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 Co-op advertising is an interactive relationship between manufacturer and retailer(s) supply chain 
and makes up the majority of marketing budget in many product lines for manufacturers and 
retailers. This paper considers pricing and co-op advertising decisions in two-stage supply chain 
and develops a monopolistic retailer and duopolistic retailer's model. In these models, the 
manufacturer and the retailers play the Nash, Manufacturer-Stackelberg and cooperative game to 
make optimal pricing and co-op advertising decisions. A bargaining model is utilized for 
determine the best pricing and co-op advertising scheme for achieving full coordination in the 
supply chain. 
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1. Introduction  
 

 
Co-op advertising is, practically, an interactive relationship between a manufacturer and a retailer in 
which the manufacturer pays a portion of the retailer’s local advertising costs; the fraction shared by 
the manufacturer is commonly referred to as the manufacturer’s participation rate. Cooperative 
advertising is a coordination mechanism for advertising activities in a supply chain. In cooperative 
supply chain, the manufacturer may contributes part of advertising expenditures which are paid by 
retailers. Berger (1972) was the first to analyze co-op advertising issues between a manufacturer and a 
retailer mathematically. Berger’s model was then extended by researchers in a variety of ways under 
different co-op advertising settings. The main reason for the manufacturer to use co-op advertising is to 
strengthen the image of the brand and to motivate immediate sales at the retail level. The 
manufacturer's national advertising is intended to influence potential consumers to consider its brand 
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and to help develop brand knowledge and preference. Retailer's local advertising is to stimulate 
consumer's buying behavior. Thus, Co-op advertising plays a significant role in the manufacturer–
retailer channel relationship. Brennan (1988) reports that in the personal computer industry; IBM offers 
a 50–50 split of advertising costs with retailers while Apple Computer pays 75% of the media costs.  

Several studies on advertising efforts and pricing strategy have focused on distribution channels formed 
by one manufacturer and one retailer. Karray and Zaccour (2006) proposed a model to study the 
decision of a private label introduction for a retailer and its effects on the manufacturer. They showed 
that the private label introduction improves both the profit of the retailer, manufacturer and of the 
channel. Yue et al. (2006) studied the coordination of cooperative advertisement in a manufacturer-
retailer supply chain when the manufacturer offers price deductions to consumers. They showed that 
for any given price deduction, the total profit for the supply chain with cooperative scheme is always 
higher than without cooperation. He et al. (2009) modeled a one manufacturer- one retailer supply 
chain as a stochastic Stackelberg differential game; they consider the demand which depend on both 
retailer's price and advertising. Also Szmerekovsky and Zhang (2009) considered pricing and 
advertising dependent demand function in a two member supply chain and obtain Manufacturer-
Stackelberg Equilibrium. Xie and Wei (2009) addressed channel coordination by seeking optimal 
cooperative advertising strategies and equilibrium pricing in a manufacturer-retailer distribution 
channel. They compared two models: a non-cooperative, leader-follower game and a cooperative game. 
They showed that cooperative model achieves better coordination by generating higher channel total 
profit than the non-cooperative one, lower retailer price to consumers, and the advertising efforts are 
higher for all channel members. They identified the feasible solutions to a bargaining problem where 
the channel members can determine how to divide the extra-profits generated by cooperation. Xie and 
neyret (2009) followed a similar approach; they compared the cooperative game optimal results and 
three of non-cooperative games including Nash game, Manufacturer-Stackelberg and Retailer-
Stackelberg. SeyedEsfahani et al. (2011) applied these four games on the model of similar to one that 
proposed by (Xie, 2009) but relax the assumption of a linear price demand function by introducing a 
new parameter v   which can cause either a concave  1v  or linear  1v  or a convex  1v  curve. Aust 

and Buscher (2012) also considered one manufacturer-one retailer supply chain; they extend the model 
of SeyedEsfahani et al. (2011) and intended to relax assumption of equal margins by substitute the 
retail price  p into wholesales price and retailers margin  wmp   to get better vision into the effect of 

market power on the distribution of channel profits. 

Some other papers have been interested by a one manufacturer and two retailer’s supply chain. Cachon 
and Lariviere (2005) studied revenue-sharing contracts in a general supply chain model with revenues 
determined by each retailer's purchase quantity and price. Yang and Zhou (2006) considered the pricing 
and quantity decisions of a two-echelon system with a manufacturer who supplies a single product to 
two competitive retailers. They analyzed the effects of the duopolistic retailer's different competitive 
behaviors (Cournot, Collusion and Stackelberg) on the optimal decisions of the manufacturer and the 
retailers. Wang et al. (2011) introduced one manufacturer-two retailer model in co-op advertising. They 
consider just advertising decision and suppose prices as constant parameters and adjust four possible 
non-cooperative games: Stackelberg-Cournot, in which the manufacturer and the duopolistic retailers 
play manufacturer-Stackelberg game, whereas the duopolistic retailers pursue Collusion behavior in the 
downstream market of the supply chain. Stackelberg-Collusion, in which the manufacturer and the 
duopolistic retailers play Vertical-Nash game and the duopolistic retailers obey Cournot behavior in the 
downstream market of the supply chain. Nash-Cournot, the manufacturer and the duopolistic retailers 
play Vertical-Nash game; the duopolistic retailers obey Cournot behavior in the downstream market of 
the supply chain. Nash-Collusion, in which the manufacturer and the duopolistic retailers play Vertical-
Nash game; the duopolistic retailers pursue Collusion behavior in the downstream market of the supply 
chain. Jorgenson and Zaccour (2013) surveyed the literature on co-op advertising in marketing 
channels. The survey is divided into two main parts. The first one deals with co-op advertising in 
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simple marketing channels having one manufacturer and one retailer only. The second one covers 
marketing channels more complex structure, having more than one player in each stage of supply chain.  

Extant studies of cooperative advertising mainly consider a single-manufacturer-single-retailer channel 
structure. This can provide limited insights, because a manufacturer, in real practices, would frequently 
deal with multiple retailers at the same time. In order to examine the impact of the retailer’s 
multiplicity on channel members’ decisions and total channel efficiencies, this paper develops a 
monopolistic retailer and duopolistic retailer's model. In these models, the manufacturer and the 
retailers play the Nash, Manufacturer-Stackelberg and cooperative game to make optimal pricing and 
co-op advertising decisions. Our research is closely related to the one of Aust and Buscher (2012). We 
made some simplifications to their model by considering that there are no production costs for 
manufacturer and suppose that  1 . However, we enrich their model by considering two competing 

retailers and introduce a new demand function for each retailer's when local advertising of each retailer 
effect reversely on the other retailer demand. This extension enables us to study the case of competition 
between the retailers. In addition, we evaluate the impact of cooperation between all members of the 
supply chain on consumer's surplus and supply chains profit. Such comparisons are interesting and 
have not been done before by previous studies on supply chain. 

The rest of the paper is organized as follows. Section 2 provides profit functions for both the 
manufacturer and monopolistic retailer based on the demand function with brand name investments and 
local advertising expenses. Section 3 obtains Nash and Stackelberg equilibrium when the manufacturer 
is the leader and the retailer is the follower. Pareto solution of channel obtains by solving cooperative 
game. Section 4 introduces the duopolistic retailer's model based on the new demand function. Section 
5 introduces algorithms to gain Nash, Manufacturer-Stackelberg and cooperative equilibriums.  Section 
6 discusses the bargaining results to determine the shares of profits between the manufacturer and 
retailer. A simple contract is also provided to assure the profit sharing. Numerical example proposed in 
section 7. At the end, Managerial implications and Conclusion remarks are given in Section 8. 
 
2. Monopoly retailer 
 

In this section we define the assumption and notation to be used in the rest of paper and then introduce 
the monopoly retailer models. Consider a single-manufacturer–single-retailer channel in which the 
manufacturer sells certain product only through the retailer, and the retailer sells only the 
manufacturer’s brand within the product class. Decision variables for the channel members are their 
advertising efforts, their prices (manufacturer’s wholesale price and retailer’s retail price) and the co-op 
advertising reimbursement policy. Denote by )(a  and )(A , respectively, the retailer’s local advertising 

level and the manufacturer’s national advertising investment. The consumer demand function depends 
on the retail price )(p  and the advertising levels )(a  and )(A  in a multiplicatively separable way like in 

Xie and Wei (2009) i.e.: ),().(),,( AahpgAapD   

Where )( pg  is linearly decreasing with respect to )(p that is )()( ppg   , and ),( Aah is the function that 

Xie and Wei (2009) proposed to model advertising effects on sales in a static way. That is

   AkakAah 21,  . Obviously, ),( Aah  is continuously differentiable, strictly increasing, and strictly 

(joint) concave with respect to ),( Aa . According to Choi (1991), we introduce the retailer margin  m  

as a new decision variable with  wpm   hence, we derive the following modified price and 

advertising dependent demand function in (1). By splitting the retail price  p  into wholesale price  w  

and retailer margin  m , the wholesale price also has an impact on the consumer demand. 

     AkakwmAamwD 21,,,    )1(  
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To implement co-op advertising, let Manufacturer shares portion ]1,0[t  of Retailers local advertising 

cost  a . Denote by )(t  the fraction of the local advertising expenditure, which is the percentage the 

manufacturer agrees to share with the retailer. Under these assumptions, the profit of the manufacturer, 
the retailer and the system can be expressed as follows, respectively: 

    AatAkakwmwM  .. 21  )2(  

     atAkakwmmR .1. 21    )3(  

   AaAkakppMRS  21.  (in which wmp  ) )4(  

In the next section, we analyzed the supply chain by game theoretic approach. 
 
3. Game theoretic analysis for monopoly model 
 

In the decentralized decision-making system, each entity of the supply chain maximizes its own profit 
without considering the profit of others. In the following, we will discuss how the manufacturer and the 
retailer determine separately their pricing and advertising policies under the three settings mentioned 
earlier, i.e. 

3.1. Nash game 
 
When the manufacturer and the retailer have the same decision power, they simultaneously and non-
cooperatively maximize their own profits. This situation is called a Nash game and the solution 
provided by this structure is called the Nash equilibrium. Definitely, the manufacturer's decision 
problem is: 

    
Amwtst

AatAkakwmwMax M





0,0,10:

... 21







 )5(  

and the retailer's decision problem is: 

      

awmst

atAkakwmmMax R





0,0:

.1.. 21







 )6(  

It is obvious that the optimal value of t is zero because of its negative coefficient in the Manufacturer 
utility function. The first-order conditions for the manufacturer and the retailer are as following: 

      ,2121 AkakwAkakwm
w
M 


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

    122 



Awmwk

A
M 


 )7(  

      ,2121 AkakmAkakwm
m

R 





     tawmmk
a
R 




121 


 )8(  

By noticing that t  should be zero under this situation and simultaneously solving Eq. (7) and Eq. (8); 
we can obtain the unique Nash equilibrium as shown in Eq. (9). (See Appendix1 for proof) 





3
m , 2

42
1

324

k
a 





3
w ,

2

42
2

324

k
A  , 0t  )9(  

3.2. Manufacturer-Stackelberg game 
 
In a manufacturer and retailer supply chain, traditionally the manufacturer holds manipulative power, 
acts as the leader of the chain, and is followed by the retailers. In a leader-follower two-stage supply 
chain, the manufacturer usually anticipates the reactions of the retailer and decides its first move, and 
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then prescribes the behavior of the retailer. In order to determine the Manufacturer-Stackelberg 
equilibrium, we first solve the retailer’s decision problem (6) to find the best responses of  am,  to any 

given values Manufacturer's strategies; we can easily solved similar to Nash-game structure by solving 
Eq. (8),  So the manufacturer's decision problem is: 

    
   

0,,10,
)1(64
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2
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Since M  is a concave function of Manufacturer’s decision variable (see Appendix A for proof), his 

reaction function can be derived from the first-order condition of Eq. (10)  
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We can easily solve the Eqs. (11-12) and find tA, according to w : 
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We failed to analytically solve the Eq. (13) for the manufacturer's wholesale price in the Stackelberg 
manufacturer case. In order to solve Eq. (13) numerically, we substitute the variable  tAam ,,, from Eq. 

(14) into Eq. (13).  To obtain the manufacturer's price w , for each group of examples we use MATLAB 
to solve these equations and obtain the Manufacturer-Stackelberg equilibrium, to check the upper and 
lower bound we use the simple algorithm, which shown in rest. (See Appendix2 for proof) 

Step 1 Find the solution of Eq. (13) and check it in its bounds, if it’s true placed in w* else 
placed upper bound in w* 

Step 2: Based on w* find the solution of A,t for Manufacturer from Eq. (14) 

Step 3: Based on Manufacturer’s decisions find the solution of Retailer from Eq. (14) 

 

3.3. Cooperative game 
 

Here we try to reach the optimal profit of the supply chain  S  by defining the members’ strategies. 

The channel’s profit is described by MRS    is that shown on problem (15) and depends only on p ,

a  and A . We hence have the following optimization problem: 

  
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AaAkakppMax S

,0,0:
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

 (15) 

This equation can easily be solved by taking the three first order equations equal to zeros. Specifically, 
we have: 
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For solving the model, we should calculate extremum nodes. Regard to the strictly concavity of 
objective function, extremum node will be the optimal one if it satisfies constraints; else, we should 
check boundary nodes to find the optimal solution. In the first model, this node (boundary node or 
extremum node) is satisfying constraints and because of the hessian matrix it is an optimal solution. 
These equations lead to the solution which shown in Eq. (17) 





2
p  , 2

42
1

64 




k
a  , 2

42
2

64 




k
A  (17) 

As can be seen the solution of optimal retail price is located within the bound. In the next section, we 
formalize our duopolistic retailer's model which allows for varying profit margins. (See Appendix 3 for 
proof).  
 
4. Duopolistic retailers model 
 
In this section we model the relationship between monopolistic manufacturer and duopolistic retailers, 
this model for first time will consider cooperative advertising issues of a two echelon supply chain in 
which a monopolistic manufacturer sells its product through duopolistic retailers. The manufacturer 
invests in the product’s national brand name advertising in order to take potential customers from the 
awareness of the product to the purchase consideration. On the other hand, the manufacturer would like 
retailers to invest in local advertising in the hope of driving potential customers further to the stage of 
desire and action. Before establishing the models, we give notations used in this model in Table 1. 
 
Table 1 
Notation for monopolistic-manufacturer duopolistic-retailers model 

 AapDi ,,  Demand function 
i  Potential demand of retailer i 

  Price sensitivity 
  Competitors prices 

1k  Effectiveness of local advertising 

2k  Effectiveness of global advertising 

3k  Effectiveness of compete retailer’s local advertising 

ip  Retail price 
im  (Retailer i Decision variable) Retailer profit margin 
ia  (Retailer i Decision variable) Local advertising expenditure 

w  (Manufacturer Decision variable) wholesale price 
A  (Manufacturer Decision variable) Global advertising expenditure 
it  (Manufacturer Decision variable) Advertising participation rate   10  it   

M  Manufacturer’s profit function  
iR  Retailer’s profit function 

S  Supply chain’s profit function 

 

We consider one manufacturer-two retailers distribution channel in which both retailers sell only the 
manufacturers brand within the product class. Assume that different retailers are geographically 
related, so there is intra-brand competition between two retailers. This assumption captures the real 
situation when a manufacturer’s marketing channels are competitive between two retailers. Decision 
variables for the manufacturer are the national advertising expenditure  A , the participation rate for 
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each retailer  2,1iti  and the whole sale price to retailers w . The decision variables for the retailers are 

their margin profits  2,1imi
; and the local advertising expenditures  2,1iai

.  

The reason why the above functions are adopted to depict the retailers’ demand is twofold. On one 
hand, this type of demand form has been successively used in one manufacturer–one-retailer channel 
by Xie and Wei (2009), Aust and Buscher (2012). On the other hand, the theory of industrial 
organization has pointed out that under the case with two competitive retailers, one party’s advertising 
effort will decrease the other’s share of the marketing demand (see Luo (2006)). We assume the 
resulting consumer demand for retailer Ri, 2,1),,(  iAapDD iii

 often called the sales response function, 

is jointly determined by both the prices and advertises. There is a substantial literature on the estimation 
of the sales response function with respect to pricing and co-op advertising investments. We extend the 
model of section 2 by considering negative effectiveness of price and advertisement of competitor 
retailer. The manufacturer uses brand advertising to increase consumer's interest and demand for the 
product. Consumer's demand iD  for the product proposed by retailer i depend on the retail prices and 

the advertising level as: 

),,().,(),,,,( AaahppgAaappD iiiiiiiiii   , 
)18( 

where ),( iii ppg 
 and ),,( Aaah ii 

 reflect the impact of the retail prices and the brand advertising 

expenditures on the demand of retailer i; By splitting the retail price  2,1 imwp ii  into wholesales 

price  w  and retailer iR  margin  im , as also shown on section 2, we generate a demand function as 

below: 
 

    iiiiii mwmwwmmg   ..),,(   (19) 

   iiii akAkakAaah   321,,  (20) 

 
So the demand function for each retailer is: 
 

     iiiiiiiiii akAkakmwmwAaawmmD   321.),,,,,(   (21) 

From notations and assumptions above, we can easily calculate the profit functions for one 
manufacturer, two retailers and the supply chain system respectively as follows. 
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5. Game theoretic analysis for duopoly model 
 

In this section, similar to section 3, three game-theoretic models based on two non-cooperative games 
including Nash and Stackelberg-manufacturer with one cooperative is discussed. Because of models 
difficulty parametric solution could not obtain, so we introduce algorithms to each game structure. 

5.1 Nash game 
 
To determine the Nash Equilibrium, manufacturer and retailer’s decision problems are solved 
separately. We apply a similar approach as proposed in section 3 but unfortunately we can’t solve this 
model parametrically, so we introduced a repetitive algorithm that applied for two models. For the 
monopolistic model; the solution obtain from new algorithm is similar to parametric solution obtained 
in section 3.1. So we can employ this algorithm for duopolistic retailer model. It is obvious that the 
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optimal value of it is zero because of its negative coefficient in the Manufacturer utility function. The 

first-order conditions for the manufacturer and the retailer are as following: 
 

    


 




2.1
321.2

i
iiiii

M akAkakwmm
w




 (25) 

    
1

2

..
.

2,1
2 












i

iiiM

A

mwmw
kw

A


 

(26) 

       2,1... 321 



 iakAkakmmwmw

m
iiiiii

i

Ri 


 
(27) 

       2,11
2

..1 






 it

a

mwmwmk

a
i

i

iiii

i

Ri 
 

(28) 

Under this situation and simultaneously solving Eqs. (25-28); we can obtain the unique Nash 
equilibrium as shown in Eq. (29) and Eq. (30). 
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We give the following solution algorithm to compute the equilibrium of the Nash game X is denoted as 
the strategy set of the supply chain member Thus MX and 

iRX are the strategy profile sets of the 

manufacturer and retailer i  strategies; respectively. We introduce the quadratic measure for the 

completion of algorithm, if  20*
SSS   is lower than    algorithm is accomplished and available 

solution is close enough to equations solution. We present the following repetitive algorithm for 
solving the non-cooperative game model: 

Step 0 Give the initial strategy profile for the manufacturer and retailers  00000 ,,, AwamX   in 

the strategy profile set X .  

Step 1: For the manufacturer based on  2,10 iX
iR  the optimal reaction is  *** , AwX M   in the 

strategy profile set *X . 

Step 2: For the retailer1 based on  *0
2 MXandX  the optimal reaction is  *

1
*
1

* ,
1

amX R   in the 

strategy profile set *X . 

Step 3: For the retailer2 based on  **
1 MXandX  the optimal reaction is  *

2
*
2

* ,
2

amX R   in the 

strategy profile set *X . 

Step 4: For the whole supply chain, find out *
S  and *

S  based on *X and 0X ; respectively. If

   
20*

SSS
 Nash equilibrium is obtain, Output the optimal results and stop. Else

*0 XX  and go to step 1.  (  is very small positive number) 

 

5.2. Manufacturer-Stackelberg game 
 

Now we confer more power to the manufacturer in order to analyze tradition supply chain where the 
manufacturer has manipulative power. Similar to section 3.2 we use Stackelberg equilibrium to solve 
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this situation. Officially, we first solve the decision problem of the retailers to identify their response 
function; retailer’s decision problem is identical to retailer’s problem in previous section, as well as 
their response function:   
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After solving Eqs. (31) and substituting them into Eq. (32) and then substituting 2,1, iam ii  into m

we can formulate the manufacturer decision problem:   
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The game is a leader-follower one: the manufacturer chooses his decision variables, and then the 
retailers choose their retail prices. This game is solved backward to get a sub game-perfect Nash 
equilibrium. Since M is a concave function of Manufacturer’s decision variable, his reaction function 

can be derived from the first-order condition of Eq. (33). 
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(34) 

Similar to section 3.2 we failed to analytically solve the Eq. (34) for the manufacturer's wholesale price 
in the Stackelberg manufacturer case. In order to solve Eqs. (34) numerically, we substitute the variable 
 ii tAam ,,, . To obtain the manufacturer's price w , and hen with substituting it into  ii tAam ,,,  for each 

group of examples we use MATLAB to solve these equations and obtain the Manufacturer-Stackelberg 
equilibrium to check the upper and lower bound we use the simple algorithm, which shown in rest. (See 
Appendix2 for proof) 

Step 1 Find the solution of 0




w
M  and check it in its bounds, if it’s true placed in w* else 

placed upper bound in w* 

Step 2: 
Based on w* find the solution of A,ti for Manufacturer from 0,0 










i

MM

tA


 

Step 3: Based on Manufacturer’s decisions find the solution of Retailers from (31,32) 

 

5.3. Cooperative game 
 

Consider now a situation where both the manufacturer and the duopolistic retailers are prepared to 
cooperate to pursue the optimal pricing and advertising policies. Therefore, unlike in the decentralized 
case, the objective in this setting is to maximize the total profit of the system. That is: 
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By solving the first order condition of s  with respect to Aap ii ,,  one has: 
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In this model, because of the problem’s structure and this model’s similarity to the first one, it can be 
predictable that, the extremum node will satisfy constraints. For assuring this, we checked several 
instances and in all of these instances this node satisfies all constraints. 

From (Eqs. (36-38)) one can easily drive: 
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But we cannot solve these equations parametric, so we use the algorithm who describe in section 5.1 to 
obtain optimal solution of the whole channel, and obtain decision variables value, and profit of supply 
chain. In next section, we determined a bargaining model to share extra-profit between the supply chain 
members. 
 
6. A bargaining model 
 
 
 

Bargaining models are usually used in literature to find a suitable division of funds between two or 
more players. The results depend both on the underlying utility functions of the players and on the 
selected bargaining model. For instance Xie and Wei (2009), SeyedEsfahani et al. (2011) used power 

function of type xxu )( to determine the player’s convenience in combination with the Nash 

bargaining model Nash (1950). We assume that all players are rational, self-interested and risk natural.  

In this paper, we will use bargaining model which similar to that Aust and Buscher (2012) presented. 
The extra-profits accrued from the cooperative game relative to the non-cooperative games can be 

expressed as )( max

2,1

max*
M

i

RSS i
  



, with *
S  being the channel profits under the cooperative game; 

max
M and max

iR respectively being the maximum profits of manufacturer and retailer i  under the non-

cooperative situations. The extra-profits S are greater than zero. Now we discuss how such extra-

profits should be jointly shared between the manufacturer and the retailer(s). In order to ensure that all 
players are willing to participate in a cooperative rather than a non-cooperative relationship, we face a 

bargaining problem over   2,10  ipMinw i
i

and 2,110  iti subject to max*
MMM   and 

2,1max*  i
iii RRR  where *

M and *
iR are manufacturer and retailer i ’s profit, respectively, under 
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the cooperative game. That is M and
iR are extra-profits that can be made by manufacturer and 

retailer i , respectively and obviously
iRMS   . We can formulate the bargaining model by 
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reflect each players bargaining power. And where M and
iR  are positive parameters reflecting the 

players risk attitude, we derive the following optimization problem: 
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Nash bargaining model leads to the following division of profits: 
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When M  and 2,1 i
iR  have been determined, the manufacturer and retailers can position 

themselves to make decision about wand 2,1iti to obtain the profits equal to *
M and 2,1* i

iR

respectively. For each w that manufacturer sales products he can determine participation rate for 
monopolistic and duopolistic retailer(s) from Eq. (44) and Eq. (45), respectively. 
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If we assume that  31
21
 RRM   and one player is more risk-seeking than other players, i.e. 

 2,1 i
iRM   he will receive the bigger fraction of the extra-profit. Now we set

constRRM 
21

 . In order to analyze the effect of the bargaining power parameters M  and
iR . As 

expected, an equal bargaining power of all players results in a homogeneous division and otherwise the 
player with the higher bargaining power will be able to get bigger fraction of profit. 
 
7. Numerical example 
 

To demonstrate the application of the proposed game models and solution algorithms we will examine 
it through numerical experiments. The experiments are implemented in the following manner. First, for 
all parameter of the models, we extract randomly a value out of its given interval, which is shown in 
Table 2. We extract randomly more than 100 groups of values of the parameters in total in the 
experiment. Then we calculate the equilibrium solution of two models in the tree settings based on this 
group of extracted values of all parameters. Our remarks below are obtained based on the 
computational results of all groups. For shortness, we pick arbitrarily six from all groups, in which the 
values of parameters are listed in Table 3 and table 5 for monopolistic retailer and duopolistic retailers' 
model; respectively to illustrate our observations intuitively.  
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Table 4 and Table 6 show Nash equilibrium, Manufacturer-Stackelberg Equilibrium and cooperative 
equilibrium solutions. 

 
Table 2  
The ranges of parameters 
Parameters 21 ,    


 1k  2k  3k  

Ranges [100000-130000] [30-45] [5-20] [0.0004-0.0005] [0.0003-0.0005] [0.0001-0.0002] 
 

7.1 monopolistic retailer model 
 

For the monopolistic retailer model we use these six groups as shown in Table 3 and obtain the solution 
as reported in Table 4. 

Table 3 
Monopoly model parameters 

 
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

  110486 231202 218043 117686 224880 110696 
  41.9926 40.8178 30.0341 40.254 35.2557 42.6021 

1k  0.0004977 0.0004871 0.000443 0.0004873 0.0004194 0.0004557 

2k  0.0003016 0.0003466 0.0003252 0.0004656 0.0003358 0.0004993 
 

Table 4 
Decisions and profits of players in monopolistic retailer model 
 

 
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

N
as

h
 

w  877 1888 2420 975 2126 866 
A  23724722 635886004 817890971 79206725 716079136 63656656 

M  152936987 3147705369 3853401810 252730478 2950096190 169706184 
m  877 1888 2420 975 2126 866 
a  64606133 1255909682 1517755420 86761876 1117008527 53024764 

R  112055577 2527681690 3153537361 245175326 2549166798 180338075 

S  264992565 5675387059 7006939171 497905804 5499262988 350044259 

M
a
n

u
fa

ct
u

re
r 

S
ta

ck
el

b
er

g
 w  990 2196 2832 1205 2533 1102 

A  26457216 725631528 937547831 94152965 831133771 76892234 
t  0.4139 0.4339 0.4380 0.4743 0.4497 0.4931 

M  170622119 3513981741 4303148454 283947539 3298636365 191818873 
m  821 1734 2214 859 1923 748 
a  144164903 2788350212 3365600623 189794575 2467502594 114926639 

R  128372208 2724670635 3357357397 234060892 2619728737 162688610 

S  298994327 6238652375 7660505851 518008431 5918365102 354507483 

C
o
o

p
er

a
ti

v
e p  1316 2832 3630 1462 3189 1299 

A  120106407 3219172896 4140573039 400984045 3625150623 322261820 
a  327068546 6358042767 7683636812 439231999 5654855668 268437867 

S  447174953 9577215662 11824209852 840216044 9280006292 590699687 

 

7.2 Dupolistic retailers models 
 

For the duopolistic retailers model we use these six groups as shown in Table 5 and obtain the solution 
as reported in Table 6. 
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Table 5 
Six groups of values of parameters considered 

 
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

1  110486 124312 109599 117686 112440 110696 

2  111307 106890 108444 119077 112440 110696 
  41.9926 40.8178 30.0341 40.254 35.2557 42.6021 
  11.7373 7.3624 13.5588 8.8159 12.5295 17.4609 

1k  0.0004977 0.0004871 0.000443 0.0004873 0.0004194 0.0004557 

2k  0.0003016 0.0003466 0.0003252 0.0004656 0.0003358 0.0004993 

3k  0.0001253 0.0001341 0.0001971 0.0001598 0.0001249 0.0001538 

 
 
Table 6 
Three games of values of parameters considered 

  
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 

N
a

sh
 

w  1347 1235 2597 1354 1871 1700 

A  274377278 305398551 1304712274 720212541 713418073 1315788040 

M  677202181 674635938 2042041193 1134389088 1217143566 1744297032 

1m  966 1098 1432 1050 1206 1003 

1a  95258260 143610915 186169606 116783675 115604449 95426910 

1R  242377252 388256194 747700778 592102451 506625855 807512274 

2m  975 902 1416 1065 1206 1003 

2a  98685136 65471252 178145651 123869593 115604449 95426910 

2R  249297386 213314295 723911774 615754046 506625855 807512274 

S  1168876818 1276206428 3513653745 2342245585 2230395277 3359321581 

M
an

u
fa

ct
u

re
r 

S
ta

ck
el

b
er

g
 

w  1524 1477 2979 1711 2214 2075 

A  299587819 346783927 1406126430 834754941 788662416 1454202890 

1t  0.4362 0.3991 0.4405 0.4372 0.4874 0.5219 

2t  0.4350 0.4197 0.4375 0.4370 0.4874 0.5219 

M  742876086 724591264 2182765553 1234834417 1337067453 1913308359 

1m  892 989 1297 893 1072 864 

1a  217902110 261681889 399819818 193186032 274202519 229552734 

1R  234519755 357180382 646367325 466837141 438595731 641050363 

2m  901 793 1281 909 1072 864 

2a  225386159 116125450 376819305 206893443 274202519 229552734 

2R  242255213 177398350 618780536 489758117 438595731 641050363 

S  1219651054 1259169996 3447913413 2191429675 2214258915 3195409084 

C
oo

p
er

a
ti

v
e 

A  939316832 1205540338 3435784994 2692434037 2181100000 3701338933 

1p  1832 1788 3269 1878 2474 2201 

1a  349353374 482642368 578377992 319411875 419390000 338299698 

2p  1833 1687 3358 1887 2474 2201 

2a  366795308 179369590 410981394 346929879 419390000 338300240 

S  1655465513 1867552296 4425144380 3358775791 3019900000 4377938871 
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8. Managerial implications and Conclusion 
 

This paper has investigated optimal co-op advertising and pricing decisions in a manufacturer–retailer 
supply chain with consumer demand, which depends both on the retail price and on the channel 
members’ advertising efforts. We assumed a model recently published by Aust and Buscher (2012) and 
considered duopolistic retailers in co-op advertising and pricing decisions; we have introduced a new 
demand function of consumers for each retailer that depends on both co-op advertising and pricing of 
retailers and manufacturer.  

Furthermore, a co-op advertising program is considered, where the manufacturer can accept a certain 
fraction of the retailer’s local advertising costs. By means of game theory, we have analyzed three 
different relationships within the supply chain: A non-cooperative behavior with equal distribution of 
power, two situations in which one player dominates his counterpart and cooperation between 
manufacturer and retailers. 

The main contribution of our research is that extends the one manufacturer-one retailer pricing and co-
op advertising model to the situation with a monopolistic manufacturer and duopolistic retailers. We 
introduced a promoted demand function of each retailer and investigate the impact of two non-
cooperative game structures, i.e. Nash game and Manufacturer-Stackelberg game. We develop a 
cooperative model and show that joint decision can improve the performance of the supply chain. 
Finally we develop the bargaining game model and shows that how joint extra-profit can be split 
between players by determine variables 2,1itandw i . 

Based on the analysis of the model and results of numerical experiments, we obtain the following 
insights: 1. Cooperative structure improve the performance of the supply chain and they can gain more 
profits than non-cooperative situations in both models.  2. In monopolistic model, Manufacturer-
Stackelberg structure gain more profit for both manufacturer and retailer, but in duopolistic retailers 
model the Nash game and Manufacturer-Stackelberg game solution are close and in some examples 
Nash game can gain more profit for the supply chain 3. The highest local advertising expenditure is 
made in the cooperative and the lowest occurs in the Nash game. When the manufacturer is leader the 
retailer’s spends more on advertising, because the manufacturer participates in local advertising cost

 2,10  iti  4. We find the coordination mechanism relies on both wholesale price and manufacturer 

participation rate  2,1, itw i where the manufacturer and retailers can bargain to divide the extra-profit 

accrued from coordination. 

There are many research issues that remain to be examined inside the framework of co-op advertising 
models. First, while our model focused on a single-product chain, the same approach can be used to 
analyze the multi-product chain by replacement property. Second, we assume a deterministic demand 
function for each retailer; however with the probabilistic demand in the real word, thus a more 
interesting issue of future research is suppose a probabilistic demand functions. Third, the forming of 
coalitions during bargaining seems to be additional motivating field of research. 
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Appendix 

M  is a strictly Concave function if, for each pair of points on the graph of M the line segment joining 

these two points lies entirely below the graph of M  except at the endpoints of the line segment.  In 

mathematical terminology, M  is concave if and only if its 3×3 Hessian matrix is Negative definite for 

all possible values of ),,( twA . Hessian matrix is checked for several instances. Since, Hessian matrix is 

negative define for all instances, so the objective function is concave. The other way to conclude the 
concavity of the objective function, that we use for ensure the concavity of M , is to plot these 

functions with optional values. 

Proof 1: To proof the optimality of these solutions, we calculate the Hessian matrix 
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which is always positive. Therefore, the principle minors of 
MNH have alternating algebraic signs, 

which means that 
MNH is negative definite. Hence, M  is concave at this specific point, which is 

therefore a local maximum. As it is the only maximum candidate, we can conclude that it is the 
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globally profit maximizing solution of the manufacturer’s problem (5). To proof the optimality of 
Retailers solutions, we have to calculate the Hessian matrix 
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which is always positive. Therefore, the principle minors of 
RNH have alternating algebraic signs at the 

solution (9), which means that 
RNH is negative definite. Hence, R  is concave at this specific point, 

which is therefore a local maximum. As it is the only maximum candidate, we can conclude that it is 
the globally profit maximizing solution of the retailer’s problem 6. This completes proof of Theorem 1. 
 
Proof 2:  To proof the optimality of these solutions, we have to calculate the Hessian matrix 
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Due to the complexness of the expressions stated above, we are not able to prove the optimality of our 
solutions analytically. Instead of that, we computed a numerical study with 10000 randomly generated 
sets of parameters with 150000,,70000 21   , 6015   ,   ,30min1  , 0008.0,0001.0 21  kk ,

 213 ,,0003.0min00005.0 kkk   Thereby we could prove numerically, that the principal minors of 

Hessian matrix 
MSH  always have alternating algebraic signs which means that 

MSH  is negative definite 

at this specific point. Hence, M is concave in w,t and A at this point, which is therefore a local 

maximum of the manufacturer’s decision problem. 
 
As these solutions are the only roots of the first order partial derivatives Eqs. (11-13) within the 
considered domain of definition, there is no other extremum candidate and the function cannot change 
its slope from negative to positive. Therefore, the local optimum stated above also represents the global 
optimum of M . 

 
Proof 3: To proof optimality of our solution, we have to calculate the Hessian matrix 
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The first principle minor of CH  at the solution Eq. (17) is: 
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which is always negative. The second principle minor of CH  at the solution Eq. (17) is: 
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which is always negative. Therefore, the principle minors of CH  have alternating algebraic signs at the 

solution described by Eq. (17), which means that CH is negative definite. Hence, S is concave at this 

specific point, which is therefore a local maximum. As it is the only maximum candidate, we can 
conclude that it is the globally profit maximizing solution. 
 
  
 


