
* Corresponding author. Tel: 91-261-2201661, Fax: 91-261-2201571
E-mail: ravipudirao@gmail.com (R. Venkata Rao)

© 2014 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2013.09.007

International Journal of Industrial Engineering Computations 5 (2014) 1–22

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A multi-objective improved teaching-learning based optimization algorithm for unconstrained
and constrained optimization problems

R. Venkata Raoa* and Vivek Patelb

aS.V. National Institute of Technology, Ichchanath, Surat, Gujarat – 395 007, India
bL.E. College, Morbi, Gujarat – 395 007, India

C H R O N I C L E A B S T R A C T

Article history:
Received July 2 2013
Received in revised format
September 7 2013
Accepted September 15 2013
Available online
September 23 2013

 The present work proposes a multi-objective improved teaching-learning based optimization
(MO-ITLBO) algorithm for unconstrained and constrained multi-objective function optimization.
The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization
(TLBO) algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved
to enhance its exploration and exploitation capacities by introducing the concept of number of
teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO
algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e.
Pareto front) maintained in an external archive. The performance of the MO-ITLBO algorithm is
assessed by implementing it on unconstrained and constrained test problems proposed for the
Congress on Evolutionary Computation 2009 (CEC 2009) competition. The performance
assessment is done by using the inverted generational distance (IGD) measure. The IGD
measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of
the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is
used to assess the overall performance of competitive algorithms. Results have shown that the
proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained
test functions and the 3rd rank in the optimization of constrained test functions.

© 2013 Growing Science Ltd. All rights reserved

Keywords:
Multi-objective optimization
Teaching-learning based
optimization
Inverted generational distance

1. Introduction

Finding the global optimum value(s) of a problem involving more than one objective with conflicting
nature arises in many scientific applications. The problem of optimization involving more than one
objective function with conflicting nature is known as multi-objective optimization (MOO) problem.
Multi-objective optimization has been defined as finding a vector of decision variables while
optimizing several objectives simultaneously with a given set of constraints. Unlike the single objective
optimization, MOO solutions are in such a way that the performance of each objective cannot be

2

improved without sacrificing the performance of another one. Hence, the solution of MOO problem is
always a trade-off between the objectives involved in the problem. Moreover, the obtained result in
multi-objective optimization is a set of solutions because the objective functions are conflicting in
nature (Akbari & Ziarati, 2012; Zhou et al., 2011).

The multi-objective optimization techniques can be classified into three main groups: Priori techniques,
Progressive techniques and Posteriori techniques (Veldhuizen, 1999). Priori techniques employ
decision making before the optimization algorithm starts searching the search space. These techniques
are divided into three sub-groups: Lexicographic techniques, linear fitness combination techniques and
nonlinear fitness combination techniques. In Progressive techniques, there is a direct interaction
between the decision making and the search process of the optimization algorithm. Posteriori
techniques provide a set of solutions with the search process of MOO problem for the decision making
(Coello et al., 2007). These techniques are divided into many sub-groups like independent sampling,
aggregation selection, criterion selection, Pareto sampling, Pareto-based selection, Pareto rank and
niche-based selection, Pareto elitist-based selection, and hybrid selection. Among all these techniques,
most of the research is focused on Pareto based techniques.

The computational effort required to solve the MOO problems is quite considerable. Moreover, many
of these problems cannot be solved analytically and consequently they have to be addressed by
numerical algorithms. Recently several authors have proposed different evolutionary and swarm
intelligence based MOO algorithms to solve these types of problems. Some of the evolutionary MOO
algorithms that aimed to obtain a true Pareto front for multi-objective problems include the following:

 Multiple Trajectory Search (MTS) (Tseng & Chen, 2009)
 Dynamical Multi-Objective Evolutionary Algorithm (DMOEADD) (Liu et al., 2009)
 LiuLi Algorithm (Liu and Li, 2009)
 Generalized Differential Evolution 3 (GDE3) (Kukkonen & Lampinen, 2009)
 Multi-Objective Evolutionary Algorithm based on Decomposition (MOEAD) (Zhang et al.,

2009)
 Enhancing MOEA/D with Guided Mutation and Priority Update (MOEADGM) (Chen et al.,

2009)
 Local Search Based Evolutionary Multi-Objective Optimization Algorithm (NSGAIILS)

(Sindhya et al., 2009)
 Multi-Objective Self-adaptive Differential Evolution Algorithm with Objective-wise Learning

Strategies (OWMOSaDE) (Huang et al., 2009)
 Clustering Multi-Objective Evolutionary Algorithm (Clustering MOEA) (Wang et al., 2009)
 Archive-based Micro Genetic Algorithm (AMGA) (Tiwari et al., 2009)
 Multi-Objective Evolutionary Programming (MOEP) (Qu & Suganthan, 2009)
 Differential Evolution with Self-adaptation and Local Search Algorithm (DECMOSA-SQP)

(Zamuda et al., 2009)

 An Orthogonal Multi-objective Evolutionary Algorithm with Lower-dimensional Crossover
(OMOEAII) (Gao et al., 2009)

 NSGA-II (Deb et al., 2002)
 Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick

computation of Pareto-optimal solutions (Deb et al., 2005)

Similarly, different types of swarm intelligence based algorithm have been presented in the literature to
solve the MOO problems. Some of the swarm intelligence algorithms which efficiently solved the
multi-objective problems include the following:

 Multi-objective Particle Swarm optimization (MOPSO) (Coello et al., 2004)

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

3

 PSO-based multi-objective optimization with dynamic population size and adaptive local
archives (Leong & Yen, 2008)

 Covering Pareto-optimal fronts by sub swarms in multi-objective particle swarm optimization
(Mostaghim & Teich, 2004)

 Particle swarm inspired evolutionary algorithm (PS-EA) for multi-objective optimization
problem (Srinivasan & Seow, 2003)

 Interactive Particle Swarm Optimization (IPSO) (Agrawal et al., 2008)
 Dynamic Multiple Swarms in Multi-Objective Particle Swarm Optimization (DSMOPSO) (Yen

& Leong, 2009)
 Autonomous bee colony optimization for multi-objective function (Zeng et al., 2010)
 A multi-objective artificial bee colony for optimizing multi-objective problems (Hedayatzadeh

et al., 2010)
 A novel multi-objective optimization algorithm based on artificial bee colony (Zou et al., 2011)
 Multi-objective bee swarm optimization (Akbari & Ziarati, 2012)
 Multi-objective artificial bee colony algorithm (Akbari & Ziarati, 2012)

The evolutionary and swarm intelligence based algorithms are probabilistic algorithms and required
common controlling parameters like population size and number of generations. Besides the common
control parameters, different algorithms require their own algorithm-specific control parameters. For
example, GA uses mutation rate and crossover rate. Similarly, PSO uses inertia weight, social and
cognitive parameters. The proper tuning of the algorithm-specific parameters is a very important factor
for the efficient working of the evolutionary and swarm intelligence based algorithms. The improper
tuning of the algorithm-specific parameters either increases the computational effort or yields the local
optimal solution. Considering this fact, recently Rao et al. (2011, 2012a; 2012b), Rao and Patel (2012,
2013a; 2013b, 2013c) introduced the Teaching-learning based optimization (TLBO) algorithm which
does not require any algorithm-specific parameters. TLBO requires only common control parameters
like population size and number of generations for its working. Thus, TLBO can be said as an
algorithm-specific parameter-less algorithm.

In the present work, a multi-objective improved teaching-learning based optimization (MO-ITLBO)
algorithm is proposed for multi-objective unconstrained and constrained optimization problems. The
improved TLBO (ITLBO) algorithm incorporates some modifications in the basic TLBO algorithm to
enhance its exploration and exploitation capacities. The MO-ITLBO algorithm uses a fixed size archive
to maintain the good solutions obtained in every iteration. The ε - dominance method is used to
maintain the archive (Deb et al., 2005). In ε - dominance method the size of the final external archive
depends on the ε value, which is usually a user-defined parameter. The solutions kept in the external
archive are used by the learners to update their knowledge. The proposed algorithm uses a grid to
control the diversity over the external archive.

The remainder of this paper is organized as follows. Section 2 briefly describes the basic TLBO
algorithm. Section 3 explains the modifications in the basic TLBO algorithm and the proposed MO-
ITLBO algorithm. Section 4 presents experimentation on unconstrained and constrained test functions.
Finally, the conclusion of the present work is presented in section 5.

2. Teaching-learning-based optimization (TLBO) algorithm

Teaching-learning is an important process where every individual tries to learn something from other
individuals to improve himself/herself. Rao et al. (2011, 2012a; 2012b), Rao and Patel (2012, 2013a;
2013b, 2013c) proposed an algorithm known as teaching-learning based optimization (TLBO) which
simulates the traditional teaching-learning phenomenon of the classroom. The algorithm simulates two
fundamental modes of learning: (i) through teacher (known as teacher phase) and (ii) interacting with

4

the other learners (known as the learner phase). TLBO is a population based algorithm where a group
of students (i.e. learners) is considered as population and the different subjects offered to the learners is
analogous with the different design variables of the optimization problem. The grades of a learner in
each subject represent a possible solution to the optimization problem (value of design variables) and
the mean result of a learner considering all subjects corresponds to the quality of the associated solution
(fitness value).The best solution in the entire population is considered as the teacher.

At the first step, the TLBO generates a randomly distributed initial population pinitial of n solutions,
where n denotes the size of population. Each solution Xk (k = 1, 2, ..., n) is a m-dimensional vector
where m is the number of optimization parameters (design variables). After initialization, the
population of the solutions is subjected to repeated cycles, i = 1, 2, ..., g, of the teacher phase and
learner phase. Working of the TLBO algorithm is explained below with the teacher phase and learner
phase.

2.1. Teacher phase

This phase of the algorithm simulates the learning of the students (i.e. learners) through teacher. During
this phase a teacher conveys knowledge among the learners and puts efforts to increase the mean result
of the class. Suppose there are ‘m’ number of subjects (i.e. design variables) offered to ‘n’ number of
learners (i.e. population size, k=1,2,…,n). At any sequential teaching-learning cycle i, let us denote as
Mj,i the mean result of the learners in a particular subject ‘j’ (j=1,2,…,m). Since a teacher is the most
experienced person on a subject, the best learner in the entire population is considered as a teacher in
the algorithm. Let Xb

j,i , (bk) be the grades of the best learner and f(Xb) the result of the best learner
considering all the subjects, who is identified as a teacher for that cycle. Teacher will put maximum
effort to increase the knowledge level of the whole class, but learners will gain knowledge according to
the quality of teaching delivered by a teacher and the quality of learners present in the class.
Considering this fact the difference between the grade of the teacher and mean grade of the learners in
each subject is expressed as,

Difference_Meanj,i = ri (X

b
j,i - TFMj,i) , (1)

where Xb

j,i is the grade of the teacher (i.e. best learner) in subject j. TF is the teaching factor which
decides the value of mean to be changed, and ri is a random number in the range [0, 1]. The value of TF
can be either 1 or 2 and decided randomly as,

TF = round [1+ri], (2)

where ri is a random number in the range [0, 1]. The value of TF is not given as an input to the
algorithm and its value is randomly decided by the algorithm using Eq. (2).

Based on the Difference_Meanj,i, the existing solution ‘k’ is updated in the teacher phase according to
the following expression.

X’k

j,i = Xk
j,i + Difference_Meanj,i, (3)

where X’k

j,i is the updated value of Xk
j,i. The algorithm accepts X’k

j,i if it gives a better function value
otherwise keeps the previous solution. All the accepted grades (i.e design variables) at the end of the
teacher phase are maintained and these values become the input to the learner phase.

2.2. Learner phase

This phase of the algorithm simulates the learning of the students (i.e. learners) through interaction
among themselves. The students can also gain knowledge by discussing and interacting with the other

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

5

students. A learner will learn new information if the other learners have more knowledge than him or
her. The learning phenomenon of this phase is expressed below. The algorithm randomly selects two
learners p and q such that f(X p) ≠ f(X q) (where f(X p) and f(X q) are the updated result of the learners p
and q considering grades of all the subjects at the end of teacher phase and p, q k)

X’’p

j,i = X’p
j,i + ri (X’p

j,i - X’q
j,i), If f(X

 p) < f(X q), (4a)
X’’p

j,i = X’p
j,i + ri (X’q

j,i - X’p
j,i), If f(X

 q) < f(X p), (4b)

(Above equations are for minimization problem, reverse is true for maximization problem)

where X’’p

j,i is the updated value of X’p
j,i. The algorithm then accepts X’’p

j,i if it gives a better function
value. More details about the TLBO algorithm and its codes can be found at
https://sites.google.com/site/tlborao/.

3. Multi-objective Improved TLBO (MO-ITLBO) algorithm

The proposed MO-ITLBO algorithm is the improved version of the basic TLBO algorithm. In the basic
TLBO algorithm, the result of the learners is improved either by a teacher (through the classroom
teaching) or by interacting with other learners. However, in the traditional teaching-learning
environment the students also learn during the tutorial hours by discussing with their fellow classmates
or even by discussing with the teacher. Sometimes the students are self-motivated and try to learn the
things by self-learning. Furthermore, the teaching factor in the basic TLBO algorithm is either 2 or 1
which reflects two extreme circumstances where the learner learns either everything or nothing from
the teacher. During the course of optimization, this situation results in a slower convergence rate of
optimization algorithm. So considering this fact, to enhance the exploration and exploitation capacity,
some modifications have been introduced in the basic TLBO algorithm.

The basic TLBO algorithm has been already modified by Rao and Patel (20132013b, 2013c) to
improve its performance and applied it to the optimization of thermal systems. In the present work the
previous modifications are further enhanced and new modifications are introduced to improve the
performance of the algorithm.

3.1. Number of teachers

Population sorting is an important concept used in evolutionary algorithms to avoid the premature
convergence. In the basic TLBO algorithm the population sorting mechanism is provided by
introducing the multi teacher concept.
In the teacher phase of the TLBO algorithm, the teacher who is a highly learned person will impart the
knowledge to students and tries to improve the mean result of the class. In the classical teaching-
learning environment, the class contains diverse students (i.e. intelligent, average, below average) that
learn from the teacher. Since the teacher is a highly learned person so it is difficult for below average
students to cope up with him/her. So, in this situation the teacher has to put more effort to increase the
mean result of the learner and even with this effort it might happen that apparent improvements in the
results will not be observed.
Below average students can easily cope up with the average students than a highly learned person. So,
if the below average students first learn from the average students or intelligent students and then they
learn from the highly learned person then their results will improve more effectively, as well as the
mean result of the class. Considering this fact, in the basic TLBO algorithm the students are divided
into groups based on their results. The best learner of each group acts as a teacher for that group and
tries to increase the mean result of his/her group. If the level (i.e. result) of the individual in the group
reaches up to the level of the teacher of that group then this individual is assigned to the next group (i.e.
next better teacher). The Pseudo code of this modification is given in Fig.1.

6

Initialize the population randomly and evaluate the same.
For RN = 1: Number of runs.

Rank the evaluated solutions (In ascending order for the minimization problem and in descending order for the
maximization problem)

Select the best solution f(Xb). This solution acts as the chief teacher (T1) of the class. Mathematically, T1 = f(Xb)
Select the other teachers (Ts) based on the best solution (i.e. f(Xb))

Ts = f(Xb) ± ri × f(Xb) s = 2, 3, ….,N
(Where, ri is the random number. If the value of the right side of the above equation is not equal to any of the
values of the initially evaluated population then the value closer to that is selected from the initial population).

Once, the teachers are identified, distribute the learners to the teachers based on their fitness value (i.e. result) as,
For k =1 to Population

If T1 ≤ f(X
k) < T2

Assign the learner f(X
k) to teacher 1 (i.e T1)

Else If T2 ≤ f(X
k) < T3

Assign the learner f(X
k)to teacher 2 (i.e T2)

.

.

.
Else If TN-1 ≤ f(X

k)< TN

Assign the learner f(X
k) to teacher N-1 (i.e TN-1)

Else
Assign the learner f(X

k) to teacher TN
End If

End For
Teacher phase
Learner phase

End For

Fig. 1. Pseudo code for selection of teacher and distribution of students

3.2. Adaptive teaching factor

Another modification is related to the teaching factor (TF) of the basic TLBO algorithm. The teaching
factor decides the value of mean to be changed. In the basic TLBO, the decision of the teaching factor
is a heuristic step and it can be either 1 or 2. This practice corresponds to the situation where learners
learn nothing from the teacher or learn all the things from the teacher respectively. But in actual
teaching-learning phenomenon this fraction is not always at its end state for learners but varies in-
between also. The learners may learn in any proportion from the teacher. In the optimization algorithm
a lower value of TF allows the finer search in small steps but causes slow convergence. A larger value
of TF speeds up the search but it reduces the exploration capability. Considering this fact the teaching
factor is modified as,

,s i

k

F

s
i

f X
T

T

 If Ts ≠ 0

(5a)

 1
i

FT If Ts = 0 (5b)

where f(Xk) is the result of any learner k associated with group ‘s’ considering all the subjects at
iteration i and Ts is the result of the teacher of the same group at the same iteration i. Thus, teaching
factor in ITLBO algorithm is the ratio of the result of the learner to the result of the teacher during an
iteration. The teaching factor varies automatically during the search depending upon the result of the
learner and the teacher. Thus, automatic tuning of TF improves the performance of the algorithm.

3.3. Learning through tutorial

This modification is based on the fact that students can also learn by discussing with their fellow
classmates or even with the teacher during the tutorial hours while solving the assigned tasks. Since the
students can increase their knowledge by discussing with the other students or teacher, we incorporate

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

7

this search mechanism in the teacher phase. So, in the ITLBO algorithm, the learner improved his/her
result in the teacher phase through the classroom teaching provided by the teacher along with the
discussion with the fellow classmates or teacher during tutorial hours. Mathematically this modification
can be modeled as:

X’k
j,i = (Xk

j,i + Difference_Meanj,i) + ri (X
h

j,i - X
k
j,i) If f(X

h) < f(Xk), h ≠ k, (6a)
X’k

j,i = (Xk
j,i + Difference_Meanj,i) + ri (X

k
j,i – Xh

j,i) If f(X
k) < f(Xh), h ≠ k, (6b)

where the first term on the right side indicates the classroom learning and the second term indicates
learning through the tutorial.

3.4. Self-motivated learning

In the basic TLBO algorithm, the results of the students are improved either by learning from the
teacher or by interacting with the other students. However, it is also possible that students are self-
motivated and improve their knowledge by self-learning. Thus, the self-learning aspect to improve the
knowledge is considered in the ITLBO algorithm. Since the students learn without the aid of the
teacher, we incorporate this search mechanism in the learner phase. Mathematically this modification
can be modeled as:

X’p

j,i = [X’p
j,i + ri (X’p

j,i - X’q
j,i)] + [ri (X

s
j,i – EF X’p

j,i)], If f(X’ p) < f(X ‘q) (7a)
X’p

j,i = [X’p
j,i + ri (X’q

j,i - X’p
j,i)] + [ri (X

s
j,i – EF X’p

j,i)], If f(X’ q) < f(X ‘p) (7b)
 (p ≠ q and p ,q , s k, Xs

j is the grade of the teacher associated with group ‘s’ in ‘j’ subject)

where ri is a random number in the range [0, 1]. EF is the exploration factor and its value is decided
randomly as:

EF = round (1+ri) (8)

The first term on the right side of Eq. (7a) and (7b) indicates the learning by interacting with the other
learners and the second term indicates the self-motivated learning.

3.5. External Archive

The main objective of the external archive is to keep a historical record of the non-dominated vectors
found along the search process. This algorithm uses a fixed size external archive to keep the best non-
dominated solutions that it has found so far. In the proposed algorithm an ε-dominance method is used
to maintain the archive. This method has been used widely in multi-objective optimization algorithms
to manage the archive. The archive is a space with dimension equal to the number of problem’s
objectives. The archive is empty at the beginning of the search. In ε-dominance method each dimension
of the objective space is divided into segments whose width is ε, so that the objective space is divided
into squares, cubes or hyper-cubes for two, three and more than three objectives respectively. If a box
that holds the solution(s) can dominate other boxes then those boxes (along with the solution(s) in
them) will be removed. Then each box is examined to check if only one non-dominated solution is
present, while the dominated ones are eliminated. Finally, if a box still has more than one solution then
the solution with the minimum distance from the lower left corner of the box (for minimization
problem) and upper right corner (for maximization problem) will stay and the others will be removed.
It is observed from the literature that the use of ε-dominance guarantees that the retained solutions are
non-dominated with respect to all solutions generated during the execution of the algorithm. The
proposed MO-ITLBO algorithm uses the grid based approach for the archiving process which was
previously used by MOABC algorithm (Akbari & Ziarati, 2012).
The schematic diagram of the proposed algorithm is shown in Fig. 2.

8

1

Rank the evaluated population i.e. solutions (in
ascending order for the minimization problem and in
descending order for the maximization problem)

Select the best solution (i.e. the solution obtained the
first rank) f(Xb). This solution acts as the chief teacher
(T1) of the class (i.e. T1 = f(Xb)).

Select the other teachers (Ts) based on the best solution
(i.e. f(Xb))

Ts = f(Xb) ± ri * f(Xb) s = 2, 3, ….,N

 (If the equality is not met, select the Ts closer to the
value calculated above)

Selection of teachers

Calculate the mean result of each group of learners in each subject (i.e. (Ms,j)
For s = 1 to No. of group (i.e No. of teacher)

For j = 1 to No. of Design variables
Calculate the difference between the current mean and the corresponding result
of the teacher of that group by utilizing the adaptive teaching factor

Difference_Means,j = ri (X
s
j, - TF Ms,j)

(where Xs
j is the grade of the teacher associated with group ‘s’ in ‘j’

subject and Ms,j is the mean grade of the learner of group ‘s’ in ‘j’
subject)

End For
End For
Update the learners’ knowledge with the help of teacher’s knowledge along with the
knowledge acquired by the learners’ during the tutorial hours.
For j = 1 to No. of Design variables

X’k
j = (Xk

j + Difference_Means,j) + ri (X
h

j - X
k
j) If f(X

h) < f(Xk), h ≠ k
X’k

j = (Xk
j + Difference_Means,j) + ri (X

k
j – Xh

j) If f(X
k) < f(Xh), h ≠ k

End For
If the result has improved

Keep the improved result
Else
Keep the previous result
End If

Teacher phase

For k =1 to Population
If T1 ≤ f(X

k) < T2
Assign the learner f(X

k) to teacher 1 (i.e T1).
Else If T2 ≤ f(X

k) < T3
Assign the learner f(X

k)to teacher 2 (i.e T2).
.
.

Else If TN-1 ≤ f(X
k) < TN

Assign the learner f(X
k) to teacher N-1 (i.e TN-1)

Else
Assign the learner f(X

k) to teacher TN
End If

End For

Assign learners to teachers

2

Set Population size, Function evaluation, No. of teachers
Define Optimization problem as, Minimize or Maximize f(X)
Initialize Population (i.e. learners, k=1,2,..n),

 Design variables (i.e. number of subjects offered to the learners,
j=1,2,..m)

 External archive

Initialization

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

9

Fig. 2. Schematic diagram of the MO-ITLBO algorithm

Yes

Output external archive as Pareto
optimal set

Update the learners’ knowledge of each group by utilizing the knowledge of some other learner
of the same group as well as by self -learning according to:
For j = 1 to No. of Design variables

X’p
j,i = [X’p

j,i + ri (X’p
j,i - X’q

j,i)] + [ri (X
s
j,i – EF X’p

j,i)], If f(X’p) < f(X’q)
X’p

j,i = [X’p
j,i + ri (X’q

j,i - X’p
j,i)] + [ri (X

s
j,i – EF X’p

j,i)], If f(X’q) < f(X’p)
(p ≠ q and p ,q , s k, Xs

j is the grade of the teacher associated with group ‘s’ in ‘j’ subject)
End For
If the result has improved

Keep the improved result
Else

Keep the result of teacher phase
End If
Combine all the groups

Learner phase

Initialize the Grid on the Archive
For each box in the Grid

If any box dominates the other boxes
Remove the dominated box and their related solutions.

End If
End For
For remaining boxes in the Grid

If the box contains more than one solution
Remove the dominated solution(s) from the box

End If
If the box still contains more than one solution

Keep the solution with less distance from the left corner of the box and remove others
End If

End For

External Archive

1

FE < FEmax

Stop

No

2

10

Both the teacher phase and learner phase iterate cycle by cycle as shown in Fig. 2 till the termination
criterion is satisfied. In the present work, total number of function evaluations is set as termination
criterion for the proposed algorithm. At the termination of the algorithm, the external archive found by
the algorithm is returned as the output.

The proposed MO-ITLBO algorithm is implemented on both unconstrained and constrained problems.
For the constrained optimization problems it is necessary to incorporate any constraint handling
techniques within the MO-ITLBO algorithm. In this work, superiority of the feasible solution method
(SF) (Qu & Suganthan, 2011) is used to handle the constraints with the proposed algorithm.

At this point it is important to clarify that in the MO-ITLBO algorithm, the solution is updated in the
teacher phase as well as in the learner phase. Also, if duplicate solutions are present then they are
randomly modified. So the total number of function evaluations in the proposed algorithm is = {(2 ×
population size × number of generations) + (function evaluations required for the duplicate
elimination)}. In the entire experimental work of this paper, the above formula is used to count the
number of function evaluations while conducting experiments with proposed algorithm. To
demonstrate the effect of the modifications introduced to improve the performance of the TLBO
algorithm, a step-by-step comparison of the performance of basic TLBO and the ITLBO algorithms for
Rastrigin function is given in Appendix-A. It may be observed that the modifications have improved
the performance of the TLBO algorithm.

The next section deals with the experimentation of MO-ITLBO algorithm on various multi-objective
unconstrained and constrained functions.

4. Experimental investigation

In this section, the ability of the MO-ITLBO algorithm is assessed by implementing it for the parameter
optimization of 20 well defined benchmark functions of CEC 2009 (Zhang et al., 2009). Out of 20
functions, 10 functions are unconstrained (UF1-UF10) and the remaining 10 are constrained functions
(CF1-CF10). The UF1-UF7 and CF1-CF7 are two objective benchmark functions while UF8-UF10 and
CF8-CF10 are three objective benchmark functions. The detailed mathematical formulations of the
considered test functions are given in Zhang et al. (2009). The Pareto front of these functions has many
characteristics e.g. some of them are convex while others are concave or some of them are continuous
and some others are discontinuous. A common platform is required in the field of optimization to
compare the performance of different algorithms for different benchmark functions. For the present
work this common platform is provided by CEC 2009. As suggested in this common platform, in the
present work the total number of function evaluations is set as 300000 for each test problem in the
present work. The MO-ITLBO algorithm is experimented on each function with population size 50 and
the number of teachers 4. The proposed algorithm is executed 30 times for each test function and the
average results obtained using the proposed algorithm are compared with the results of the other
algorithms available in the literature.

4.1. Performance Metric

The inverted generational distance (IGD) measure is used for quantitative assessment of the
performance of the proposed algorithm. The IGD measure is defined as: Let P* be a set of uniformly
distributed points along the Pareto front in the objective space. Let A be an approximate set to the
Pareto front, the average distance from P* to A is defined as follows,

 *

*

*

,
,

P
d A

IGD A P
P

,

(6)

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

11

where d(τ, A) is the minimum Euclidian distance between υ and the other points in A. Both diversity
and convergence of the approximated set A could be measured using IGD (A, P*). If P* has a large
number of members to represent the Pareto front precisely. Moreover, to maintain the common
platform for comparison, the archive size is adjusted to 100 and 150 for two objective functions and
three objective functions respectively.

4.2. Performance analysis of unconstrained benchmark functions

In the first experiment the proposed algorithm is implemented on 10 unconstrained benchmark
functions taken from CEC 2009. For each test function the MO-ITLBO algorithm has been executed
for 30 times. The result of each benchmark function is presented in Table 1 in the form of best solution,
worst solution, mean solution and standard deviation obtained through 30 independent runs of the MO-
ITLBO algorithm. The graphical representation of the produced Pareto front with the MO-ITLBO
algorithm for UF1-UF10 is shown in Figs. 3(a)-3(j).

Fig. 3(a)-(j). The Pareto front obtained by the MO-ITLBO algorithm for unconstrained test functions

UF1-UF-10

12

Table 1
IGD values obtained with MO-ITLBO for different unconstrained test functions (UF1-UF10) in 30
independent runs.

Test function Best Worst Mean SD
UF 1 0.00391 0.00487 0.00421 8.04E-04
UF 2 0.00462 0.00593 0.00519 1.73E-03
UF 3 0.03486 0.06174 0.04681 6.48E-03
UF 4 0.03743 0.04609 0.04378 1.07E-02
UF 5 0.04015 0.09923 0.07482 8.62E-03
UF 6 0.00868 0.03247 0.01144 1.01E-02
UF 7 0.01106 0.08481 0.04127 2.38E-02
UF 8 0.05107 0.05832 0.06126 1.65E-03
UF 9 0.06836 0.20036 0.12379 8.97E-02

UF 10 0.1187 0.18962 0.14714 1.29E-02

Table 2

Comparison of mean IGD values and the standard deviation (SD) obtained with different algorithms for
different unconstrained test functions (UF1-UF10) in 30 independent runs

Algorithm Measure UF 1 UF 2 UF 3 UF 4 UF 5 UF 6 UF 7 UF 8 UF 9 UF 10
MO-ITLBO Mean IGD 0.00421 0.00519 0.04681 0.04378 0.07482 0.01144 0.04127 0.06126 0.12379 0.14714

SD 8.04E-04 1.73E-03 6.48E-03 1.07E-02 8.62E-03 1.01E-02 2.38E-02 1.65E-03 8.97E-02 1.29E-02

MOABC Mean IGD 0.00618 0.00484 0.0512 0.05801 0.077758 0.06537 0.05573 0.06726 0.0615 0.19499
SD NA NA NA NA NA NA NA NA NA NA

MTS Mean IGD 0.00646 0.00615 0.0531 0.02356 0.01489 0.05917 0.04079 0.11251 0.11442 0.15306
SD 3.49E-04 5.08E-04 1.17E-02 6.64E-04 3.28E-03 1.06E-02 1.44E-02 1.29E-02 2.55E-02 1.58E-02

DMOEADD Mean IGD 0.01038 0.00679 0.03337 0.04268 0.31454 0.06673 0.01032 0.06841 0.04896 0.32211
SD 2.37E-03 2.02E-03 5.68E-03 1.39E-03 4.66E-02 1.03E-02 9.46E-03 9.12E-03 2.23E-02 2.86E-01

LiuLi
Algorithm

Mean IGD 0.00785 0.0123 0.01497 0.0435 0.16186 0.17555 0.0073 0.08235 0.09391 0.44691
SD 2.09E-03 3.32E-03 2.4E-02 6.5E-04 2.82E-02 8.29E-02 8.9E-04 7.33E-03 4.71E-02 1.3E-01

GDE3 Mean IGD 0.00534 0.01195 0.10639 0.0265 0.03928 0.25091 0.02522 0.24855 0.08248 0.43326
SD 3.42E-04 1.54E-03 1.29E-02 3.72E-04 3.95E-03 1.96E-02 8.89E-03 3.55E-02 2.25E-02 1.23E-02

MOEAD Mean IGD 0.00435 0.00679 0.00742 0.06385 0.18071 0.00587 0.00444 0.0584 0.07896 0.47415
SD 2.90E-04 1.82E-03 5.89E-03 5.34E-03 6.81E-02 1.71E-03 1.17E-03 3.21E-03 5.32E-02 7.36E-02

MOEADGM Mean IGD 0.0062 0.0064 0.0429 0.0476 1.7919 0.5563 0.0076 0.2446 0.1878 0.5646
SD 1.13E-03 4.3E-04 3.41E-02 2.22E-03 5.12E-01 1.47E-01 9.4E-04 8.54E-02 2.87E-02 1.02E-01

NSGAIILS Mean IGD 0.01153 0.01237 0.10603 0.0584 0.5657 0.31032 0.02132 0.0863 0.0719 0.84468
SD 7.3E-03 9.11E-03 6.86E-02 5.12E-03 1.83E-01 1.91E-01 1.95E-02 1.24E-02 4.5E-02 1.63E-01

OW
MOSaDE

Mean IGD 0.0122 0.0081 0.103 0.0513 0.4303 0.1918 0.0585 0.0945 0.0983 0.743
SD 1.2E-03 2.3E-03 1.9E-02 1.9E-03 1.74E-02 2.9E-02 2.91E-02 1.19E-02 2.44E-02 8.85E-02

Clustering
MOEA

Mean IGD 0.0299 0.0228 0.0549 0.0585 0.2473 0.0871 0.0223 0.2383 0.2934 0.4111
SD 3.3E-03 2.3E-03 1.47E-02 2.7E-03 3.84E-02 5.7E-03 2.00E-03 2.3E-02 7.81E-02 5.01E-02

AMGA Mean IGD 0.03588 0.01623 0.06998 0.04062 0.09405 0.12942 0.05707 0.17125 0.18861 0.32418
SD 1.03E-02 3.17E-03 1.4E-02 1.75E-03 1.21E-02 5.66E-02 6.53E-02 1.72E-02 4.21E-02 9.57E-02

MOEP Mean IGD 0.0596 0.0189 0.099 0.0427 0.2245 0.1031 0.0197 0.423 0.342 0.3621
SD 1.28E-02 3.8E-03 1.32E-02 8.35E-04 3.44E-02 3.45E-02 7.51E-04 5.65E-02 1.58E-01 4.44E-02

DECMOSA-
SQP

Mean IGD 0.07702 0.02834 0.0935 0.03392 0.16713 0.12604 0.02416 0.21583 0.14111 0.36985
SD 3.94E-02 3.13E-02 1.98E-01 5.37E-03 8.95E-02 5.62E-01 2.23E-02 1.21E-01 3.45E-01 6.53E-01

OMOEAII Mean IGD 0.08564 0.03057 0.27141 0.04624 0.1692 0.07338 0.03354 0.192 0.23179 0.62754
SD 4.07E-03 1.61E-03 3.76E-02 9.67E-04 3.9E-03 2.45E-03 1.74E-03 1.23E-02 6.48E-02 1.46E-01

NA – Not available

In this experiment, the performance of MO-ITLBO algorithm is compared with other well-known
optimization algorithms such as MOABC, MTS, DMOEADD, LiuLi Algorithm, GDE3, MOEAD,
MOEADGM, NSGAIILS, OWMOSaDE, Clustering MOEA, AMGA, MOEP, DECMOSA-SQP and
OMOEAII. Table 2 shows the comparative results of the considered algorithms in the form of mean
solution (i.e. mean IGD value) obtained through 30 independent runs.

It is observed from the results that the MO-ITLBO algorithm outperforms the other algorithms for UF1
function. It can also be seen from Fig. 3(a) that the proposed algorithm produced an archive whose
members are uniformly distributed over the Pareto front in the two dimension objective space.

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

13

The MO-ITLBO algorithm gives a competitive result on UF2 function and obtained the 2nd rank among
15 algorithms. The MOABC algorithm obtained the 1st rank for this function. Fig 3(b) shows the Pareto
front of this function obtained by the proposed algorithm.

The MO-ITLBO algorithm obtained the 5th rank on UF3 test function compared to the other 14
algorithms. The best result is obtained by the MOEAD algorithm for UF3 function. For UF4 test
function, the MO-ITLBO algorithm obtained the 8th rank among all algorithms. For this function the
MTS algorithm produced the best result. Figs. 3(c) and 3(d) show the Pareto front obtained by the
proposed algorithm for UF3 and UF4, respectively.

The UF5 and UF6 functions have a discontinuous Pareto front and are relatively hard to solve. The
MO-ITLBO algorithm obtained the 3rd and 2nd rank for UF5 and UF6 test problems respectively. The
MTS algorithm and the GDE3 algorithm obtained better results than the proposed algorithm for UF5
function while the MOEAD algorithm produced better results than the MO-ITLBO algorithm for UF6
test function. Figs. 3(e) and 3(f) show the graphical representation of the results obtained by the
proposed algorithm for UF5 and UF6 test functions respectively. The MO-ITLBO algorithm is placed
at the 12th rank on UF7 test function. The Pareto front produced by the proposed algorithm is shown in
Fig. 3(g). It is observed from the Fig 3(g) that an entire portion of the Pareto front is not covered by the
MO-ITLBO algorithm and as a result this function increases the IDG measure.

The UF8-UF10 are the three objective test functions experimented with the proposed algorithm. The
MO-ITLBO, MOABC and MOEAD algorithms show almost comparable performance on UF8 test
function. The MOEAD algorithm produces the best result. The proposed algorithm obtained the 2nd
rank on UF8 test function. Fig. 3(h) shows the Pareto front produced by the proposed algorithm. It is
observed from the Fig. 3(h) that the solution points obtained by the MO-ITLBO algorithm cover
considerable part of the objective space.

The MO-ITLBO algorithm obtained the 9th rank among 15 algorithms on UF9 test function. The
DMOEADD algorithm produced the best result among all the algorithms on this test function. As
shown in Fig. 3(i) that the solution points obtained by the proposed algorithm do not cover the entire
objective space, which in turn increases the IGD measure of this test function. On UF10 test function,
the MO-ITLBO and the MTS algorithms produced competitive results. The proposed algorithm
obtained the 1st rank for optimization of this test function. The quality of the Pareto front produced by
the proposed algorithm is shown in Fig. 3(j). It is observed from the Fig. 3(j) that the obtained Pareto
front by the proposed algorithm covers larger part of the objective space.

4.2. Performance analysis of constrained benchmark functions

In this experiment the MO-ITLBO algorithm is implemented on 10 constrained benchmark functions of
CEC 2009. In this work the superiority of the feasible solution method is used as a constrained
handling technique within the MO-ITLBO algorithm. The results of each benchmark function are
presented in Table 3 in the form of best solution, worst solution, mean solution and standard deviation
obtained through 30 independent runs of the MO-ITLBO algorithm. Table 4 shows the comparative
results between the considered algorithms in the form of mean solution (i.e. mean IGD value) obtained
through 30 independent runs.

Figs. 4(a)-4(j) show the approximated Pareto front produced by the proposed algorithm for CF1-CF10
functions. The CF1 and CF2 are discontinuous test functions. The MO-ITLBO algorithm obtained the
4th rank for both the test problems. The LiuLi algorithm and the DMOEADD algorithm produced the
best results for CF1 and CF2 respectively. The approximated Pareto front produced by the proposed
algorithm is shown in Figs. 4(a) and 4(b) for CF1 and CF2 respectively.

14

Fig. 4(a)-(j). The Pareto front obtained by the MO-ITLBO algorithm for constrained test functions

CF1-CF-10

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

15

The test function CF3 has a discontinuous Pareto front and relatively hard to solve. The DMOEADD,
MOABC and MO-ITLBO algorithms produced competitive results on CF3 test function. The proposed
algorithm obtained the 2nd rank in optimization of this test function. Fig. 4(c) shows that the proposed
algorithm has not covered the entire objective space.

Table 3

IGD value obtained with MO-ITLBO for different constrained test functions (CF1-CF10) in 30
independent runs.

 Best Worst Mean SD
CF 1 0.00628 0.01624 0.01007 2.11E-03
CF 2 0.00283 0.01421 0.00924 3.56E-03
CF 3 0.05216 0.09731 0.08242 1.00E-02
CF 4 0.00124 0.00831 0.00518 1.98E-03
CF 5 0.00712 0.09871 0.06789 8.96E-02
CF 6 0.00642 0.01132 0.00916 6.48E-03
CF 7 0.01012 0.03052 0.01916 3.69E-03
CF 8 0.04809 0.15922 0.10482 4.37E-02
CF 9 0.04536 0.05849 0.05018 2.97E-03

CF 10 0.09213 0.36382 0.18341 3.12E-02

Table 4
Comparison of mean IGD values and standard deviation (SD) obtained with different algorithms for
different constrained test functions (CF1-CF10) in 30 independent runs

Algorithm CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10

MO-ITLBO
Mean IGD 0.01007 0.0092 0.08242 0.00518 0.06789 0.00916 0.01916 0.10482 0.05018 0.1834

SD 2.11E-03 3.56E-03 1.00E-02 1.98E-03 8.96E-02 6.48E-03 3.69E-03 4.37E-02 2.97E-03 3.12E-02

MOABC
Mean IGD 0.00992 0.01027 0.08621 0.00452 0.06781 0.00483 0.01692 ---- ---- ----

SD NA NA NA NA NA NA NA NA NA NA

MTS
Mean IGD 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469 1.0854 0.08513 0.1376

SD 2.57E-03 1.47E-02 1.56E-02 1.37E-03 2.42E-03 5.99E-03 4.65E-03 2.19E-01 8.19E-03 9.22E-03

DMOEADD
Mean IGD 0.01131 0.0021 0.0563 0.00699 0.01577 0.01502 0.01905 0.0475 0.1434 0.1621

SD 2.76E-03 4.53E-04 7.57E-03 1.46E-03 6.66E-03 6.46E-03 6.12E-03 6.39E-03 2.14E-02 3.16E-02

LiuLi Algorithm
Mean IGD 0.00085 0.0042 0.1829 0.01423 0.10973 0.01394 0.10446 0.06074 0.05054 0.1974

SD 1.10E-04 2.64E-03 4.21E-02 3.29E-03 3.07E-02 2.59E-03 3.51E-02 1.30E-02 3.36E-03 7.60E-02

GDE3
Mean IGD 0.0294 0.01597 0.1275 0.00799 0.06799 0.06199 0.04169 0.1387 0.1145 0.4923

SD 2.29E-03 7.56E-03 2.39E-02 1.23E-03 1.35E-02 2.69E-02 1.08E-02 5.86E-02 2.21E-02 1.68E-03

MOEADGM
Mean IGD 0.0108 0.008 0.5134 0.0707 0.5446 0.2071 0.5356 0.4056 0.1519 0.3139

SD 2.50E-03 9.99E-03 7.14E-02 1.01E-01 1.72E-01 1.00E-04 1.00E-01 1.28E-01 4.13E-02 1.04E-01

NSGAIILS
Mean IGD 0.00692 0.01183 0.23994 0.01576 0.1842 0.02013 0.23345 0.11093 0.1056 0.3592

SD 2.51E-03 1.30E-02 8.58E-02 4.53E-03 6.08E-02 1.74E-02 8.69E-02 3.68E-02 2.93E-02 7.50E-02

DECMOSA-SQP
Mean IGD 0.10773 0.0946 1000000 0.15265 0.41275 0.14782 0.26049 0.17634 0.12713 0.50705

SD 1.96E-01 2.94E-01 0.00E+00 4.67E-01 5.91E-01 1.25E-01 2.60E-01 6.26E-01 1.46E-01 1.20E+00
NA – Not available

The MO-ITLBO algorithm obtained the 2nd rank among 9 algorithms on CF4 test function. Only the
MOABC algorithm produced better results than the proposed algorithm on this test function. Fig. 4(d)
shows that the MO-ITLBO algorithm successfully converges to Pareto front with uniform distribution
of solution points over the Pareto front.

The MO-ITLBO algorithm obtained the 4th rank on CF5 test function. The DMOEADD algorithm
obtained the best result on this test function. The approximated Pareto front produced by the proposed
algorithm is shown in Fig. 4(e). It is observed from Fig. 4(e) that despite the good convergence the
proposed algorithm has not fully covered the entire objective space.
The MOABC shows the best result and obtained the 1st rank on the CF6 test problem. The MO-ITLBO
algorithm produced the competitive results and obtained the 2nd rank on this test problem. The
graphical representation of the produced solutions is given in Fig. 4(f).

The MOABC, DMOEADD and MO-ITLBO algorithms have competitive performance on the CF7 test
problem. The proposed algorithm achieves the 3rd rank while the MOABC algorithm is placed at the 1st

16

position. It is observed from Fig. 4(g) that the proposed algorithm shows good convergence with small
discontinuity in the produced solutions.

The CF8 is the first three objective constrained test function experimented in this work. The proposed
algorithm achieves the 3rd rank among 8 algorithms on this test function. The DMOEADD algorithm
obtained the 1st rank on CF8 function. Fig. 4(h) shows an approximated Pareto front produced by the
proposed algorithm in three dimension objective space.

The MO-ITLBO, MTS and LiuLi algorithms produced competitive results on the CF9 test problem.
The proposed algorithm surpasses the other algorithms and obtained the 1st rank on this test problem.
The quality of the solution points produced by the proposed algorithm is shown in Fig. 4(i). It is
observed from Fig. 4(i) that the MO-ITLBO algorithm produced an appropriate distribution of the
solution points in three dimension objective space.

The MTS algorithm outperforms other algorithms in solving CF10 test function. The proposed
algorithm has obtained the 3rd rank among all other algorithms. Fig. 4(j) shows a graphical
representation of the produced solutions.

In order to access the overall performance of the MO-ITLBO algorithm among the 15 algorithms in
optimizing unconstrained test functions and 10 algorithms in optimizing constrained test functions, the
Lexicographic ordering is used. The Lexicographic ordering determines the overall rank of the
considered algorithms. For any test function, the algorithm, which gives the best mean IGD value as
compared to rest of algorithms obtains the first rank for that test function and the next better performing
algorithm occupies the second rank, and so on. In the present work the ranks are given to the
considered algorithms for each un-constrained and constrained functions. After that, the average
ranking is obtained for each considered algorithm for the unconstrained as well as the constrained
functions. The algorithm with minimum average rank is identified as the best algorithm and the first
rank is assigned in lexicographic ordering. In the similar way, the next better average rank is identified
and the algorithm associated with that rank is placed at the second place in the lexicographic ordering
and so on. Table 5 shows the ranking of the considered algorithms in optimizing the unconstrained and
constrained test problems separately. It is observed from Table 5 that the MO-ITLBO algorithm
obtained the 1st rank among the 15 algorithms in optimization of unconstrained test functions.
Similarly, The MO-ITLBO algorithm is the 3rd best algorithm in optimization of constrained test
functions.

Table 5
The Lexicographic ordering of the unconstrained and constrained test problems

Unconstrained functions Constrained functions
Rank Algorithm Rank Algorithm

1 MO-ITLBO 1 MOABC
2 MTS 2 DMOEADD
2 MOEAD 3 MO-ITLBO
3 MOABC 4 LiuLi Algorithm
3 DMOEADD 5 MTS
4 LiuLi Algorithm 6 NSGAIILS
5 GDE3 6 GDE3
6 AMGA 7 MOEADGM
7 MOEADGM 8 DECMOSA-SQP
8 DECMOSA-SQP

 9 MOEP
 10 NSGAIILS
 11 Clustering MOEA
 12 OW MOSaDE
 13 OMOEAII

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

17

To investigate the results obtained using different algorithms in-depth, a statistical test, known as t-test,
is performed in the present work. The t-test is performed on the pairs of the algorithms to identify the
differences of significance between the results of different algorithms. In the present work the Modified
Bonferroni Correction is adopted while performing the t-test (Karaboga & Akay, 2009). For t-test, the
p-value for each function is calculated and then the p-values are ranked in the ascending order. The
inverse ranks are then obtained and the significance ratio is obtained by dividing the significance level
(α) by the inverse rank. In the present work the t-test is performed at a significance level of 0.025. The
results of each benchmark function obtained through 30 independent runs are used to perform the t-
tests. For any function if the difference in the p-values of the proposed algorithm and the other
algorithm is less than the significance ratio then it indicates the statistically better performance of the
proposed algorithm. Table 6 shows the results of t-test where the pairwise comparisons between the
proposed algorithm and the other algorithms are given separately for the unconstrained and constrained
functions. For any function, ‘1’ indicates that the performance of the MO-ITLBO algorithm is better
than its counterpart algorithm and ‘0’ indicates vice versa. Symbol ‘-’ is used where there is no
significant performance difference between the MO-ITLBO algorithm and its counterpart algorithm.

Table 6
Pairwise comparison of the MO-ITLBO algorithm with the other algorithms for unconstrained and
constrained test functions
Unconstrained Functions

 UF 1 UF 2 UF 3 UF 4 UF 5 UF 6 UF 7 UF 8 UF 9 UF 10

MTS 1 - - 0 0 1 - 1 - -
MOEAD - 1 0 1 1 0 0 0 - 1

MOABC 1 0 - 1 - 1 1 - 0 -
DMOEADD 1 1 0 - 1 1 0 1 0 1

LiuLi Algorithm 1 1 0 - 1 1 0 1 - 1
GDE3 1 1 1 0 0 1 0 1 0 1
AMGA 1 1 1 - 1 1 - 1 1 1

MOEADGM 1 1 - - 1 1 0 1 1 1

DECMOSA-SQP 1 1 1 0 1 1 0 1 - 1
MOEP 1 1 1 - 1 1 0 1 1 1
NSGAIILS 1 1 1 1 1 1 0 1 1 1

Clustering MOEA 1 1 1 1 1 1 0 1 1 1
OW MOSaDE 1 1 1 1 1 1 1 1 0 1
OMOEAII 1 1 1 - 1 1 0 1 1 1

Constrained Functions

 CF 1 CF 2 CF 3 CF 4 CF 5 CF 6 CF 7 CF 8 CF 9 CF 10

MOABC - - 1 0 - 0 - NA NA NA
DMOEADD - 0 0 1 0 1 - 0 1 -

LiuLi Algorithm 0 0 1 1 - 1 1 0 - -

MTS 1 1 1 1 0 1 1 1 1 0
NSGAIILS 0 - 1 1 1 1 1 - 1 1

GDE3 1 1 1 1 - 1 1 - 1 1
MOEADGM - - 1 1 1 1 1 1 1 1
DECMOSA-SQP 1 1 1 1 1 1 1 - 1 1
‘1’ indicates that the performance of the MO-ITLBO algorithm is better than its counterpart algorithm

‘0’ indicates that the performance of the counterpart algorithm is better than the MO-ITLBO algorithm

‘-‘ indicates that there is no significance difference in performance between the MO-ITLBO algorithm and its counterpart algorithm

NA indicates that the results are not available

In order to identify the convergence of the MO-ITLBO algorithm to the optimal Pareto front, an
unconstrained function (UF1), and constrained function (CF4) are considered for the experimentation.
Figs. 5 and 6 show the convergence of the unconstrained and constrained test function respectively at
intervals of 50000 function evaluations. It is observed from the Figs. 5 and 6 that with the increase in
the function evaluations the approximated solution points in the two dimensional objective space are
also increased. Moreover, the distribution of the solution points becomes uniform as the number of

18

function evaluations proceeds. Both these points indicate that the performance of the MO-ITLBO
algorithm is continuously improved throughout the function evaluations.

Fig. 5. Convergence of the MO-ITLBO algorithm for the unconstrained test function UF1 (a) 50000 FE
(b) 100000 FE (c) 150000 FE (d) 200000 FE (e) 250000 FE and (f) 300000 FE

Fig. 6. Convergence of MO-ITLBO algorithm for the constrained test function CF4 (a) 50000 FE (b)

100000 FE (c) 150000 FE (d) 200000 FE (e) 250000 FE and (f) 300000 FE

5. Conclusions

In this work an improved TLBO algorithm has been adapted to handle the MOO problems. Two new
search mechanisms are introduced in the TLBO algorithm in the form of tutorial training and self-
motivated learning. Moreover, the teaching factor of the basic TLBO algorithm is modified and an
adaptive teaching factor is introduced. Furthermore, more than one teacher is introduced for the
learners in the proposed algorithm. The MO-ITLBO algorithm used a fixed size archive to maintain the
good solutions obtained during every iteration and a grid-based approach to control the diversity over

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

19

the external archive. The performance of the MO-ITLBO algorithm is evaluated by conducting
experiments on a range of multi-objective unconstrained and constrained test problems and the results
obtained using the MO-ITLBO algorithm are compared with that of the other state-of-the-art
algorithms available in the literature. The experimental results have shown satisfactory performance of
the MO-ITLBO algorithm for the MOO problems. The proposed algorithm can be easily customized to
suit the optimization of any problem involving multiple objectives. Hence, the proposed optimization
algorithm may be tried by the researchers of the industrial engineering field.

References

Agrawal, S., Dashora, Y., Tiwari, M. K., & Son, Y. J. (2008). Interactive particle swarm: A pareto-adaptive

metaheuristic to multiobjective optimization. Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 38(2), 258-277.

Akbari, R., & Ziarati, K. (2012). Multi-Objective bee swarm optimization.International Journal of
Innovative Computing Information and Control, 8(1B), 715-726.

Chen, C.M., Chen, Y. & Zhang, Q. (2009). Enhancing MOEA/D with guided mutation & priority update for
multi-objective optimization. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May,
Trondheim, Norway, 209–216.

Coello Coello, C.A., Lamont, G.B. & Van Veldhuizen, D.A. (2007). Evolutionary Algorithms for Solving Multi-
Objective Problems. Springer-Verlag.

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm
optimization. IEEE Transactions on Evolutionary Computation,, 8(3), 256-279.

Deb, K., Mohan, M. & Mishra, S. (2005). Evaluating the epsilon-domination based multi-objective evolutionary
algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computations, 13(4), 501–525.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A fast & elitist multi-objective genetic algorithm:
NSGA-II. IEEE Transaction on Evolutionary Computations., 6(2), 182-197.

Huang, V.L., Zhao, S.Z., Mallipeddi, R. & Suganthan, P.N. (2009). Multi-objective optimization using self-
adaptive differential evolution algorithm. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May,
Trondheim, Norway, 190–194.

Liu, H. & Li, X. (2009). The multi-objective evolutionary algorithm based on determined weight & sub-regional
search. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May, Trondheim, Norway, 1928–1934.

Liu, M., Zou, X., Chen, Y. & Wu, Z. (2009). Performance assessment of DMOEA-DD with CEC 2009 MOEA
competition test instances. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May, Trondheim,
Norway, 2913-2918.

Gao, S., Zeng, S., Xiao, B., Zhang, L., Shi, Y., Tian, X., Yang, Y., Long, H., Yang, X., Yu, D. & Yan, Z. (2009).
An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover. In: 2009 IEEE
Congress on Evolutionary Computation, 18-21 May, Trondheim, Norway, 1959–1964.

Hedayatzadeh, R,, Hasanizadeh, B., Akbari, R. & Ziarati, K. (2010). A multi-objective artificial bee colony for
optimizing multi-objective problems. In: 3rd International Conference on Advanced Computer Theory &
Engineering (ICACTE), 5, 271–281.

Karaboga, D., Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm, Applied Mathematics
and Computations, 214, 108–132.

Kukkonen, S. & Lampinen, J. (2009). Performance assessment of generalized differential evolution with a given
set of constrained multi-objective test problems. In: 2009 IEEE Congress on Evolutionary Computation, 18-
21 May, Trondheim, Norway, 1943–1950.

Leong, W.F. & Yen, G.G. (2008). PSO-based multi-objective optimization with dynamic population size &
adaptive local archives. IEEE Transaction on Systems and Man Cybernetics, 38(5), 1270–1293.

Mostaghim, S. & Teich, J. (2004). Covering Pareto-optimal fronts by sub swarms in multi-objective particle
swarm optimization. In: 2004 IEEE Congress on Evolutionary Computation, 19-23 June, Portl&, USA,
1404–1411.

Qu, B.Y. & Suganthan, P.N. (2011). Constrained multi-objective optimization algorithm with ensemble of
constraint handling methods. Engineering Optimization, 43(4), 403-434.

Qu, B.Y. & Suganthan, P.N. (2009). Multi-objective evolutionary programming without non-domination sorting
is up to twenty times faster. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May, Trondheim,
Norway, 2934–2939.

20

Rao, R.V., Savsani, V.J. & Vakharia, D.P. (2011). Teaching-learning-based optimization: A novel method for
constrained mechanical design optimization problems. Computer Aided Design, 43(3), 303-315.

Rao, R.V., Savsani, V.J. & Vakharia, D.P. (2012). Teaching-learning-based optimization: An optimization
method for continuous non-linear large scale problems. Information Sciences, 183(1), 1-15.

Rao, R.V. & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex
constrained optimization problems. International Journal of Industrial Engineering Computations, 3(4), 535-
560.

Rao, R., & Patel, V. (2013). Comparative performance of an elitist teaching-learning-based optimization
algorithm for solving unconstrained optimization problems. International Journal of Industrial Engineering
Computations, 4(1), 29-50.

Rao, R.V. & Patel, V. (2013b). Multi-objective optimization of two stage thermoelectric cooler using a modified

teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26(1),
430-445.

Rao, R.V. & Patel, V. (2013c). Multi-objective optimization of heat exchangers using a modified teaching-
learning-based optimization algorithm. Applied Mathematical Modeling, doi.org/10.1016/j.apm.2012.03.043.

Srinivasan, D. & Seow, T.H. (2003). Particle swarm inspired evolutionary algorithm (ps-ea) for multi-objective
optimization problem. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May, Trondheim,
Norway, 2292–2297.

Sindhya, K., Sinha, A., Deb, K. & Miettinen, K. (2009). Local search based evolutionary multi-objective
optimization algorithm for constrained & unconstrained problems. In: 2009 IEEE Congress on Evolutionary
Computation, 18-21 May, Trondheim, Norway, 2919–2926.

Tiwari, S., Fadel, G., Koch, P. & Deb, K. (2009). Performance assessment of the hybrid archive-based micro
genetic algorithm on the CEC09 test problems. In: 2009 IEEE Congress on Evolutionary Computation, 18-
21 May, Trondheim, Norway, 1935-1942.

Tseng, L.Y. & Chen, C. (2009). Multiple trajectory search for unconstrained/constrained multi-objective
optimization. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May, Trondheim, Norway,
1951–1958.

Van Veldhuizen, D.A. (1999). Multi-objective evolutionary algorithms: classifications, analyses & new
Innovations. Evolutionary Computations, 8(2), 125-147.

Wang, Y., Dang, C., Li, H., Han, L. & Wei, J. (2009). A clustering multi-objective evolutionary algorithm based
on orthogonal & uniform design. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May,
Trondheim, Norway, 2927–2933.

Yen, G. G., & Leong, W. F. (2009). Dynamic multiple swarms in multiobjective particle swarm
optimization. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39(4),
890-911.

Zamuda, A., Brest, J., Boskovic, B. & Zumer, V. (2009). Differential evolution with self adaptation & local
search for constrained multi-objective optimization. In: 2009 IEEE Congress on Evolutionary Computation,
18-21 May, Trondheim, Norway, 192–202.

Zhang, Q., Liu, W. & Li, H. (2009). The performance of a new version of MOEA/D on CEC09 unconstrained
mop test instances. In: 2009 IEEE Congress on Evolutionary Computation, 18-21 May, Trondheim, Norway,
203–208.

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W. & Tiwari, S. (2009). Multi-objective optimization test
instances for the congress on evolutionary computation (CEC 2009) special session & competition. Working
Report CES-887. University of Essex, UK.

Zeng, F., Decraene, J., Low, M.Y.H., Hingston, P., Wentong, C., Suiping, Z. & Ch&ramohan, M. (2010).
Autonomous bee colony optimization for multi-objective function. In: 2010 IEEE Congress on Evolutionary
Computation, 18-23 July, Barcelona, Spain, 1–8.

Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N. & Zhang Q. (2011). Multi-objective evolutionary
algorithms: a survey of the state-of-the-art. Swarm & Evolutionary Computation, 1(1), 32–49.

Zou, W., Zhu, Y., Chen, H. & Shen, H. (2011). A novel multi-objective optimization algorithm based on
artificial bee colony. In: Genetic & Evolutionary Computation Conference (GECCO’11), 12-16 July, Dublin,
Ireland, 103–104.

R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014)

21

APPENDIX - A:
Stepwise comparison of the TLBO and the ITLBO algorithms for Rastrigin function for demonstration.

Basic TLBO

Improved TLBO

Step 1: Define the optimization problem: Minimize f(X) = Minimize

n

i
ii xxxf

1

2 10)2cos(10)(

Step 2: initialize the optimization parameters
 Population size = 10
 Number of design variables = 2
 Limits of design variables = -5.12≤x,1,2≤5.12

Step 2: initialize the optimization parameters
 Population size = 10
 Number of design variables = 2
 Number of teacher = 2
 Limits of design variables = -5.12≤x,1,2≤5.12

Step 3: Initialize the population by random generation and evaluate them

Step 3: Initialize the population by random generation and evaluate them

Step 4: Teacher Phase

Calculate the mean of the population column-wise which will give the mean for the particular subject as,
 x1 x2
 Mj = [-0.49453, 0.37137]
The best solution will act as the teacher for that iteration
 Xteacher = Xf(X)minimum
 = [-1.1479 -1.1465]

The teacher will try to shift the mean from Mj towards X,teacher, and the difference between the two means is expressed as
 Difference_Meanj = ri (X

b
j - TFMj)

Value of TF is randomly selected as 1 or 2. The obtained difference is added to the current solution to update its values. For
example, taking TF =2 leads to the following.

 X’k

j = Xk
j + Difference_Meanj,

Step 4: Selection of teachers and distribution of learners to teachers

Rank the evaluated solutions in ascending order and select the best solution as chief teacher (T1). In the present case, [-1.1479 -
1.1465] with objective function value [10.5354] acts as the chief teacher.
Based on the chief teacher, the other teacher is selected as,
T2 = 10.5354+ (rand*10.5354) which gives T2= 21.57. So, select the solution whose value is nearer to the calculated value of T2.
Hence T2=22.6028.
Now the distribution of the learners to the teachers gives the following two groups:

Step 5: Teacher Phase with tutorial training

For each group, calculate the mean of the population column-wise, which will give the mean for the particular subject as,
 Group 1 Group 2
 x1 x2 x1 x2
 Mj = [-0.0025, 1.0979] Mj = [1.2324, -0.7185]

The best solution will act as a teacher for the respective group.

22

Xnew is accepted if it gives the better function value.

 Group 1 Group 2
 T1 = [-1.1479 -1.1465] T2 = [-1.9397 -2.742]

In each group, the teacher will try to shift the mean from Mj towards T1 or T2 and the difference between the two means is
expressed as,
 Difference_Meanj = ri (X

b
j - TFMj)

Where TF is the adaptive teaching factor and is calculated by using equation (5). The obtained difference is added to the current
solution along with the tutorial training to update its values as,

 X’k
j = (Xk

j + Difference_Meanj) + rand * (Xh
j - X

k
j),

Xnew is accepted if it gives the better function value.

Step 5: Learner Phase

In this phase, the learners increase their knowledge with the help of their mutual interaction. The related mathematical
expression is explained under sub-section 2.2 . Obtain Xnew after the learner phase.

 This completes one iteration and the population goes to the next iteration.

Step 6: Learner Phase with self-motivated learning

In this phase, learners increase their knowledge with the help of their mutual interaction along with the self motivation. The
related mathematical expression is explained under sub-section 3.4. Obtain Xnew after this phase.

This completes one iteration. Now both the groups are to be merged and this population goes to the next iteration.

