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 The present work proposes a multi-objective improved teaching-learning based optimization 
(MO-ITLBO) algorithm for unconstrained and constrained multi-objective function optimization. 
The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization 
(TLBO) algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved 
to enhance its exploration and exploitation capacities by introducing the concept of number of 
teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO 
algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. 
Pareto front) maintained in an external archive. The performance of the MO-ITLBO algorithm is 
assessed by implementing it on unconstrained and constrained test problems proposed for the 
Congress on Evolutionary Computation 2009 (CEC 2009) competition. The performance 
assessment is done by using the inverted generational distance (IGD) measure. The IGD 
measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of 
the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is 
used to assess the overall performance of competitive algorithms. Results have shown that the 
proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained 
test functions and the 3rd rank in the optimization of constrained test functions. 

© 2013 Growing Science Ltd.  All rights reserved 

Keywords: 
Multi-objective optimization 
Teaching-learning based 
optimization  
Inverted generational distance 

 

 

 

 

 

1. Introduction  
 

 
Finding the global optimum value(s) of a problem involving more than one objective with conflicting 
nature arises in many scientific applications. The problem of optimization involving more than one 
objective function with conflicting nature is known as multi-objective optimization (MOO) problem. 
Multi-objective optimization has been defined as finding a vector of decision variables while 
optimizing several objectives simultaneously with a given set of constraints. Unlike the single objective 
optimization, MOO solutions are in such a way that the performance of each objective cannot be 
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improved without sacrificing the performance of another one. Hence, the solution of MOO problem is 
always a trade-off between the objectives involved in the problem. Moreover, the obtained result in 
multi-objective optimization is a set of solutions because the objective functions are conflicting in 
nature (Akbari & Ziarati, 2012; Zhou et al., 2011). 
 
The multi-objective optimization techniques can be classified into three main groups: Priori techniques, 
Progressive techniques and Posteriori techniques (Veldhuizen, 1999). Priori techniques employ 
decision making before the optimization algorithm starts searching the search space. These techniques 
are divided into three sub-groups: Lexicographic techniques, linear fitness combination techniques and 
nonlinear fitness combination techniques. In Progressive techniques, there is a direct interaction 
between the decision making and the search process of the optimization algorithm. Posteriori 
techniques provide a set of solutions with the search process of MOO problem for the decision making 
(Coello et al., 2007). These techniques are divided into many sub-groups like independent sampling, 
aggregation selection, criterion selection, Pareto sampling, Pareto-based selection, Pareto rank and 
niche-based selection, Pareto elitist-based selection, and hybrid selection. Among all these techniques, 
most of the research is focused on Pareto based techniques.   
 
The computational effort required to solve the MOO problems is quite considerable. Moreover, many 
of these problems cannot be solved analytically and consequently they have to be addressed by 
numerical algorithms. Recently several authors have proposed different evolutionary and swarm 
intelligence based MOO algorithms to solve these types of problems. Some of the evolutionary MOO 
algorithms that aimed to obtain a true Pareto front for multi-objective problems include the following:  
 

 Multiple Trajectory Search (MTS) (Tseng & Chen, 2009) 
 Dynamical Multi-Objective Evolutionary Algorithm (DMOEADD) (Liu et al., 2009) 
 LiuLi Algorithm (Liu and Li, 2009) 
 Generalized Differential Evolution 3 (GDE3) (Kukkonen & Lampinen, 2009) 
 Multi-Objective Evolutionary Algorithm based on Decomposition (MOEAD) (Zhang et al., 

2009) 
 Enhancing MOEA/D with Guided Mutation and Priority Update (MOEADGM) (Chen et al., 

2009) 
 Local Search Based Evolutionary Multi-Objective Optimization Algorithm (NSGAIILS) 

(Sindhya et al., 2009) 
 Multi-Objective Self-adaptive Differential Evolution Algorithm with Objective-wise Learning 

Strategies (OWMOSaDE) (Huang et al., 2009) 
 Clustering Multi-Objective Evolutionary Algorithm (Clustering MOEA) (Wang et al., 2009) 
 Archive-based Micro Genetic Algorithm (AMGA) (Tiwari et al., 2009) 
 Multi-Objective Evolutionary Programming (MOEP) (Qu & Suganthan, 2009) 
 Differential Evolution with Self-adaptation and Local Search Algorithm (DECMOSA-SQP) 

(Zamuda et al., 2009) 

 An Orthogonal Multi-objective Evolutionary Algorithm with Lower-dimensional Crossover 
(OMOEAII) (Gao et al., 2009) 

 NSGA-II (Deb et al., 2002) 
 Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick 

computation of Pareto-optimal solutions (Deb et al., 2005) 
 
Similarly, different types of swarm intelligence based algorithm have been presented in the literature to 
solve the MOO problems. Some of the swarm intelligence algorithms which efficiently solved the 
multi-objective problems include the following: 
  

 Multi-objective Particle Swarm optimization (MOPSO) (Coello et al., 2004) 
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 PSO-based multi-objective optimization with dynamic population size and adaptive local 
archives (Leong & Yen, 2008) 

 Covering Pareto-optimal fronts by sub swarms in multi-objective particle swarm optimization 
(Mostaghim & Teich, 2004) 

 Particle swarm inspired evolutionary algorithm (PS-EA) for multi-objective optimization 
problem (Srinivasan & Seow, 2003) 

 Interactive Particle Swarm Optimization (IPSO) (Agrawal et al., 2008) 
 Dynamic Multiple Swarms in Multi-Objective Particle Swarm Optimization (DSMOPSO) (Yen 

& Leong, 2009) 
 Autonomous bee colony optimization for multi-objective function (Zeng et al., 2010) 
 A multi-objective artificial bee colony for optimizing multi-objective problems (Hedayatzadeh 

et al., 2010) 
 A novel multi-objective optimization algorithm based on artificial bee colony (Zou et al., 2011) 
 Multi-objective bee swarm optimization (Akbari & Ziarati, 2012) 
 Multi-objective artificial bee colony algorithm (Akbari & Ziarati, 2012) 

 
The evolutionary and swarm intelligence based algorithms are probabilistic algorithms and required 
common controlling parameters like population size and number of generations. Besides the common 
control parameters, different algorithms require their own algorithm-specific control parameters. For 
example, GA uses mutation rate and crossover rate. Similarly, PSO uses inertia weight, social and 
cognitive parameters. The proper tuning of the algorithm-specific parameters is a very important factor 
for the efficient working of the evolutionary and swarm intelligence based algorithms. The improper 
tuning of the algorithm-specific parameters either increases the computational effort or yields the local 
optimal solution. Considering this fact, recently Rao et al. (2011, 2012a; 2012b), Rao and Patel (2012, 
2013a; 2013b, 2013c) introduced the Teaching-learning based optimization (TLBO) algorithm which 
does not require any algorithm-specific parameters. TLBO requires only common control parameters 
like population size and number of generations for its working. Thus, TLBO can be said as an 
algorithm-specific parameter-less algorithm.  
 
In the present work, a multi-objective improved teaching-learning based optimization (MO-ITLBO) 
algorithm is proposed for multi-objective unconstrained and constrained optimization problems. The 
improved TLBO (ITLBO) algorithm incorporates some modifications in the basic TLBO algorithm to 
enhance its exploration and exploitation capacities. The MO-ITLBO algorithm uses a fixed size archive 
to maintain the good solutions obtained in every iteration. The ε - dominance method is used to 
maintain the archive (Deb et al., 2005). In ε - dominance method the size of the final external archive 
depends on the ε value, which is usually a user-defined parameter. The solutions kept in the external 
archive are used by the learners to update their knowledge. The proposed algorithm uses a grid to 
control the diversity over the external archive. 
 
The remainder of this paper is organized as follows. Section 2 briefly describes the basic TLBO 
algorithm. Section 3 explains the modifications in the basic TLBO algorithm and the proposed MO-
ITLBO algorithm. Section 4 presents experimentation on unconstrained and constrained test functions. 
Finally, the conclusion of the present work is presented in section 5.  
 
2. Teaching-learning-based optimization (TLBO) algorithm 
 
Teaching-learning is an important process where every individual tries to learn something from other 
individuals to improve himself/herself. Rao et al. (2011, 2012a; 2012b), Rao and Patel (2012, 2013a; 
2013b, 2013c) proposed an algorithm known as teaching-learning based optimization (TLBO) which 
simulates the traditional teaching-learning phenomenon of the classroom. The algorithm simulates two 
fundamental modes of learning: (i) through teacher (known as teacher phase) and (ii) interacting with 
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the other learners (known as the learner phase). TLBO is a population based algorithm where a group 
of students (i.e. learners) is considered as population and the different subjects offered to the learners is 
analogous with the different design variables of the optimization problem. The grades of a learner in 
each subject represent a possible solution to the optimization problem (value of design variables) and 
the mean result of a learner considering all subjects corresponds to the quality of the associated solution 
(fitness value).The best solution in the entire population is considered as the teacher.  
 
At the first step, the TLBO generates a randomly distributed initial population pinitial of n solutions, 
where n denotes the size of population. Each solution Xk (k = 1, 2, ..., n) is a m-dimensional vector 
where m is the number of optimization parameters (design variables). After initialization, the 
population of the solutions is subjected to repeated cycles, i = 1, 2, ..., g, of the teacher phase and 
learner phase. Working of the TLBO algorithm is explained below with the teacher phase and learner 
phase.  
 
2.1. Teacher phase  
 
This phase of the algorithm simulates the learning of the students (i.e. learners) through teacher. During 
this phase a teacher conveys knowledge among the learners and puts efforts to increase the mean result 
of the class. Suppose there are ‘m’ number of subjects (i.e. design variables) offered to ‘n’ number of 
learners (i.e. population size, k=1,2,…,n). At any sequential teaching-learning cycle i, let us denote as 
Mj,i the mean result of the learners in a particular subject ‘j’ (j=1,2,…,m). Since a teacher is the most 
experienced person on a subject, the best learner in the entire population is considered as a teacher in 
the algorithm. Let Xb

j,i , (bk) be the grades of the best learner and f(Xb) the result of the best learner 
considering all the subjects, who is identified as a teacher for that cycle. Teacher will put maximum 
effort to increase the knowledge level of the whole class, but learners will gain knowledge according to 
the quality of teaching delivered by a teacher and the quality of learners present in the class. 
Considering this fact the difference between the grade of the teacher and mean grade of the learners in 
each subject is expressed as,  
 
Difference_Meanj,i = ri (X

b
j,i -  TFMj,i) , (1) 

 
where Xb

j,i is the grade of the teacher (i.e. best learner) in subject j. TF is the teaching factor which 
decides the value of mean to be changed, and ri is a random number in the range [0, 1]. The value of TF 
can be either 1 or 2 and decided randomly as,  
 

TF = round [1+ri], (2) 
 

where ri is a random number in the range [0, 1]. The value of TF is not given as an input to the 
algorithm and its value is randomly decided by the algorithm using Eq. (2).     
 
Based on the Difference_Meanj,i, the existing solution ‘k’ is updated in the teacher phase according to 
the following expression.  
 
X’k

j,i = Xk
j,i + Difference_Meanj,i, (3) 

 
where X’k

j,i  is the updated value of Xk
j,i. The algorithm accepts X’k

j,i if it gives a better function value 
otherwise keeps the previous solution. All the accepted grades (i.e design variables) at the end of the 
teacher phase are maintained and these values become the input to the learner phase.  
 
2.2. Learner phase 
 

This phase of the algorithm simulates the learning of the students (i.e. learners) through interaction 
among themselves. The students can also gain knowledge by discussing and interacting with the other 
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students. A learner will learn new information if the other learners have more knowledge than him or 
her. The learning phenomenon of this phase is expressed below. The algorithm randomly selects two 
learners p and q such that f(X p) ≠ f(X q) (where f(X p) and f(X q) are the updated result of the learners p 
and q considering grades of all the subjects at the end of teacher phase and p, q  k) 
 
X’’p

j,i  = X’p
j,i + ri (X’p

j,i -  X’q
j,i), If  f(X

 p) < f(X q), (4a) 
X’’p

j,i  = X’p
j,i  + ri (X’q

j,i - X’p
j,i), If  f(X

 q) < f(X p), (4b) 
 
(Above equations are for minimization problem, reverse is true for maximization problem)  
 
where X’’p

j,i  is the updated value of X’p
j,i. The algorithm then accepts X’’p

j,i  if it gives a better function 
value. More details about the TLBO algorithm and its codes can be found at 
https://sites.google.com/site/tlborao/. 
 
3. Multi-objective Improved TLBO (MO-ITLBO) algorithm  
 
The proposed MO-ITLBO algorithm is the improved version of the basic TLBO algorithm. In the basic 
TLBO algorithm, the result of the learners is improved either by a teacher (through the classroom 
teaching) or by interacting with other learners. However, in the traditional teaching-learning 
environment the students also learn during the tutorial hours by discussing with their fellow classmates 
or even by discussing with the teacher. Sometimes the students are self-motivated and try to learn the 
things by self-learning. Furthermore, the teaching factor in the basic TLBO algorithm is either 2 or 1 
which reflects two extreme circumstances where the learner learns either everything or nothing from 
the teacher. During the course of optimization, this situation results in a slower convergence rate of 
optimization algorithm. So considering this fact, to enhance the exploration and exploitation capacity, 
some modifications have been introduced in the basic TLBO algorithm.  
 
The basic TLBO algorithm has been already modified by Rao and Patel (20132013b, 2013c) to 
improve its performance and applied it to the optimization of thermal systems. In the present work the 
previous modifications are further enhanced and new modifications are introduced to improve the 
performance of the algorithm.  
 
3.1. Number of teachers 
 
Population sorting is an important concept used in evolutionary algorithms to avoid the premature 
convergence.  In the basic TLBO algorithm the population sorting mechanism is provided by 
introducing the multi teacher concept.  
In the teacher phase of the TLBO algorithm, the teacher who is a highly learned person will impart the 
knowledge to students and tries to improve the mean result of the class. In the classical teaching-
learning environment, the class contains diverse students (i.e. intelligent, average, below average) that 
learn from the teacher. Since the teacher is a highly learned person so it is difficult for below average 
students to cope up with him/her. So, in this situation the teacher has to put more effort to increase the 
mean result of the learner and even with this effort it might happen that apparent improvements in the 
results will not be observed.  
Below average students can easily cope up with the average students than a highly learned person. So, 
if the below average students first learn from the average students or intelligent students and then they 
learn from the highly learned person then their results will improve more effectively, as well as the 
mean result of the class. Considering this fact, in the basic TLBO algorithm the students are divided 
into groups based on their results. The best learner of each group acts as a teacher for that group and 
tries to increase the mean result of his/her group. If the level (i.e. result) of the individual in the group 
reaches up to the level of the teacher of that group then this individual is assigned to the next group (i.e. 
next better teacher). The Pseudo code of this modification is given in Fig.1. 
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Initialize the population randomly and evaluate the same. 
For RN = 1: Number of runs. 

Rank the evaluated solutions (In ascending order for the minimization problem and in descending order for the 
maximization problem) 

Select the best solution f(Xb). This solution acts as the chief teacher (T1) of the class. Mathematically, T1 = f(Xb)  
Select the other teachers (Ts) based on the best solution (i.e. f(Xb))   

Ts = f(Xb) ± ri × f(Xb) s = 2, 3, ….,N 
(Where, ri is the random number. If the value of the right side of the above equation is not equal to any of the 
values of the initially evaluated population then the value closer to that is selected from the initial population).  

 

Once, the teachers are identified, distribute the learners to the teachers based on their fitness value (i.e. result) as, 
For k =1 to Population  

If   T1 ≤ f(X 
k) < T2     

Assign the learner f(X 
k) to teacher 1 (i.e T1) 

Else If   T2 ≤ f(X 
k) < T3     

Assign the learner f(X 
k)to teacher 2 (i.e T2) 

. 

. 

. 
Else If   TN-1 ≤ f(X 

k)< TN 

Assign the learner f(X 
k) to teacher N-1 (i.e TN-1) 

Else 
Assign the learner f(X 

k) to teacher TN 
End If 

End For 
Teacher phase 
Learner phase 

End For 

Fig. 1. Pseudo code for selection of teacher and distribution of students 
 
3.2. Adaptive teaching factor 
 
Another modification is related to the teaching factor (TF) of the basic TLBO algorithm. The teaching 
factor decides the value of mean to be changed. In the basic TLBO, the decision of the teaching factor 
is a heuristic step and it can be either 1 or 2. This practice corresponds to the situation where learners 
learn nothing from the teacher or learn all the things from the teacher respectively. But in actual 
teaching-learning phenomenon this fraction is not always at its end state for learners but varies in-
between also. The learners may learn in any proportion from the teacher. In the optimization algorithm 
a lower value of TF allows the finer search in small steps but causes slow convergence. A larger value 
of TF speeds up the search but it reduces the exploration capability. Considering this fact the teaching 
factor is modified as, 

 
 

,s i

k

F

s
i

f X
T

T

 
 
 
 

         If Ts ≠ 0 

 
(5a) 

  1
i

FT         If Ts = 0 (5b) 

where f(Xk) is the result of any learner k associated with group ‘s’ considering all the subjects at 
iteration i and Ts is the result of the teacher of the same group at the same iteration i. Thus, teaching 
factor in ITLBO algorithm is the ratio of the result of the learner to the result of the teacher during an 
iteration. The teaching factor varies automatically during the search depending upon the result of the 
learner and the teacher. Thus, automatic tuning of TF improves the performance of the algorithm. 
 
3.3. Learning through tutorial 
 
This modification is based on the fact that students can also learn by discussing with their fellow 
classmates or even with the teacher during the tutorial hours while solving the assigned tasks. Since the 
students can increase their knowledge by discussing with the other students or teacher, we incorporate 



R. Venkata Rao and V. Patel / International Journal of Industrial Engineering Computations 5 (2014) 
 

7  

this search mechanism in the teacher phase. So, in the ITLBO algorithm, the learner improved his/her 
result in the teacher phase through the classroom teaching provided by the teacher along with the 
discussion with the fellow classmates or teacher during tutorial hours. Mathematically this modification 
can be modeled as:  
 

X’k
j,i = (Xk

j,i + Difference_Meanj,i) + ri (X
h

j,i - X
k
j,i)     If f(X

h) < f(Xk), h ≠ k, (6a) 
X’k

j,i = (Xk
j,i + Difference_Meanj,i) + ri (X

k
j,i – Xh

j,i)     If f(X
k) < f(Xh), h ≠ k,   (6b) 

 

where the first term on the right side indicates the classroom learning and the second term indicates 
learning through the tutorial. 
 

3.4. Self-motivated learning 
 

In the basic TLBO algorithm, the results of the students are improved either by learning from the 
teacher or by interacting with the other students. However, it is also possible that students are self-
motivated and improve their knowledge by self-learning. Thus, the self-learning aspect to improve the 
knowledge is considered in the ITLBO algorithm. Since the students learn without the aid of the 
teacher, we incorporate this search mechanism in the learner phase. Mathematically this modification 
can be modeled as:  
     
X’p

j,i  = [X’p
j,i + ri (X’p

j,i -  X’q
j,i) ] + [ri (X

s
j,i – EF X’p

j,i)],  If  f(X’ p) < f(X ‘q) (7a) 
X’p

j,i  = [X’p
j,i + ri (X’q

j,i -  X’p
j,i) ] + [ri (X

s
j,i – EF X’p

j,i)],  If  f(X’ q) < f(X ‘p) (7b) 
 (p ≠ q and  p ,q , s k, Xs

j is the grade of the teacher associated with group  ‘s’ in ‘j’ subject)   
 

where ri is a random number in the range [0, 1]. EF is the exploration factor and its value is decided 
randomly as: 
 

EF = round (1+ri) (8) 
 

The first term on the right side of Eq. (7a) and (7b) indicates the learning by interacting with the other 
learners and the second term indicates the self-motivated learning. 
 

3.5. External Archive 
 

The main objective of the external archive is to keep a historical record of the non-dominated vectors 
found along the search process. This algorithm uses a fixed size external archive to keep the best non-
dominated solutions that it has found so far. In the proposed algorithm an ε-dominance method is used 
to maintain the archive. This method has been used widely in multi-objective optimization algorithms 
to manage the archive. The archive is a space with dimension equal to the number of problem’s 
objectives. The archive is empty at the beginning of the search. In ε-dominance method each dimension 
of the objective space is divided into segments whose width is ε, so that the objective space is divided 
into squares, cubes or hyper-cubes for two, three and more than three objectives respectively. If a box 
that holds the solution(s) can dominate other boxes then those boxes (along with the solution(s) in 
them) will be removed. Then each box is examined to check if only one non-dominated solution is 
present, while the dominated ones are eliminated. Finally, if a box still has more than one solution then 
the solution with the minimum distance from the lower left corner of the box (for minimization 
problem) and upper right corner (for maximization problem) will stay and the others will be removed. 
It is observed from the literature that the use of ε-dominance guarantees that the retained solutions are 
non-dominated with respect to all solutions generated during the execution of the algorithm. The 
proposed MO-ITLBO algorithm uses the grid based approach for the archiving process which was 
previously used by MOABC algorithm (Akbari & Ziarati, 2012).  
The schematic diagram of the proposed algorithm is shown in Fig. 2.
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1 

Rank the evaluated population i.e. solutions (in 
ascending order for the minimization problem and in 
descending order for the maximization problem) 
 
Select the best solution (i.e. the solution obtained the 
first rank) f(Xb). This solution acts as the chief teacher 
(T1) of the class (i.e. T1 = f(Xb)).  
 
Select the other teachers (Ts) based on the best solution 
(i.e. f(Xb))   

Ts = f(Xb) ± ri * f(Xb) s = 2, 3, ….,N 

 (If the equality is not met, select the Ts closer to the 
value calculated above) 

 

Selection of teachers 

Calculate the mean result of each group of learners in each subject (i.e. (Ms,j) 
For s = 1 to No. of group (i.e No. of teacher) 

For j = 1 to No. of Design variables 
Calculate the difference between the current mean and the corresponding result 
of the teacher of that group by utilizing the adaptive teaching factor  

Difference_Means,j = ri (X
s
j, - TF Ms,j) 

(where Xs
j is the grade of the teacher associated with group ‘s’ in ‘j’ 

subject and Ms,j is the mean grade of the learner of group ‘s’ in ‘j’ 
subject) 

End For 
End For 
Update the learners’ knowledge with the help of teacher’s knowledge along with the 
knowledge acquired by the learners’ during the tutorial hours. 
For j = 1 to No. of Design variables 

X’k
j = (Xk

j + Difference_Means,j) + ri (X
h

j - X
k
j)     If f(X

h) < f(Xk), h ≠ k 
X’k

j = (Xk
j + Difference_Means,j) + ri (X

k
j – Xh

j)    If f(X
k) < f(Xh), h ≠ k 

End For 
If the result has improved 

Keep the improved result 
Else  
Keep the previous result 
End If 

Teacher phase 

For k =1 to Population  
If   T1 ≤ f(X 

k) < T2     
Assign the learner f(X 

k) to teacher 1 (i.e T1).  
Else If   T2 ≤ f(X 

k) < T3     
Assign the learner f(X 

k)to teacher 2 (i.e T2).  
. 
. 

Else If   TN-1 ≤ f(X 
k) < TN 

Assign the learner f(X 
k) to teacher N-1 (i.e TN-1) 

Else 
Assign the learner f(X 

k) to teacher TN 
End If 

End For 

Assign learners to teachers 

2 

Set Population size, Function evaluation, No. of teachers  
Define Optimization problem as, Minimize or Maximize f(X) 
Initialize Population (i.e. learners, k=1,2,..n),  

   Design variables (i.e. number of subjects offered to the learners, 
j=1,2,..m)  

    External archive 
 

Initialization 
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Fig. 2. Schematic diagram of the MO-ITLBO algorithm  

 

Yes 

Output external archive as Pareto 
optimal set 

Update the learners’ knowledge of each group by utilizing the knowledge of some other learner 
of the same group as well as by self -learning according to: 
For j = 1 to No. of Design variables 

X’p
j,i  = [X’p

j,i + ri (X’p
j,i -  X’q

j,i) ] + [ri (X
s
j,i – EF X’p

j,i)], If  f(X’p) < f(X’q) 
X’p

j,i  = [X’p
j,i + ri (X’q

j,i -  X’p
j,i) ] + [ri (X

s
j,i – EF X’p

j,i)], If  f(X’q) < f(X’p)  
(p ≠ q and  p ,q , s  k, Xs

j is the grade of the teacher associated with group  ‘s’ in ‘j’ subject) 
End For 
If the result has improved  

Keep the improved result 
Else  

Keep the result of teacher phase 
End If 
Combine all the groups 

Learner phase 

Initialize the Grid on the Archive 
For each box in the Grid 

If any box dominates the other boxes 
Remove the dominated box and their related solutions. 

End If 
End For 
For remaining boxes in the Grid 

If the box contains more than one solution 
Remove the dominated solution(s) from the box 

End If 
If the box still contains more than one solution 

Keep the solution with less distance from the left corner of the box and remove others 
End If 

End For 

External Archive 

1 

FE < FEmax 

Stop 

No 

2 
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Both the teacher phase and learner phase iterate cycle by cycle as shown in Fig. 2 till the termination 
criterion is satisfied. In the present work, total number of function evaluations is set as termination 
criterion for the proposed algorithm. At the termination of the algorithm, the external archive found by 
the algorithm is returned as the output. 
 
The proposed MO-ITLBO algorithm is implemented on both unconstrained and constrained problems. 
For the constrained optimization problems it is necessary to incorporate any constraint handling 
techniques within the MO-ITLBO algorithm. In this work, superiority of the feasible solution method 
(SF) (Qu & Suganthan, 2011) is used to handle the constraints with the proposed algorithm. 
 
At this point it is important to clarify that in the MO-ITLBO algorithm, the solution is updated in the 
teacher phase as well as in the learner phase. Also, if duplicate solutions are present then they are 
randomly modified. So the total number of function evaluations in the proposed algorithm is = {(2 × 
population size × number of generations) + (function evaluations required for the duplicate 
elimination)}. In the entire experimental work of this paper, the above formula is used to count the 
number of function evaluations while conducting experiments with proposed algorithm. To 
demonstrate the effect of the modifications introduced to improve the performance of the TLBO 
algorithm, a step-by-step comparison of the performance of basic TLBO and the ITLBO algorithms for 
Rastrigin function is given in Appendix-A. It may be observed that the modifications have improved 
the performance of the TLBO algorithm.    
 
The next section deals with the experimentation of MO-ITLBO algorithm on various multi-objective 
unconstrained and constrained functions. 
  
4. Experimental investigation 
 
In this section, the ability of the MO-ITLBO algorithm is assessed by implementing it for the parameter 
optimization of 20 well defined benchmark functions of CEC 2009 (Zhang et al., 2009). Out of 20 
functions, 10 functions are unconstrained (UF1-UF10) and the remaining 10 are constrained functions 
(CF1-CF10). The UF1-UF7 and CF1-CF7 are two objective benchmark functions while UF8-UF10 and 
CF8-CF10 are three objective benchmark functions. The detailed mathematical formulations of the 
considered test functions are given in Zhang et al. (2009). The Pareto front of these functions has many 
characteristics e.g. some of them are convex while others are concave or some of them are continuous 
and some others are discontinuous. A common platform is required in the field of optimization to 
compare the performance of different algorithms for different benchmark functions. For the present 
work this common platform is provided by CEC 2009. As suggested in this common platform, in the 
present work the total number of function evaluations is set as 300000 for each test problem in the 
present work. The MO-ITLBO algorithm is experimented on each function with population size 50 and 
the number of teachers 4. The proposed algorithm is executed 30 times for each test function and the 
average results obtained using the proposed algorithm are compared with the results of the other 
algorithms available in the literature.  
 
4.1. Performance Metric  
 
The inverted generational distance (IGD) measure is used for quantitative assessment of the 
performance of the proposed algorithm. The IGD measure is defined as: Let P* be a set of uniformly 
distributed points along the Pareto front in the objective space. Let A be an approximate set to the 
Pareto front, the average distance from P* to A is defined as follows, 
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where d(τ, A) is the minimum Euclidian distance between υ and the other points in A. Both diversity 
and convergence of the approximated set A could be measured using IGD (A, P*). If P* has a large 
number of members to represent the Pareto front precisely. Moreover, to maintain the common 
platform for comparison, the archive size is adjusted to 100 and 150 for two objective functions and 
three objective functions respectively.  
 
4.2. Performance analysis of unconstrained benchmark functions 
 
In the first experiment the proposed algorithm is implemented on 10 unconstrained benchmark 
functions taken from CEC 2009. For each test function the MO-ITLBO algorithm has been executed 
for 30 times. The result of each benchmark function is presented in Table 1 in the form of best solution, 
worst solution, mean solution and standard deviation obtained through 30 independent runs of the MO-
ITLBO algorithm. The graphical representation of the produced Pareto front with the MO-ITLBO 
algorithm for UF1-UF10 is shown in Figs. 3(a)-3(j). 
 

 

 
Fig. 3(a)-(j). The Pareto front obtained by the MO-ITLBO algorithm for unconstrained test functions 

UF1-UF-10 
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Table 1 
IGD values obtained with MO-ITLBO for different unconstrained test functions (UF1-UF10) in 30 
independent runs.  

Test function Best Worst Mean SD 
UF 1 0.00391 0.00487 0.00421 8.04E-04 
UF 2 0.00462 0.00593 0.00519 1.73E-03 
UF 3 0.03486 0.06174 0.04681 6.48E-03 
UF 4 0.03743 0.04609 0.04378 1.07E-02 
UF 5 0.04015 0.09923 0.07482 8.62E-03 
UF 6 0.00868 0.03247 0.01144 1.01E-02 
UF 7 0.01106 0.08481 0.04127 2.38E-02 
UF 8 0.05107 0.05832 0.06126 1.65E-03 
UF 9 0.06836 0.20036 0.12379 8.97E-02 

UF 10 0.1187 0.18962 0.14714 1.29E-02 
 
Table 2 

Comparison of mean IGD values and the standard deviation (SD) obtained with different algorithms for 
different unconstrained test functions (UF1-UF10) in 30 independent runs 

Algorithm Measure UF 1 UF 2 UF 3 UF 4 UF 5 UF 6 UF 7 UF 8 UF 9 UF 10 
MO-ITLBO Mean IGD 0.00421 0.00519 0.04681 0.04378 0.07482 0.01144 0.04127 0.06126 0.12379 0.14714 

SD 8.04E-04 1.73E-03 6.48E-03 1.07E-02 8.62E-03 1.01E-02 2.38E-02 1.65E-03 8.97E-02 1.29E-02 

MOABC Mean IGD 0.00618 0.00484 0.0512 0.05801 0.077758 0.06537 0.05573 0.06726 0.0615 0.19499 
SD NA NA NA NA NA NA NA NA NA NA 

MTS Mean IGD 0.00646 0.00615 0.0531 0.02356 0.01489 0.05917 0.04079 0.11251 0.11442 0.15306 
SD 3.49E-04 5.08E-04 1.17E-02 6.64E-04 3.28E-03 1.06E-02 1.44E-02 1.29E-02 2.55E-02 1.58E-02 

DMOEADD Mean IGD 0.01038 0.00679 0.03337 0.04268 0.31454 0.06673 0.01032 0.06841 0.04896 0.32211 
SD 2.37E-03 2.02E-03 5.68E-03 1.39E-03 4.66E-02 1.03E-02 9.46E-03 9.12E-03 2.23E-02 2.86E-01 

LiuLi 
Algorithm 

Mean IGD 0.00785 0.0123 0.01497 0.0435 0.16186 0.17555 0.0073 0.08235 0.09391 0.44691 
SD 2.09E-03 3.32E-03 2.4E-02 6.5E-04 2.82E-02 8.29E-02 8.9E-04 7.33E-03 4.71E-02 1.3E-01 

GDE3 Mean IGD 0.00534 0.01195 0.10639 0.0265 0.03928 0.25091 0.02522 0.24855 0.08248 0.43326 
SD 3.42E-04 1.54E-03 1.29E-02 3.72E-04 3.95E-03 1.96E-02 8.89E-03 3.55E-02 2.25E-02 1.23E-02 

MOEAD Mean IGD 0.00435 0.00679 0.00742 0.06385 0.18071 0.00587 0.00444 0.0584 0.07896 0.47415 
SD 2.90E-04 1.82E-03 5.89E-03 5.34E-03 6.81E-02 1.71E-03 1.17E-03 3.21E-03 5.32E-02 7.36E-02 

MOEADGM Mean IGD 0.0062 0.0064 0.0429 0.0476 1.7919 0.5563 0.0076 0.2446 0.1878 0.5646 
SD 1.13E-03 4.3E-04 3.41E-02 2.22E-03 5.12E-01 1.47E-01 9.4E-04 8.54E-02 2.87E-02 1.02E-01 

NSGAIILS Mean IGD 0.01153 0.01237 0.10603 0.0584 0.5657 0.31032 0.02132 0.0863 0.0719 0.84468 
SD 7.3E-03 9.11E-03 6.86E-02 5.12E-03 1.83E-01 1.91E-01 1.95E-02 1.24E-02 4.5E-02 1.63E-01 

OW 
MOSaDE 

Mean IGD 0.0122 0.0081 0.103 0.0513 0.4303 0.1918 0.0585 0.0945 0.0983 0.743 
SD 1.2E-03 2.3E-03 1.9E-02 1.9E-03 1.74E-02 2.9E-02 2.91E-02 1.19E-02 2.44E-02 8.85E-02 

Clustering 
MOEA 

Mean IGD 0.0299 0.0228 0.0549 0.0585 0.2473 0.0871 0.0223 0.2383 0.2934 0.4111 
SD 3.3E-03 2.3E-03 1.47E-02 2.7E-03 3.84E-02 5.7E-03 2.00E-03 2.3E-02 7.81E-02 5.01E-02 

AMGA Mean IGD 0.03588 0.01623 0.06998 0.04062 0.09405 0.12942 0.05707 0.17125 0.18861 0.32418 
SD 1.03E-02 3.17E-03 1.4E-02 1.75E-03 1.21E-02 5.66E-02 6.53E-02 1.72E-02 4.21E-02 9.57E-02 

MOEP Mean IGD 0.0596 0.0189 0.099 0.0427 0.2245 0.1031 0.0197 0.423 0.342 0.3621 
SD 1.28E-02 3.8E-03 1.32E-02 8.35E-04 3.44E-02 3.45E-02 7.51E-04 5.65E-02 1.58E-01 4.44E-02 

DECMOSA-
SQP 

Mean IGD 0.07702 0.02834 0.0935 0.03392 0.16713 0.12604 0.02416 0.21583 0.14111 0.36985 
SD 3.94E-02 3.13E-02 1.98E-01 5.37E-03 8.95E-02 5.62E-01 2.23E-02 1.21E-01 3.45E-01 6.53E-01 

OMOEAII Mean IGD 0.08564 0.03057 0.27141 0.04624 0.1692 0.07338 0.03354 0.192 0.23179 0.62754 
SD 4.07E-03 1.61E-03 3.76E-02 9.67E-04 3.9E-03 2.45E-03 1.74E-03 1.23E-02 6.48E-02 1.46E-01 

NA – Not available 

In this experiment, the performance of MO-ITLBO algorithm is compared with other well-known 
optimization algorithms such as MOABC, MTS, DMOEADD, LiuLi Algorithm, GDE3, MOEAD, 
MOEADGM, NSGAIILS, OWMOSaDE, Clustering MOEA, AMGA, MOEP, DECMOSA-SQP and 
OMOEAII. Table 2 shows the comparative results of the considered algorithms in the form of mean 
solution (i.e. mean IGD value) obtained through 30 independent runs. 
 
It is observed from the results that the MO-ITLBO algorithm outperforms the other algorithms for UF1 
function. It can also be seen from Fig. 3(a) that the proposed algorithm produced an archive whose 
members are uniformly distributed over the Pareto front in the two dimension objective space.   
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The MO-ITLBO algorithm gives a competitive result on UF2 function and obtained the 2nd rank among 
15 algorithms. The MOABC algorithm obtained the 1st rank for this function. Fig 3(b) shows the Pareto 
front of this function obtained by the proposed algorithm. 
 
The MO-ITLBO algorithm obtained the 5th rank on UF3 test function compared to the other 14 
algorithms. The best result is obtained by the MOEAD algorithm for UF3 function. For UF4 test 
function, the MO-ITLBO algorithm obtained the 8th rank among all algorithms. For this function the 
MTS algorithm produced the best result. Figs. 3(c) and 3(d) show the Pareto front obtained by the 
proposed algorithm for UF3 and UF4, respectively.  
 
The UF5 and UF6 functions have a discontinuous Pareto front and are relatively hard to solve. The 
MO-ITLBO algorithm obtained the 3rd and 2nd rank for UF5 and UF6 test problems respectively. The 
MTS algorithm and the GDE3 algorithm obtained better results than the proposed algorithm for UF5 
function while the MOEAD algorithm produced better results than the MO-ITLBO algorithm for UF6 
test function. Figs. 3(e) and 3(f) show the graphical representation of the results obtained by the 
proposed algorithm for UF5 and UF6 test functions respectively. The MO-ITLBO algorithm is placed 
at the 12th rank on UF7 test function. The Pareto front produced by the proposed algorithm is shown in 
Fig. 3(g). It is observed from the Fig 3(g) that an entire portion of the Pareto front is not covered by the 
MO-ITLBO algorithm and as a result this function increases the IDG measure.  
 
The UF8-UF10 are the three objective test functions experimented with the proposed algorithm. The 
MO-ITLBO, MOABC and MOEAD algorithms show almost comparable performance on UF8 test 
function. The MOEAD algorithm produces the best result. The proposed algorithm obtained the 2nd 
rank on UF8 test function. Fig. 3(h) shows the Pareto front produced by the proposed algorithm. It is 
observed from the Fig. 3(h) that the solution points obtained by the MO-ITLBO algorithm cover 
considerable part of the objective space.  
 
The MO-ITLBO algorithm obtained the 9th rank among 15 algorithms on UF9 test function. The 
DMOEADD algorithm produced the best result among all the algorithms on this test function. As 
shown in Fig. 3(i) that the solution points obtained by the proposed algorithm do not cover the entire 
objective space, which in turn increases the IGD measure of this test function. On UF10 test function, 
the MO-ITLBO and the MTS algorithms produced competitive results. The proposed algorithm 
obtained the 1st rank for optimization of this test function. The quality of the Pareto front produced by 
the proposed algorithm is shown in Fig. 3(j). It is observed from the Fig. 3(j) that the obtained Pareto 
front by the proposed algorithm covers larger part of the objective space. 
 
4.2. Performance analysis of constrained benchmark functions 
 
In this experiment the MO-ITLBO algorithm is implemented on 10 constrained benchmark functions of 
CEC 2009. In this work the superiority of the feasible solution method is used as a constrained 
handling technique within the MO-ITLBO algorithm. The results of each benchmark function are 
presented in Table 3 in the form of best solution, worst solution, mean solution and standard deviation 
obtained through 30 independent runs of the MO-ITLBO algorithm. Table 4 shows the comparative 
results between the considered algorithms in the form of mean solution (i.e. mean IGD value) obtained 
through 30 independent runs.  
 
Figs. 4(a)-4(j) show the approximated Pareto front produced by the proposed algorithm for CF1-CF10 
functions. The CF1 and CF2 are discontinuous test functions. The MO-ITLBO algorithm obtained the 
4th rank for both the test problems. The LiuLi algorithm and the DMOEADD algorithm produced the 
best results for CF1 and CF2 respectively.  The approximated Pareto front produced by the proposed 
algorithm is shown in Figs. 4(a) and 4(b) for CF1 and CF2 respectively.  
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Fig. 4(a)-(j). The Pareto front obtained by the MO-ITLBO algorithm for constrained test functions 

CF1-CF-10 
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The test function CF3 has a discontinuous Pareto front and relatively hard to solve. The DMOEADD, 
MOABC and MO-ITLBO algorithms produced competitive results on CF3 test function. The proposed 
algorithm obtained the 2nd rank in optimization of this test function. Fig. 4(c) shows that the proposed 
algorithm has not covered the entire objective space. 
 
Table 3 

IGD value obtained with MO-ITLBO for different constrained test functions (CF1-CF10) in 30 
independent runs.  

   Best Worst Mean SD 
CF 1 0.00628 0.01624 0.01007 2.11E-03 
CF 2 0.00283 0.01421 0.00924 3.56E-03 
CF 3 0.05216 0.09731 0.08242 1.00E-02 
CF 4 0.00124 0.00831 0.00518 1.98E-03 
CF 5 0.00712 0.09871 0.06789 8.96E-02 
CF 6 0.00642 0.01132 0.00916 6.48E-03 
CF 7 0.01012 0.03052 0.01916 3.69E-03 
CF 8 0.04809 0.15922 0.10482 4.37E-02 
CF 9 0.04536 0.05849 0.05018 2.97E-03 

CF 10 0.09213 0.36382 0.18341 3.12E-02 

 
Table 4 
Comparison of mean IGD values and standard deviation (SD) obtained with different algorithms for 
different constrained test functions (CF1-CF10) in 30 independent runs 

Algorithm CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9 CF10 

MO-ITLBO 
Mean IGD 0.01007 0.0092 0.08242 0.00518 0.06789 0.00916 0.01916 0.10482 0.05018 0.1834 

SD 2.11E-03 3.56E-03 1.00E-02 1.98E-03 8.96E-02 6.48E-03 3.69E-03 4.37E-02 2.97E-03 3.12E-02 

MOABC 
Mean IGD 0.00992 0.01027 0.08621 0.00452 0.06781 0.00483 0.01692 ---- ---- ---- 

SD NA NA NA NA NA NA NA NA NA NA 

MTS 
Mean IGD 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469 1.0854 0.08513 0.1376 

SD 2.57E-03 1.47E-02 1.56E-02 1.37E-03 2.42E-03 5.99E-03 4.65E-03 2.19E-01 8.19E-03 9.22E-03 

DMOEADD 
Mean IGD 0.01131 0.0021 0.0563 0.00699 0.01577 0.01502 0.01905 0.0475 0.1434 0.1621 

SD 2.76E-03 4.53E-04 7.57E-03 1.46E-03 6.66E-03 6.46E-03 6.12E-03 6.39E-03 2.14E-02 3.16E-02 

LiuLi Algorithm 
Mean IGD 0.00085 0.0042 0.1829 0.01423 0.10973 0.01394 0.10446 0.06074 0.05054 0.1974 

SD 1.10E-04 2.64E-03 4.21E-02 3.29E-03 3.07E-02 2.59E-03 3.51E-02 1.30E-02 3.36E-03 7.60E-02 

GDE3 
Mean IGD 0.0294 0.01597 0.1275 0.00799 0.06799 0.06199 0.04169 0.1387 0.1145 0.4923 

SD 2.29E-03 7.56E-03 2.39E-02 1.23E-03 1.35E-02 2.69E-02 1.08E-02 5.86E-02 2.21E-02 1.68E-03 

MOEADGM 
Mean IGD 0.0108 0.008 0.5134 0.0707 0.5446 0.2071 0.5356 0.4056 0.1519 0.3139 

SD 2.50E-03 9.99E-03 7.14E-02 1.01E-01 1.72E-01 1.00E-04 1.00E-01 1.28E-01 4.13E-02 1.04E-01 

NSGAIILS 
Mean IGD 0.00692 0.01183 0.23994 0.01576 0.1842 0.02013 0.23345 0.11093 0.1056 0.3592 

SD 2.51E-03 1.30E-02 8.58E-02 4.53E-03 6.08E-02 1.74E-02 8.69E-02 3.68E-02 2.93E-02 7.50E-02 

DECMOSA-SQP 
Mean IGD 0.10773 0.0946 1000000 0.15265 0.41275 0.14782 0.26049 0.17634 0.12713 0.50705 

SD 1.96E-01 2.94E-01 0.00E+00 4.67E-01 5.91E-01 1.25E-01 2.60E-01 6.26E-01 1.46E-01 1.20E+00 
NA – Not available 

The MO-ITLBO algorithm obtained the 2nd rank among 9 algorithms on CF4 test function. Only the 
MOABC algorithm produced better results than the proposed algorithm on this test function. Fig. 4(d) 
shows that the MO-ITLBO algorithm successfully converges to Pareto front with uniform distribution 
of solution points over the Pareto front. 
 
The MO-ITLBO algorithm obtained the 4th rank on CF5 test function. The DMOEADD algorithm 
obtained the best result on this test function. The approximated Pareto front produced by the proposed 
algorithm is shown in Fig. 4(e). It is observed from Fig. 4(e) that despite the good convergence the 
proposed algorithm has not fully covered the entire objective space.  
The MOABC shows the best result and obtained the 1st rank on the CF6 test problem. The MO-ITLBO 
algorithm produced the competitive results and obtained the 2nd rank on this test problem. The 
graphical representation of the produced solutions is given in Fig. 4(f). 
 
The MOABC, DMOEADD and MO-ITLBO algorithms have competitive performance on the CF7 test 
problem. The proposed algorithm achieves the 3rd rank while the MOABC algorithm is placed at the 1st 
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position. It is observed from Fig. 4(g) that the proposed algorithm shows good convergence with small 
discontinuity in the produced solutions.   
 
The CF8 is the first three objective constrained test function experimented in this work. The proposed 
algorithm achieves the 3rd rank among 8 algorithms on this test function. The DMOEADD algorithm 
obtained the 1st rank on CF8 function. Fig. 4(h) shows an approximated Pareto front produced by the 
proposed algorithm in three dimension objective space.  
 
The MO-ITLBO, MTS and LiuLi algorithms produced competitive results on the CF9 test problem. 
The proposed algorithm surpasses the other algorithms and obtained the 1st rank on this test problem. 
The quality of the solution points produced by the proposed algorithm is shown in Fig. 4(i). It is 
observed from Fig. 4(i) that the MO-ITLBO algorithm produced an appropriate distribution of the 
solution points in three dimension objective space.  
 
The MTS algorithm outperforms other algorithms in solving CF10 test function. The proposed 
algorithm has obtained the 3rd rank among all other algorithms. Fig. 4(j) shows a graphical 
representation of the produced solutions.  
 
In order to access the overall performance of the MO-ITLBO algorithm among the 15 algorithms in 
optimizing unconstrained test functions and 10 algorithms in optimizing constrained test functions, the 
Lexicographic ordering is used. The Lexicographic ordering determines the overall rank of the 
considered algorithms. For any test function, the algorithm, which gives the best mean IGD value as 
compared to rest of algorithms obtains the first rank for that test function and the next better performing 
algorithm occupies the second rank, and so on.  In the present work the ranks are given to the 
considered algorithms for each un-constrained and constrained functions. After that, the average 
ranking is obtained for each considered algorithm for the unconstrained as well as the constrained 
functions. The algorithm with minimum average rank is identified as the best algorithm and the first 
rank is assigned in lexicographic ordering. In the similar way, the next better average rank is identified 
and the algorithm associated with that rank is placed at the second place in the lexicographic ordering 
and so on. Table 5 shows the ranking of the considered algorithms in optimizing the unconstrained and 
constrained test problems separately. It is observed from Table 5 that the MO-ITLBO algorithm 
obtained the 1st rank among the 15 algorithms in optimization of unconstrained test functions. 
Similarly, The MO-ITLBO algorithm is the 3rd best algorithm in optimization of constrained test 
functions. 
  
Table 5 
The Lexicographic ordering of the unconstrained and constrained test problems 

Unconstrained functions Constrained functions 
Rank Algorithm Rank Algorithm 

1 MO-ITLBO 1 MOABC 
2 MTS 2 DMOEADD 
2 MOEAD 3 MO-ITLBO 
3 MOABC 4 LiuLi Algorithm 
3 DMOEADD 5 MTS 
4 LiuLi Algorithm 6 NSGAIILS 
5 GDE3 6 GDE3 
6 AMGA 7 MOEADGM 
7 MOEADGM 8 DECMOSA-SQP 
8 DECMOSA-SQP 

 9 MOEP 
 10 NSGAIILS 
 11 Clustering MOEA 
 12 OW MOSaDE 
 13 OMOEAII 
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To investigate the results obtained using different algorithms in-depth, a statistical test, known as t-test, 
is performed in the present work. The t-test is performed on the pairs of the algorithms to identify the 
differences of significance between the results of different algorithms. In the present work the Modified 
Bonferroni Correction is adopted while performing the t-test (Karaboga & Akay, 2009). For t-test, the 
p-value for each function is calculated and then the p-values are ranked in the ascending order. The 
inverse ranks are then obtained and the significance ratio is obtained by dividing the significance level 
(α) by the inverse rank. In the present work the t-test is performed at a significance level of 0.025. The 
results of each benchmark function obtained through 30 independent runs are used to perform the t-
tests.  For any function if the difference in the p-values of the proposed algorithm and the other 
algorithm is less than the significance ratio then it indicates the statistically better performance of the 
proposed algorithm. Table 6 shows the results of t-test where the pairwise comparisons between the 
proposed algorithm and the other algorithms are given separately for the unconstrained and constrained 
functions. For any function, ‘1’ indicates that the performance of the MO-ITLBO algorithm is better 
than its counterpart algorithm and ‘0’ indicates vice versa. Symbol ‘-’ is used where there is no 
significant performance difference between the MO-ITLBO algorithm and its counterpart algorithm.  
 
Table 6  
Pairwise comparison of the MO-ITLBO algorithm with the other algorithms for unconstrained and 
constrained test functions 
Unconstrained Functions 

  UF 1 UF 2 UF 3 UF 4 UF 5 UF 6 UF 7 UF 8 UF 9 UF 10 

MTS 1 - - 0 0 1 - 1 - - 
MOEAD - 1 0 1 1 0 0 0 - 1 

MOABC 1 0 - 1 - 1 1 - 0 - 
DMOEADD 1 1 0 - 1 1 0 1 0 1 

LiuLi Algorithm 1 1 0 - 1 1 0 1 - 1 
GDE3 1 1 1 0 0 1 0 1 0 1 
AMGA 1 1 1 - 1 1 - 1 1 1 

MOEADGM 1 1 - - 1 1 0 1 1 1 

DECMOSA-SQP 1 1 1 0 1 1 0 1 - 1 
MOEP 1 1 1 - 1 1 0 1 1 1 
NSGAIILS 1 1 1 1 1 1 0 1 1 1 

Clustering MOEA 1 1 1 1 1 1 0 1 1 1 
OW MOSaDE 1 1 1 1 1 1 1 1 0 1 
OMOEAII 1 1 1 - 1 1 0 1 1 1 
 

Constrained Functions 

  CF 1 CF 2 CF 3 CF 4 CF 5 CF 6 CF 7 CF 8 CF 9 CF 10 

MOABC - - 1 0 - 0 - NA NA NA 
DMOEADD - 0 0 1 0 1 - 0 1 - 

LiuLi Algorithm 0 0 1 1 - 1 1 0 - - 

MTS 1 1 1 1 0 1 1 1 1 0 
NSGAIILS 0 - 1 1 1 1 1 - 1 1 

GDE3 1 1 1 1 - 1 1 - 1 1 
MOEADGM - - 1 1 1 1 1 1 1 1 
DECMOSA-SQP 1 1 1 1 1 1 1 - 1 1 
‘1’ indicates that the performance of the MO-ITLBO algorithm is better than its counterpart algorithm 

‘0’ indicates that the performance of the counterpart algorithm is better than the MO-ITLBO algorithm 

‘-‘ indicates that there is no significance difference in performance between the MO-ITLBO algorithm and its counterpart algorithm 

NA indicates that the results are not available 

 
In order to identify the convergence of the MO-ITLBO algorithm to the optimal Pareto front, an 
unconstrained function (UF1), and constrained function (CF4) are considered for the experimentation. 
Figs. 5 and 6 show the convergence of the unconstrained and constrained test function respectively at 
intervals of 50000 function evaluations. It is observed from the Figs. 5 and 6 that with the increase in 
the function evaluations the approximated solution points in the two dimensional objective space are 
also increased. Moreover, the distribution of the solution points becomes uniform as the number of 
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function evaluations proceeds. Both these points indicate that the performance of the MO-ITLBO 
algorithm is continuously improved throughout the function evaluations.   
 

 
 

Fig. 5. Convergence of the MO-ITLBO algorithm for the unconstrained test function UF1 (a) 50000 FE 
(b) 100000 FE (c) 150000 FE (d) 200000 FE (e) 250000 FE and (f) 300000 FE 

 

 
Fig. 6. Convergence of MO-ITLBO algorithm for the constrained test function CF4 (a) 50000 FE (b) 

100000 FE (c) 150000 FE (d) 200000 FE (e) 250000 FE and (f) 300000 FE 
 

5. Conclusions 
 
In this work an improved TLBO algorithm has been adapted to handle the MOO problems. Two new 
search mechanisms are introduced in the TLBO algorithm in the form of tutorial training and self- 
motivated learning. Moreover, the teaching factor of the basic TLBO algorithm is modified and an 
adaptive teaching factor is introduced. Furthermore, more than one teacher is introduced for the 
learners in the proposed algorithm. The MO-ITLBO algorithm used a fixed size archive to maintain the 
good solutions obtained during every iteration and a grid-based approach to control the diversity over 
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the external archive. The performance of the MO-ITLBO algorithm is evaluated by conducting 
experiments on a range of multi-objective unconstrained and constrained test problems and the results 
obtained using the MO-ITLBO algorithm are compared with that of the other state-of-the-art 
algorithms available in the literature. The experimental results have shown satisfactory performance of 
the MO-ITLBO algorithm for the MOO problems. The proposed algorithm can be easily customized to 
suit the optimization of any problem involving multiple objectives. Hence, the proposed optimization 
algorithm may be tried by the researchers of the industrial engineering field.  
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APPENDIX - A:  
Stepwise comparison of the TLBO and the ITLBO algorithms for Rastrigin function for demonstration. 

 
Basic TLBO 

Improved TLBO 

Step 1: Define the optimization problem:  Minimize  f(X) = Minimize  



n

i
ii xxxf

1

2 10)2cos(10)(   

Step 2: initialize the optimization parameters 
 Population size  = 10 
 Number of design variables  = 2  
 Limits of design variables =  -5.12≤x,1,2≤5.12  

Step 2: initialize the optimization parameters 
 Population size  = 10 
 Number of design variables  = 2  
 Number of teacher = 2 
 Limits of design variables =  -5.12≤x,1,2≤5.12 

Step 3: Initialize the population by random generation and evaluate them  

 

Step 3: Initialize the population by random generation and evaluate them 

       
Step 4: Teacher Phase 
 
Calculate the mean of the population column-wise which will give the mean for the particular subject as, 
                                                 x1          x2        
                                     Mj = [-0.49453, 0.37137] 
The best solution will act as the teacher for that iteration 
                                      Xteacher = Xf(X)minimum 
                                                 = [-1.1479 -1.1465] 

The teacher will try to shift the mean from Mj towards X,teacher, and the difference between the two means is expressed as 
                                  Difference_Meanj = ri (X

b
j -  TFMj)   

Value of TF is randomly selected as 1 or 2. The obtained difference is added to the current solution to update its values. For 
example, taking TF =2 leads to the following. 
                                    
                               X’k

j = Xk
j  + Difference_Meanj,

   

Step 4: Selection of teachers and distribution of learners to teachers 

Rank the evaluated solutions in ascending order and select the best solution as chief teacher (T1). In the present case,  [ -1.1479 -
1.1465] with objective function value [10.5354] acts as the chief teacher. 
Based on the chief teacher, the other teacher is selected as, 
T2 = 10.5354+ (rand*10.5354) which gives T2= 21.57. So, select the solution whose value is nearer to the calculated value of T2. 
Hence T2=22.6028.  
Now the distribution of the learners to the teachers gives the following two groups:                         

 
 
Step 5: Teacher Phase with tutorial training 
 
For each group, calculate the mean of the population column-wise, which will give the mean for the particular subject as, 
                        Group 1                                                 Group 2 
                      x1          x2                                              x1          x2        
            Mj = [-0.0025, 1.0979]                          Mj = [1.2324, -0.7185] 

The best solution will act as a teacher for the respective group. 
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Xnew is accepted if it gives the better function value. 

                                     
                                                                       

                                Group 1                                              Group 2 
                   T1 = [ -1.1479 -1.1465]                        T2 = [ -1.9397 -2.742] 

In each group, the teacher will try to shift the mean from Mj towards T1 or T2 and the difference between the two means is 
expressed as, 
                                  Difference_Meanj = ri (X

b
j -  TFMj) 

Where TF is the adaptive teaching factor and is calculated by using equation (5). The obtained difference is added to the current 
solution along with the tutorial training to update its values as,                                     

                               X’k
j = ( Xk

j  + Difference_Meanj) + rand * (Xh
j - X

k
j), 

 

 
 

Xnew is accepted if it gives the better function value. 
 

 
 
Step 5: Learner Phase 
 
In this phase, the learners increase their knowledge with the help of their mutual interaction. The related mathematical 
expression is explained under sub-section 2.2 . Obtain Xnew after the learner phase. 

                                
   This completes one iteration and the population goes to the next iteration. 

 
Step 6: Learner Phase with self-motivated learning 
 
In this phase, learners increase their knowledge with the help of their mutual interaction along with the self motivation. The 
related mathematical expression is explained under sub-section 3.4. Obtain Xnew after this phase. 

 
 
 
This completes one iteration. Now both the groups are to be merged and this population goes to the next iteration. 

 


