
92% 17.16 13.62 20.63 3.60 1.86 48.33 
91% 19.70 17.04 13.50 3.60 1.86 48.33 
90% 19.70 17.04 13.50 5.80 3.46 40.34 
89% 21.28 19.92 6.39 8.54 7.62 10.77 
88% 23.74 22.62 4.72 8.54 7.62 10.77 
87% 25.70 25.02 2.65 10.42 9.72 6.72 
86% 27.44 27.02 1.53 12.00 11.42 4.83 
85% 28.56 28.38 0.63 13.34 12.98 2.70 
84% 30.22 30.20 0.07 14.54 14.46 0.55 
83% 30.20 30.14 0.20 15.60 15.56 0.26 
82% 31.86 31.86 0.00 16.64 16.62 0.12 
81% 32.46 32.46 0.00 17.68 17.68 0.00 
80% 33.74 33.74 0.00 18.84 18.84 0.00 

 
A major reason for Case 4’s decline in performance as measured by stock-out reduction as a function of 
yield rate relates to production capacity and the inability to replenish yield loss.  To further study this 
issue, Table 8 shows the effective capacities of Factories 1 and 2 based on the 39 unit/day and 42 
unit/day maximum production capacities, respectively, given in Table 1. 
   
Table 8  
Effective Capacities at Factories 1 and 2 (Units/Day) as Function of Yield Rate 
 Factory 1 

(max capacity = 39 units/day) 
Factory 2 

(max capacity = 42 units/day) 
95% yield rate 39×0.95 = 37.05 42×0.95 = 39.90 
90% yield rate 39×0.90 = 35.10 42×0.90 = 37.80 
85% yield rate 39×0.85 = 33.15 42×0.85 = 35.70 
80% yield rate 39×0.80 = 31.20 42×0.80 = 33.60 

 
Recalling the 30 unit/day expected daily demand (ref. Table 1), the reason the performance benefit 
drops significantly as yield rate declines is obvious.  For example, when yield rate is 80%, a maximum 
of 31.2 units/day and 33.6 units/day can be produced at Factories 1 and 2, respectively.  These values 
are close to the 30 unit/day expected daily demand and, thus, it is difficult to recover from any extra 
demand imposed by supplier monitoring.  Thus, Factory 1 will not have the capacity to successfully 
increase its production rate whenever an order arrives earlier, as will happen when Factory 2 carries 
extra safety stock in response to an out-of-control condition signaled during supplier monitoring.  In 
turn, Factory 2 cannot successfully increase its inventory (safety stock) level, even when a non-random 
condition is detected.  Therefore, it is important that Factory 1 has sufficient capacity to increase its 
production in order to effectively employ the supplier monitoring strategy.  In the case when Factory 1 
is out of control much of the time and/or generally has low yields, it must carry greater levels of safety 
stock in finished goods inventory to allow Factory 2 to increase its safety stock, thereby permitting the 
strategy to work as planned.  
 
Switching the focus from stock-outs to inventory levels, Table 9 shows the average inventory levels of 
raw material and finished goods at Factory 2.  Since employing the supplier monitoring strategy 
requires temporarily increasing inventory levels when an out-of-control situation is detected, it is 
expected that average inventory levels will increase under the Case 4 strategy.  Based on the data, this 
assumption is mostly true.  At the highest yield rate (100%) and lowest yield rates (82% and below), 
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average raw materials inventory levels at Factory 2 are actually the same in Cases 1 and 4.  At 100% 
yield, an out-of-control situation at Factory 1 is never detected and, thus, Factory 2 will never increase 
its safety stock.  At 80%-82% yield, Factory 1’s production capacity in relation to its yield loss renders 
it unable to successfully respond to Factory 2’s demand increase, thus “locking up” the system.  
Consequently, Factory 2 raw material inventory levels are the same for Cases 1 and 4 at these extreme 
yield rates.  At yield rates between 83% and 99%, the differential between Factory 2 raw material 
inventory levels is much greater at higher yield rates.  For example, at 97% yield, Case 4 results in 
14.94 units of additional raw materials inventory (85.75 ‒ 70.81) on average than does Case 1.  
Conversely, at 85% yield, Case 4 only results in 0.3 units of additional raw materials inventory (56.16 
‒ 55.86) on average than does Case 1.  As previously discussed, Factory 1’s production capacity limits 
its ability to respond to Factory 2’s increased safety stock demand whenever yield rates are low.  To a 
lesser extent, Factory 2’s finished goods inventory follows the same general pattern with a peak in 
differential occurring at yield rates between 92%-95%. 
 
In summary, this experimentation has shown that out-of-control supplier situations can be detected 
using runs tests and that stock-outs can be significantly reduced by dynamically using safety stock.  
When both runs tests are used together, Factory 2 raw material stock-outs declined on average 25.07% 
across all yield levels (Table 7), while average inventory levels increased on average 8.45% (Table 9).  
Similarly, Factory 2 finished goods stock-outs declined on average 18.58% (Table 7) across all yield 
levels, while average inventory levels increased only 1.51% (Table 9). 
 
Table 9  
Average Inventory Levels at Factory 2 
  Factory 2 Raw Materials Factory 2 Finished Goods 
Yield Rate Case1 Case4 Percent Increase Case1 Case4 Percent Increase 
100% 88.10 88.10 0.00 50.10 50.10 0.00 
99% 75.02 95.34 27.09 49.41 49.70 0.59 
98% 72.56 85.36 17.64 48.57 49.02 0.93 
97% 70.81 85.75 21.10 47.74 48.50 1.59 
96% 68.22 84.42 23.75 46.66 48.02 2.91 
95% 65.98 80.43 21.90 45.48 47.22 3.83 
94% 64.70 78.49 21.31 44.42 46.60 4.91 
93% 64.35 76.27 18.52 43.40 45.74 5.39 
92% 64.53 71.00 10.03 42.99 44.55 3.63 
91% 64.07 68.12 6.32 42.36 43.47 2.62 
90% 62.29 64.92 4.22 41.15 42.06 2.21 
89% 61.10 61.93 1.36 40.26 40.62 0.89 
88% 59.55 60.31 1.28 38.91 39.28 0.95 
87% 58.15 58.74 1.01 37.76 37.96 0.53 
86% 56.76 57.37 1.07 36.80 36.97 0.46 
85% 55.86 56.16 0.54 35.96 36.03 0.19 
84% 54.78 54.85 0.13 34.58 34.60 0.06 
83% 54.78 54.90 0.22 34.44 34.47 0.09 
82% 54.32 54.32 0.00 33.83 33.83 0.00 
81% 54.12 54.12 0.00 33.15 33.15 0.00 
80% 53.69 53.69 0.00 31.79 31.79 0.00 

 
6.  Conclusion, Limitations and Future Directions 
 
This paper has conducted an exploratory analysis of a supplier monitoring and inventory policy change 
strategy.  By “exploratory,” we do not claim that the model and parameters studied are “optimal” 
and/or all inclusive in any sense.  We simply wish to “lay the foundation” by conducting, to the best of 
our knowledge, the first quantitative assessment of a dynamic supplier monitoring and inventory 
change strategy in the context of supply chain risk mitigation.  Key to the concept studied is the 
assumption that out-of-control situations at a supplier can be causal triggers for stock-outs, and that 
these triggers can be predicted by using statistical monitoring tools.  It is also assumed that a dynamic 
policy is better than simply setting an artificially high safety stock level and maintaining it ad infinitum.  
Another objective of this study is to understand the conditions under which it such a policy performs 
the best.  
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In summary, the key findings of this exploratory research are stated below: 
 

 The supplier monitoring strategy may be able to significantly reduce raw material and finished 
goods stock-outs at Factory 2, albeit at slightly increased inventory levels. 

 The monitoring strategy (Case 4) consisting of both runs tests performed the best at reducing 
Factory 2 stock-outs. 

 Overall, the number of stock-outs at Factory 2 increased as yield rate decreased. 
 Overall, the average inventory levels at Factory 2 decreased as yield rate decreased. 
 Due to Factory 1 capacity limitations, the relative benefit achieved using the Case 4 monitoring 

strategy can decline as yield rate decreases. 
 
The experimentation has suggested that out-of-control situations can be detected using runs tests before 
a disruption actually occurs, and that stock-outs can be significantly reduced by temporarily adjusting 
inventory levels (i.e., adding safety stock).  For example, when both runs tests are used in conjunction, 
Factory 2 raw material stock-outs declined on average 25.07% across all yield levels while average 
inventory levels increased on average 8.45%.  Similarly, Factory 2 finished goods stock-outs declined 
on average 18.58% across all yield levels while average inventory levels increased only 1.51%.  
Although the cost of the inventory increase should be computed by a firm prior to utilizing the supplier 
monitoring strategy, the overall cost savings due to reduced supply chain disruptions may render the 
strategy worthwhile to pursue, especially in supply chain environments with a high cost and/or high 
risk of disruptions. Moreover, it was found that the possible benefit achieved by using the supplier 
monitoring and inventory change strategy is highest when both runs tests are used in conjunction and 
when the supplier has sufficient production capacity to respond to unexpected customer demand (safety 
stock) increases.  When supplier production capacity is limited, the highest benefit is achieved when 
yield rates are relatively high and, thus, yield loss does not increase the supplier’s production 
requirements in excess of its capacity. A major challenge faced by customers in applying such a 
strategy in a real world situation will be obtaining actual data from its supplier(s).  In certain hostile 
supply chains, it is unlikely that suppliers would provide such operational information to their 
customers.  However, there are supply chains in which the relationships are not hostile and are long 
term in nature (e.g., the Japanese model for key supplier relationships).  In such friendly contexts, 
information sharing is more forthcoming and, thus, application of the proposed strategy may be 
feasible.  Further examples of inter-organizational information sharing in modern supply chains have 
been presented as well (Albani & Dietz, 2009) and (Goswami et al., 2013).   
 
There are certain assumptions and limitations used in this exploratory study which, if relaxed or 
approached differently, may provide different results.  In turn, they serve as logical extensions and 
directions for future research.  These items include, but are not limited to, the following: 
 
1. Only yield rate is considered to model operational behavior at both factories.  Factors such as 

production breakdowns or processing time variability are not addressed.  Future research could 
study other such operational factors to assess their impact.   

2. The same yield rate is used at both Factory 1 (i.e., supplier) and Factory 2 (i.e., customer).  Future 
research could study the effect of differing yield rates at each supply chain entity. 

3. Factory 1 is assumed to have a sufficient supply of raw material.  Thus, no raw material shortages 
occurred at the supplier level.  This assumption is largely the result of considering only one supplier 
and one customer in the supply chain.  Future research could extend the supply chain model to 
include multiple suppliers at each stage and/or multiple levels of suppliers, thus explicitly 
addressing upstream raw material shortages at suppliers. 

4. Two types of run tests are considered in this study, “runs up and down” and “runs above and 
below” tests.  Future research could examine other types of statistical monitoring methods and/or 
control chart variations, either in isolation or in combination, to detect the existence of non-random 
supplier patterns. 
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5. Only a safety stock increase of 30 is considered when a non-random pattern is detected.  Future 
research could examine various safety stock increases and relate those values to the resultant stock-
out decrease, inventory increase and/or other performance measures. 

 
In summary, although limited in scope, this paper has shown that if operational information can be 
shared between the supplier and customer, the customer can use relatively simple logic to dynamically 
respond to casual triggers which represent leading indicators for disruptive events that can impact a 
supply chain.  In such cases, it is possible to reduce the downstream impacts (e.g., raw material 
shortages) associated with these events which, in turn, can stabilize those downstream entities.  The 
sharing and use of such information does not currently exist in the supply chain management literature.  
Hopefully, this exploratory research will provide some insights and inspiration for further research into 
proactive supply chain risk management.  
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