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 Inventories are the materials stored either waiting for processing or experiencing processing and 
in some cases for future delivery. Inventories are treated both as blessings and evil. As they are 
like money placed in a drawer, assets tied up in investments, incurring costs for the care of the 
stored material and also subject to spoilage and obsolescence there have been a spate of programs 
developed by industries, all aimed at reducing inventory levels and increasing efficiency on the 
shop floor. Nevertheless, they do have positive purposes such as stable source of input required 
for production, less replenishment and may reduce ordering costs because of economies of scale. 
Finished goods inventories provide for better customer service. So formulating a suitable 
inventory model is one of the major concerns for an industry. Again considering reliability of any 
process is an important trend in the current research activities. Inventory models could be both 
deterministic and probabilistic and both of which must account for the reliability of the associated 
production process. This paper discusses the major works in the field of inventory modeling 
driven by reliability considerations, which ranges from the very beginning to latest works just 
published. 
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1. Introduction  
 

 
Inventory is the stock of any item a company keeps, be it a physical product or a service, to be used in 
the company's output. Inventories are idle resources tying up a company's capital that could have been 
put to more profitable use. However, the lack of synchronization in the production system makes 
holding inventory a necessity. It is thus no surprise to find many managers regard inventories as a 
necessary evil. Representing a substantial portion of the total assets of a business, inventories are used 
to serve a variety of the functions chief among which are: (i) coordinating operations. (ii) smoothing 
production. (ii) achieving economies of scale. and (iv) improving customer service. Two things are 
very important for any inventory models: when to order and how much to order and the latter is termed 
as economic order quantity. Traditional approaches to the problem of determining economic ordering 
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quantities for different models of inventory have always assumed implicitly that items produced are of 
perfect. Product quality, however, is not always perfect, and is usually a function of the reliability of 
the production process. When the production process is in a good condition, items produced may be of 
high or perfect quality. As time goes on, the process may deteriorate because of the items produced 
may contain defectives or items may have substandard quality. The relationship between production lot 
size and the quality of the product may thus be significant. A larger lot size requires a longer 
production cycle, and hence is more likely to contain more defective items. This paper addresses the 
literature review of economic relationships of lot size, quality, set-up and holding costs, demand rate, 
deterioration (reliability) of the production process. The paper also discusses how different issues affect 
the overall cost and various methods to explore the optimal result. Specifically, the problem of 
determining economic production quantities with imperfect production processes is analyzed.  A 
production process may go from an “in-control” state to the “out-of-control” state while producing a 
lot.  At the beginning of the production of the next lot, we assume that the process is restored back to 
the “in- control” state. This could be due to maintenance measures, which are part of the set-up of the 
production process. In other words, the setup cost of production includes the cost of restoring the 
machine to the “good” state. Evidently, the amount of effort spent in this restoration, or set-up stage, 
may influence the rate of deterioration of the production process while it is producing the lot.  The shift 
in performance of the process is assumed to take place at a random point in time after production has 
begun. Once the production process is in an “out-of- control” state, it is assumed that a proportion of 
the items produced are defective. The defective items will eventually be reworked, replaced or passed 
onto the customers, which could be another production stage using the current output as their input. Of 
course, in some cases, defective items may not be reworked, and hence will have to be discarded. 
Under such circumstances, one may look for the production of a larger quantity to meet customers' 
demand with non-defective products, or result in not meeting some customers’ demands. Traditional 
modeling usually ignores the impact of producing defective items; hence, the reliability of overall 
process has to be adjusted. 
 
The process reliability depends on a great variety of factors such as production technology, machine 
capability, jigs and fixtures, work methods, use of on-line monitoring devices, skill level of the 
operating personnel and inspection, maintenance and replacement policies. Higher reliability means 
products with acceptable quality are more consistently produced by the process; thereby reducing the 
costs of scrap and rework of substandard products, wasted materials and labor hours. However, high 
reliability can be achieved with substantial capital investment, which increases the cost of interest and 
the depreciation of the production process. In different models such as economic order quantity (EOQ), 
economic production quantity (EPQ) and stochastic model, researchers include the effects of reliability 
sometimes with other considerations and sometimes alone and then formulating the cost function based 
on it and solve the resulted models with different techniques.  
 
The aim of this paper is to review the last 35 years work in the reliability driven inventory modeling 
field. The paper is organized by dividing more than 30 research papers according to the model used in 
incorporating reliability. Section 2 presents the approaches to incorporate reliability in EOQ model, 
section 3 summarizes the major works in reliability driven EPQ model of inventory, section 4 focuses 
on the effects of reliability in newly developed entropy cost based model and finally section 5 
highlighted some other modeling approaches considering reliability. In section 6, some general insights 
and future research directions are discussed. 
 
2. Reliability adjusted EOQ (economic order quantity) model 

Porteus (1986) proposed that lower setup costs could benefit production systems by improving quality 
control. The EOQ model was considered to validate his proposal. The idea behind this was introducing 
a simple model that captures a significant relationship between quality and lot size. While producing a 
lot, the process can go “out of control” with a given probability each time it produces another item. 
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Once out of control, the process produces defective units throughout its production of the current lot. 
The system incurs an extra cost for rework and related operations for each defective piece that it 
produces. Thus, there is an incentive to produce smaller lots, and have a smaller fraction of defective 
units. Porteus (1985) therefore first tackled the problem of specifying the optimal lot size that accounts 
for the consequences of defects. The paper then introduced three options for investing in quality 
improvements: (i) reducing the probability that the process moves out of control (which yields fewer 
defects, larger lot sizes, fewer setups, and larger holding costs); (ii) reducing setup costs (which yields 
smaller lot sizes, lower holding costs, and fewer defects); and (iii) simultaneously using the two 
previous options. For the first case, only quality percentage is increased without considering setup cost 
reduction. For a specific form of the investment cost, the optimal solution was explicitly derived. Then 
opposite was tested. The results of Porteus (1985) were extended for cases of investing when the 
reducing the setup cost parameter is allowed, without allowing for the simultaneous investment in 
process quality improvement. The paper assumed the logarithmic form: an investment of aK(K) = A – 
Bln(K) where ln(K) is required to change the setup cost to K from the original level of K0. Compared to 
the basic model, such investment yields a smaller lot size, lower holding cost, and better output quality. 
Again, by assuming a specific form of the investment cost function, the optimal solution was explicitly 
obtained. From the above two results it was proved the optimal is somewhere between the two extreme. 
Finally, the paper combined the options of the previous two approaches and determined the optimal 
setup cost and process quality level, simultaneously. The results have been broken into four cases, 
depending on whether or not investment is made for process quality improvement and/or setup cost 
reduction.  
 

Cheng (1989b) proposed an EOQ model with demand-dependent unit cost and formulate the 
optimization problem as a geometric program (GP) and finally solved the GP analytically to obtain a 
closed-form optimal solution. An illustrative example was provided to show the working procedures of 
applying GP to solve a given problem and reached a decision that GP has potential as a viable 
mathematical tool for the analysis of a certain class of inventory control problems. Later, Cheng (1991) 
combined his previous two works (Cheng 1989a, 1989b) for EOQ model. Two major assumptions in 
the classical EOQ model are that demand is constant and deterministic and that the unit price (unit 
production cost) is independent of the order (production) quantity. Implicitly, the model also assumes 
that items produced are of perfect quality. However, in reality, product quality is not always perfect but 
a function of the reliability of the production process employed to manufacture the products. 
Consequently, investment in improving the reliability of the production process is the key for achieving 
consistently a high level of product quality. However, this will increase the fixed cost of production to 
push up the unit production cost since the costing system, particularly an absorption costing system 
commonly used in batch manufacturing, will inevitably apportion the increased production overheads 
to each individual product. In addition, under certain circumstances, the demand rate for a product and 
its unit production cost are not totally independent. Such a relationship between demand and unit cost 
exists in two typical situations. First, in a manufacturing environment; when demand is high, a 
company can produce more items to spread the fixed cost of production more widely, which will result 
in lower unit production cost. Second, in a distribution environment; if sufficient demand exists, a firm 
can arrange for longer-term supply contracts with the suppliers to take advantage of a quantity discount 
on the unit price. Thus, it is quite natural to expect that the unit cost of production is an increasing 
function of process reliability and a decreasing function of demand rate. In the paper, a model is 
proposed in which the relationship between unit production cost and process reliability and demand 
rate are expressed as a general power function. The objective is to minimize the long-term average 
annual cost, i.e. the sum of setup, unit production and inventory carrying costs over a long period of 
time, which is a function of process reliability, demand rate, and production quantity and the relevant 
cost parameters in the present case. The idea of reliability influencing the unit cost function was the 
same as his previous model for EPQ. However, this time he proposed that the cost function was directly 
related to demand and the relation function was changed into: V (D, r) = aD – b rc for a, b, c >=0 where 
D= Demand rate; r= process reliability, finally the cost equation was solved by GP approach. 
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Tripathy et al. (2003) extended Cheng’s approach by considering demand dependent unit cost and 
reliability of the production process for the case of EOQ model under a new dimension. He assumed 
demand exceeds supply and that the unit cost of production was directly related to reliability and 
inversely to the demand rate. The power equation proposed by him is P (r, χ) = a (1-r)-b χ-c, where r = 
production process reliability, χ = demand rate P (r, χ) = unit production cost and a, b, c are non-
negative real numbers.  
 

3. Reliability adjusted EPQ (economic production quantity) model 

Rosenblatt and Lee (1986), two pioneers in reliability-incorporated inventory modeling field, studied 
the effect of an imperfect production process in a single machine-single product system.  The system is 
assumed to be in an “in-control” state at the beginning of each production cycle, because of some 
maintenance, which is part of the set-up process. However, the production process may shift to an “out- 
of-control” state during the production run, where the elapsed time till the shift is assumed to be a 
random variable exponentially distributed with a given mean. The economic production run length for 
such a system is derived, which is a modification of the classical economic manufacturing quantity 
(EMQ) formula. Such a production run is found to be shorter than that of the classical formula. It 
decreases as the defective rate or the cost of defective items increases. The analysis is further extended 
to incorporate the dynamic nature of deterioration in the production processes. Two different cases are 
presented: The first case assumed that the process will deteriorate linearly after a certain time. The 
second case assumed an exponential deterioration. The EMQ formula derived is found to be very 
robust in both cases, and is thus very useful, especially when the exact parameters for the dynamic 
deterioration of the process are difficult to estimate. Finally, the model is generalized for a case where 
there are multiple states of the process, and deterioration follows a step-wise fashion. A necessary and 
sufficient condition for the economic production run length is derived, which is shown to be smaller 
than or equal to that of the two-state model. Numerical examples illustrate how the optimal production 
run length can be derived for the various cases considered 
 

The determination of the most cost-effective production quantity under rather stable conditions is 
commonly known as the classical economic production quantity (EPQ), with an instantaneous or non-
instantaneous receipt inventory problem. Over the last four decades, an abundance of research on this 
topic has been undertaken  and many interesting results have been reported in the literature,  see, e.g., 
Aggarwal (1974), Clark (1972), Hadley  and Whitin  (1963), Nahmias  (1982), Silver  (1981), Tinarelli 
(1983), Veinott (1966), Wagner  (1980), Whitin  (1954), Taleizadeh et al., (2011) and Hsu (2012). We 
know that four major assumptions in the classical EPQ model are that (i) demand is constant over time 
and known with certainty, (ii) no excess stock is carried, and no backorders and lost sales are allowed, 
(iii) the lead time is zero, and (iv) the unit production cost is independent of the production quantity. 
Implicitly, the model also assumes that items produced are of perfect quality (Hax & Canada, 1984). 
Cheng (1989a) pointed out that classical economic production quantity (EPQ) model’s assumption of 
perfectly reliable production process with a fixed set-up cost is not logical. While the reliability of the 
production process cannot be perfect without a price, its set-up cost can be reduced with investment in 
flexibility improvement. Therefore, he proposed a general equation to model the relationship between 
production set-up cost and process reliability and flexibility. The objective is to minimize the total cost 
function based on the values of process reliability, flexibility, unit variable production cost, inventory 
carrying cost and production quantity over a long period of time. In many situations, this is 
mathematically equivalent to minimizing the total cost per unit time which is generally a simpler 
performance measure to deal with. In this paper, it is proposed that total cost of interest and 
depreciation per production cycle is inversely related to set-up cost and directly related to 
process/production reliability according to the following equation: Y (S, r) = a S-b rc for a, b, c >=0 
where S= setup cost; r= process reliability, later this equation is taken by many researchers to formulate 
their model. The total cost function to be minimized is S +pq+ Hq2r2/2D+ Y(S, r), where p = unit 
production cost q = production quantity per batch D= demand rate and H = holding cost per unit per 
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time period. Differential calculus is a natural analytical tool for solving this type of optimization 
problem involving continuous decision variables. However, due to the general nature of the proposed 
relationship between production set-up cost, process reliability and flexibility, optimization by calculus 
often leads to a system of non-linear equations, which, in general, are hard to be solved explicitly and 
numerical methods are always needed to obtain approximate solutions. Consequently, closed-form 
optimal solutions to this EPQ problem are not easily available using the calculus-based optimization 
technique.  As a result, the inventory optimization problem is formulated as a geometric program (GP) 
and solved to obtain closed-form optimal solutions. After the theoretical treatment, a numerical 
example is provided to illustrate how the GP theories are applied to solve a given problem. Finally, 
some aspects of post-optimality sensitivity analysis based on the GP approach are discussed.  

Leung (2007) proposed an EPQ model with reliability and flexibility consideration and solved it with 
generalized GP. He established more general results using the arithmetic-geometric mean inequality in 
which a general power function is proposed to model the relationship between production set-up cost 
(which implicitly measures the degree of process flexibility) and process reliability as independent 
variables and interest and depreciation cost as a dependent variable. The objective was to minimize the 
long-run expected average annual cost function, i.e. the sum of set-up, production, inventory holding, 
and interest and depreciation costs, which is a function of set-up cost, production quantity, process 
reliability and the relevant cost parameters in the presented case. The assumptions in his paper are 
similar to those in the study of Gerchak and Parlar (1990) in which it is assumed that quality assurance 
efforts affect the variance of yield, but differs in Leung (2007) assumed that the efforts affect the mean 
yield rate (i.e. expected fraction acceptable). Thus, a high level of product quality can only be 
consistently achieved with substantial investment in improving the reliability of the production process. 
Furthermore, while the set-up time and hence set-up cost will be fixed in the short term, it will tend to 
decrease in the long term because of the possibility of investment in new, highly flexible machineries.  

Bag et al. (2009) argued that both reliability and flexibility need to be considered during formulation of 
EPQ model. They stated that though reliability of the production process cannot be increased without a 
price, its set-up cost can be reduced with investment in flexibility improvement. In the paper, a 
production inventory model with flexibility and reliability (of production process) consideration is 
developed in an imprecise and uncertain mixed environment. The aim of this paper is to introduce 
demand as a fuzzy random variable in an imperfect production process. Here, the set-up cost and the 
reliability of the production process along with the production period are the decision variables. Due to 
fuzzy-randomness of the demand, expected average profit of the model is a fuzzy quantity and its 
graded mean integration value (GMIV) is optimized using unconstraint signomial geometric 
programming to determine optimal decision for the decision maker (DM). In this work, an EPQ model 
is considered, where demand of the item is fuzzy random in nature with known probability distribution 
and the production process is assumed to be not 100% perfect, i.e.  a fraction of  the produced items are  
defective. Further, it is assumed that the defective items are sold at a reduced price and the selling price 
of fresh units is taken as a mark-up over the unit production cost.  The model is formulated to 
maximize the expected average profit. Panda and Maiti (2009) proposed a multi-item economic 
production quantity (EPQ) models considering selling price dependent demand, infinite production 
rate, stock dependent unit production and holding costs. Flexibility and reliability consideration are 
introduced in the production process. The models are developed under two fuzzy environments; one 
with fuzzy goal and fuzzy restrictions on storage area and the other with unit cost as fuzzy and 
possibility /necessity restrictions on storage space. The objective goal and constraint goal are defined 
by membership functions and the presence of fuzzy parameters in the objective function is dealt with 
fuzzy possibility/necessity measures. The models are formed as maximization problems. The first one 
the fuzzy goal programming problem is solved using Fuzzy Additive Goal Programming (FAGP) and 
modified GP methods. The second model with fuzzy possibility/necessity measures is solved by GP 
method. The models are illustrated through numerical examples. The sensitivity analyses of the profit 
function due to different measures o possibility and necessity are performed and presented graphically. 
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Krishnamoorthi and Panayappan (2012) pointed out that in the “Economic Production Quantity (EPQ)” 
model, which is commonly used by practitioners in the fields of production and inventory management 
to assist them in making decision on production lot size has a common assumption that all units 
produced are perfect and shortages are not allowed. However, under real world conditions, the 
defective items will be produced in each cycle of production and shortages and scrap are possible. 
These assumptions will underestimate the actual required quantity. Hence, the defective items cannot 
be ignored in the production process. Rework process is necessary to convert those defective into 
finished goods. Therefore, their study proposed an EPQ model that incorporates both imperfect 
production quality and falsely not screening out a proportion of defects, thereby passing them onto 
customers, resulting in defect sales returns. To reach this objective, a suitable mathematical model is 
developed and the optimal production lot size, which minimizes the total cost.  

Mahapatra et al. (2012) pointed out what Cheng (1989b) first found out that a basic assumption in the 
classical EPQ model is that the production setup cost is fixed. In addition, the model also implicitly 
assumes that items produced are of perfect quality. However, in reality product quality is not always 
perfect but directly affected by the reliability of the production process employed to manufacturer the 
product. Thus, a high-level of product quality can only be consistently achieved with substantial 
investment in improving the reliability of production process. They developed an EPQ model with 
demand dependent unit production cost in fuzzy environment. Flexibility and reliability consideration 
are introduced in the production process. The models are developed under fuzzy goal and fuzzy 
restrictions on budgetary cost. The inventory related costs and other parameters are taken as fuzzy in 
nature. The problem is solved by parametric GP technique. The result obtained by fuzzy EPQ model is 
compared with the nonlinear programming. Shah and Soni (2011) developed an EPQ model with 
flexibility and reliability consideration of production process in an imprecise and uncertain mixed 
environment. The model incorporated fuzzy random demand, an imprecise production preparation time 
and shortage. Here, the setup cost and the reliability of the production process along with the backorder 
replenishment time and production run period are the decision variables. Due to fuzzy-randomness of 
the demand, expected average demand is a fuzzy quantity and imprecise preparation time is represented 
by fuzzy number. Therefore, both are first transformed into a corresponding interval number and then 
using the interval arithmetic, the single objective function for expected profit over the time cycle is 
changed to respective multi-objective functions. Due to highly nonlinearity of the expected profit 
functions it is optimized using a multi-objective genetic algorithm (MOGA). The associated profit 
maximization problem is illustrated by numerical examples and its sensitivity analysis is carried out. 

4. Reliability adjusted “Entropy cost based” model 

Jaber et al. (2004) postulated that a production system resembles a physical system operating within 
surroundings, which include the market and the supply system. Physical thermodynamic system is 
defined by its temperature, volume, pressure and chemical composition. A system is in equilibrium 
when these variables have the same values at all points. A production system could be described 
analogously by its characteristics, for example the price (P) that the system ascribes to the commodity 
(or collection of commodities) that it produces. Reducing the price of the commodity below the market 
price may increase demand and produce a commodity flow (sales) from the system to its surroundings. 
This is similar to the flow of heat from a high temperature (source) to a low temperature (sink) in a 
thermodynamic stem, where part of this heat is converted into useful work and some of the heat is lost 
from the system and wasted. Analogously, some of the commodity is sold to the market and is 
converted to revenue (equivalent to useful work) and some is wasted. They suggested that production 
system performance could be improved by applying the first and second laws of thermodynamics to 
reduce system entropy. They suggested using the concept of entropy cost to account for the hidden 
costs inherent in management systems. 
Later Jaber et al. (2009) combined their entropy cost concept with imperfect production process. 
However, unlike the commodity flow strategies assumed in the earlier papers, this paper has presented 
a commodity flow policy that is more consistent with the EOQ models. The results suggested that 



I. Ahmed and  I. Sultana / International Journal of Industrial Engineering Computations 5 (2014) 
 

175  

ignoring entropy cost may result in more expensive commodity control policies and it is cheaper to 
control larger batch sizes than is to control a larger number of smaller batches for both perfect and 
imperfect processes. The results indicated that it is more relevant to account for entropy cost for 
expensive rather than for inexpensive products. The results also indicated that it is more expensive to 
control the flow of a single unit of commodity for an imperfect process, i.e. a process generating 
defects requiring rework (Porteus, 1986), than is for a perfect process as assumed in the classic EOQ 
model. The results further suggest/indicated that a firm, which is unable to estimate its cost parameters 
properly, may find that ordering in larger lots is an appropriate policy to counter entropy effects. 
 
Ameli et al. (2013) extended the EnOQ model proposed by Jaber et al. (2004) by considering 
deteriorating items with imperfect quality and price dependent demand. They also assumed fuzzy 
inflation and discount rates. Imperfect items with deterioration were shown in industries such as 
electronic, agriculture and food industries. On the other hand, the major loss due to inflation is caused 
by its uncertainty instead of its high rate. Uncertainty in future inflation rate rises the inflation rate and 
in turn high inflation rate increases uncertainty in future inflation rate. So due to the world’s current 
uncertain conditions it is important to consider uncertainty in inflation rate to capture the real world 
better. Hence, in this paper, a new thermodynamics approach model under fuzzy inflationary 
conditions, fuzzy time discounting for defective items with constant defective and deterioration rate 
and time dependent demand has been proposed. A mathematical model is developed to determine the 
number of cycles that maximizes the present value of total revenue in a finite planning horizon. The 
fuzzified model for inflation and discount rate is solved by two methods: signed distance and fuzzy 
numbers ranking. Numerical examples are presented and results are discussed. Results showed that the 
number of cycles decreases in fuzzy inflationary conditions. They also illustrated that defuzzification 
method results in more cycles than fuzzy method. 
 

5. Other modeling approaches incorporating reliability 

Prekopa (1965) introduced reliability in inventory model and provided its asymptotic solution and later 
Prekopa and Kelle (1978) proposed three reliability type inventory models based on stochastic 
programming which are basically generalization of his previous models and also provided their 
solution. He used nonlinear programming for solution with one probabilistic constraint. Simulation is 
used to determine the value of constraining function. Model 1 has some assumptions about delivery 
process like number of delivery times; total amount delivered is constant, existence of a smallest 
amount to be delivered. Another one is random vector of the components of which are the random 
delivered amount is stochastically independent of the random vector of the delivery time points. The 
2nd model differs from the first one that it has an added constraint considering conditional expectation 
appear. It considers not only the rarity of the occurrence of the unsatisfied demand but also upper 
bound for the average magnitude of the unsatisfied demand. It has an assumption that no demand is 
lost. Moreover the time interval in which unsatisfied demand exists is proportional to the magnitude of 
violation. Model 3 consists of a penalty term and contains the previous models as special cases. It is 
considered as one of the earliest work in the reliability driven inventory model field. 

Louit and Pascual (2011) presented various approaches for the determination of the optimal stock size, 
when the stock is composed of (i) non-repairable or (ii) repairable parts. The paper is focused on spares 
for relatively expensive, highly reliable components, rather than on fast-moving spare parts. 
Optimization criteria considered are minimization of costs, maximization of equipment availability, and 
the achievement of a desired stock reliability (probability that a spare part request will not be rejected 
due to lack of spares in stock). For stock reliability, instantaneous and interval reliability calculations 
are considered. In addition, models directed to the estimation of the remaining life of a given stock of 
spare parts (at a certain stock reliability level) are introduced. The paper presented several models for 
spare parts inventory optimization from a “reliability engineering perspective” and illustrated their use 
through industrial case studies. This perspective differs from that of general inventory control primarily 
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in the sense that no infinite populations are assumed, thus the demand rate for spare depends on the 
number of units currently in operation. Two kinds of reliability are introduced here one is instantaneous 
reliability this is the probability that a spare is available at any given moment in time. It is equivalent to 
the fraction of demands that can be immediately satisfied from stock at hand. In the literature, 
instantaneous reliability is commonly referred to as fill rate or less often as availability of stock or point 
availability in the long run. Another is Interval reliability this is the probability of not running out of 
stock at any moment over a specified period of time, such as one year. Because reliability has to be 
maintained for every moment during the interval, this criterion is more demanding than instantaneous 
reliability. In case of repairable components both limited and unlimited repair capacity is considered. 
The paper described all of these models, which are subject to practical industrial application and 
presented case studies from utilities and mining to illustrate their use. 

Krishnamoorthi (2011) investigated the effect of quality cost on inventory control policies in a 
manufacturing system during the product life cycle, which consists of introduction, growth and decline 
stages. The defective rate is considered as a variable of known proportions. An inventory model in 
order to minimize the total cost of inventory and integrated with cost of quality is developed. The 
objective is to minimize the overall total relevant inventory cost. An exact mathematical model and a 
solution procedure are established. Necessary and sufficient conditions for a unique and global optimal 
solution are derived. An illustrative example is provided and numerically verified. This seems to be the 
first time where such an inventory model for product life cycle is mathematically treated and 
numerically verified. It is concluded that there is (i) direct relationship between rate of defective items 
with optimal quantity, cycle time and total cost and also an inverse relationship between rate of 
defective items and order cost, holding cost and demand down time, (ii) direction relationship between 
rate of quality cost with optimum quantity, cycle time, holding cost and total cost but inverse 
relationship with ordering cost. 

Tripathy and Pattnaik (2011) pointed out that as markets become more and more competitive, 
reliability has become a prevailing characteristic of the modern production systems operating in 
complex, dynamic and uncertain environments. Ensuring reliability for exceptional products requires 
stringent production control measures often with costs that are usually difficult to estimate. Yet not 
accounting for these in costs can lead to less efficient production systems. Therefore, they suggested 
that the need to consider reliability and need for instantaneous receipt resembles an imperfect 
production process. In the paper, the applicability of these factors is demonstrated in a simple reverse 
inventory model with an imperfect production process, where the unit cost of production is inversely 
related to reliability and directly related to demand. These objective functions are included to model the 
problem accurately. Under reasonable conditions, maximum positive cost savings are achieved when 
process reliability increases. They identified their intention to find an optimal inventory policy with 
reliability considerations where demand was deterministic and production unit cost depends on process 
reliability and demand rate. The company usually has a specified level of reliability for the production 
process, which depends on a number of different factors.  However, reliability is achieved with 
additional fixed and variable costs, which pushes up the production unit cost. Using the proposed 
model, if the production unit cost is inversely associated with reliability and directly associated with 
demand, a significant amount of savings can be achieved 

Mirzahosseinian and Piplani (2011) model the PBL system as a queuing network by enhancing the 
classical repairable parts inventory model. They model the closed-loop inventory system as an M/M/m 
queue in which component failures are Poisson distributed and the repair times at the service facility 
are exponential. They justified their model improves upon the classical model by relaxing some 
restrictive assumptions, such as fixed failure rate, fixed repair rate and infinite capacity at repair facility. 
The model focused on the interaction between inventory management, component reliability and repair 
facility efficiency. The model was then analyzed to determine the factors that have significant impact 
on the system availability. The results showed that the base stock level of the spare parts has negligible 
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effect on the system availability. Thus, to achieve a desired availability level, the supplier has to 
improve the component reliability and the repair time, rather than invest in building up a stock of 
spares. In addition, they formulated two metrics that allow the customer to monitor the key parameters 
affecting system availability. Furthermore, the model recommended concentrating on the component 
reliability and repair system efficiency to improve the availability of the system with repairable spare 
parts. They identified optimizing the cost for a repairable inventory system in order to find the optimal 
failure rate, server repair rate and the number of servers is a potential area for future research. Modeling 
such a system would be easier if the base stock were fixed at a constant value, as it does not seem to 
have an effect on system availability. 

6. Conclusion 

In reality, there is nothing like perfect production system and it is important to incorporate reliability in 
any inventory modeling regardless of its type. This paper has summarized the research works 
accomplished in inventory modeling for an imperfect production process for the last 35 years. These 
research outcomes have been analyzed and separated based on the basic modeling approach in which 
the reliability adjustments are made. The basic models used in these works are mainly EOQ, EPQ, 
entropy cost based model, stochastic model and some other approaches like spare parts inventory 
model, model specific to product life cycle stage and some more. In formulation of the model, 
reliability is adjusted with different approaches and forms of equation. The optimum cost has been 
determined by solving the cost model subjected to some constraints with numerous approaches like 
geometric programming, differential calculus, multi-objective genetic algorithm, fuzzy additive goal 
programming, modified geometric programming, etc. One interesting aspect is that most of the works 
reviewed here considered traditional EOQ and EPQ model for reliability adjustment and there are few 
approaches, which are out of the box and considered probabilistic and advanced inventory model for 
adjustment. So in future, researchers could extend their works to model like Wagner-Whitin algorithm, 
newsvendor model, base stock model, (Q, R) model, etc. 
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