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 In this paper, we explored an economic production quantity model (EPQ) model for finite 
production rate and deteriorating items with time-dependent trapezoidal demand. The objective of 
the model under study is to determine the optimal production run-time as well as the number of 
production cycle in order to maximize the profit. Numerical example is also given to illustrate the 
model and sensitivity analyses regarding various parameters are performed to study their effects 
on the optimal policy. 
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1. Introduction  
 

Most of the researchers considered the time varying demand as an increasing or decreasing function of 
time, while in practice, this assumption is not suitable for all products. The demand shows two-fold 
ramp type pattern for items like fashion apparel, particular kind of eatables and festival accessories 
have limited sales period and become obsolete at the end of period. This kind of pattern has been 
termed as ‘‘trapezoidal ramp-type’’. In the beginning of the season, the demand increases up to a 
certain time point and stabilizes afterwards but starts declining towards end the of the season. The 
economic order quantity (EOQ) model with ramp-type demand rate was initially proposed by Hill 
(1995). Since then several researchers and practitioners have paid significant consideration to study 
ramp-type demand. Mandal and Pal (1998) developed the EOQ model with ramp-type demand for 
exponentially deteriorating items with shortages. Wu and Ouyang (2000) investigated two inventory 
models assuming different replenishment policies: one started with shortage and another had shortage 
after inventory consumption. After that, Wu (2001) developed a model for deteriorating items with 
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ramp-type demand and partial backlogging. Giri et al. (2003) extended ramp-type demand inventory 
model with more general Weibull distribution deterioration rate. Manna and Chaudhuri (2006) studied 
an EPQ model with ramp-type two time periods categorized demand pattern assuming demand 
dependent production. Deng et al. (2007) focussed on the doubtful results found by Mandal and Pal 
(1998) and Wu and Ouyang (2000) and obtained a more consistent solution. Panda et al. (2008, 2009) 
extended Giri et al.’s (2003) one-fold demand model to two-fold demand. Model studied by Hill (1995) 
was extended to trapezoidal-type demand rate by Cheng and Wang (2009). Panda et al. (2009) worked 
on a single-item economic production quantity (EPQ) model with quadratic ramp-type demand 
function in order to determine the optimal production stopping time. Model of Deng et al. (2007) was 
extended to more general ramp-type demand rate, Weibull distribution deterioration rate, and general 
partial backlogging rate by Skouri et al. (2009). Hung (2011) extended the model of Skouri et al. 
(2009) by applying arbitrary component in ramp-type demand pattern.  Shah and Shah (2012) studied a 
joint vendor-buyer strategy for trapezoidal demand which is beneficial to both the players in the supply 
chain.  
 
In most of the articles mentioned above, the constant rate of production is considered. But constant 
production rate is not always realistic. For example, when production model is based on time varying 
demand, the assumption of constant production rate is not suitable. Such scenarios results into 
application of variable production rate. The study of the model with changeable machine production 
rate was initiated by Schweitzer and Seidmann (1991). Khouja (1995) established a production model 
with unit production cost depending on used raw materials, engaged labor and tool wear and tear cost. 
Bhandari and Sharma (1999) measured the marketing cost in addition to generating a generalized cost 
function. The related studies done by Sana et al. (2007) and Sana (2010) may be noted. Dem and Singh 
(2012) worked on the EPQ model for damageable items with multivariate demand and volume 
flexibility. Dem and Singh (2013) developed an EPQ model with volume flexibility under imperfect 
production process. Goyal et al. (2013) developed a production model with ramp type demand and 
volume flexibility.  
 
In the present paper, we develop an EPQ model for deteriorating items trapezoidal type demand rate 
with volume flexibility. We also assume that the inventory system includes several replenishments and 
all the ordering cycles are of fixed length. Such type of demand pattern is generally seen in the case of 
any fad or seasonal goods coming to market. The demand rate for such items increases with the time up 
to certain time and then stabilizes but in final phase, the demand rate decreases to a constant or zero, 
and then the next replenishment cycle starts. We observed that such type of demand rate is very 
reasonable and proposed a practical inventory replenishment policy for such type of inventory model. 
The remaining paper is structured as follows. In Section 2, we explain the assumptions and notation 
used throughout this paper. In Section 3, we formulate the mathematical model and the necessary 
conditions to find an optimal solution. In Section 4, we provide numerical example for each case to 
illustrate the model. Finally, the study is concluded in section 5. 
  
2. Assumptions and Notations 
 
2.1 Assumptions 
 

1. The inventory involves single item. 
2. Demand rate is dependent on time given by 

 
1

1

2

,                  ( 1) ( 1 )

( 1 ) ,  ( 1 ) ( 1 )

,                  ( 1 )

a b t i T t i u T

D t a b i u T i u T t i v T

a b t i v T t iT

     


         
     

      

where 1 2, , 0a b b  , i=1,2,…, n , u and v are time parameters. 
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       The function defined above is known as trapezoidal function. 

3. Production rate is k times demand rate, where k >1. 
4. The unit production cost is dependent on production. 
5. Time horizon is finite. 
6. Deterioration rate is a constant. 
7. The deterioration occurs when the item is effectively in stock.  

2.2 Notations 

D(t) Demand rate  
P(D(t)) Production rate, P(D(t))=kD(t)   
θ Deterioration rate  
C1 Set up cost  
C2 Holding cost per unit per unit time  
So Selling price per unit 

C(P) Production cost per unit given by  
 

G
C P R

kD t
   

R Material cost per unit  
G Factor associated with costs like labor and energy costs 
I(t) Inventory level at any time t 
T Constant scheduling period per cycle 
ti-1+u Time up to which demand stabilizes and equals to (i-1+u)T 
ti-1+v Time till the demand remains stable and equals to (i-1+v)T 
ti-1+r Production run time and equals to (i-1+r)T 
n Total number of cycles 
H length of planning horizon and equals to nT 
 
3 Model Formulation 

 
We have considered the following different cases based on the occurrence of time points of demand in 
different phases. 
  
3.1 Case (I) When ( 1 ) ( 1 )i v T i r T      

 
Fig.1. Graphical representation of the system for Case I 

The differential equations governing the system are given as follows: 
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1 12

( )
1 { ( 1 ) } ( )

dI t
k a b i u T I t

dt
      , ( 1 ) ( 1 )i u T t i v T       

(2) 

 13
2 13

( )
1 ( ) ( )

dI t
k a b t I t

dt
    , ( 1 ) ( 1 )i v T t i r T       

(3) 

2
2 2

( )
( ) ( )

dI t
a b t I t

dt
    ,  ( 1 )i r T t iT     

(4) 

Solving the Eq. (1) to Eq. (4) using the boundary conditions,  11 ( 1) 0I i T  ,  

   12 11( 1 ) ( 1 )I i u T I i u T     ,    13 12( 1 ) ( 1 )I i v T I i v T     ,  2 0I iT   

   2 ( 1)
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1 1 1 1
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Holding cost for ith cycle is 

        ( 1 ) ( 1 ) ( 1 )

1 2 11 12 13 2
( 1) ( 1 ) ( 1 ) ( 1 )

i u T i v T i r T iT

i
i T i u T i v T i r T

HC C I t dt I t dt I t dt I t dt
     

      
        

2
1 1 1 1 1 1

2 2 3 2 2 3 2 3 2 2

2 2 2
1 1 1 1 1 1 1 1

3 2 2 2 2 2

2 2 2
1 1 1 1 1

2 2

(

2

2

uT uTuT uT

uT

uT uT

b Tb b k b e T b u Tb ea ak ae ake
C

b ke T b u Tb k Tb i Tb u Tb ki Tb ku T b kuTau Taku

T b iu Tb ke Tb ie T b ku Tb ki

  



 

        

        

  

  



 

         

         

    
2

1

2

2 2 2 2 2
( )1 1 1 1 1 1 1

3 3 3

2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

1 1 1 1 1

2 3 2 2 3 2

( )

uT

u v T

e T b kiu

b b k T b u T b v T b u b T b kuTau Tav Taku Takv
e

T b kv T b iu T b iv T b uv T b ku T b kuv T b kiu T b kiv

b Tb b k b Tb k Ta ak







         

       

     







          

       


        

 

 

1 1

2 2

2 2
1 1 2 2 2 2 1

3 2 2 3 2 3 2 2

2 2 2 2
1 2 2 1 2 1 2 2 1

3 2 2 2 2 2 2

1

( )

2 2

uT vT

rT vT rT vT

rT vT

b i Tb ki
e e

b Tb Tb b k T b r T b v Tba b ak
e e e e

b k T b r T b v Tb k Tb k Tb i Tb i Tb r Tb uTar Tav
e e

b

 

   

 

 

        

         



 

   

 

 
  

 

          

           

 ( ) ( ) ( ) ( )2 1 1 2 2 1 1

3 3 3 2 2 2 2 2

2 2 2 2
( ) ( ) ( )1 1 1 2 2 2 2 1 1

3 3 3 2 2

2

2

u r T v r T u v T v r T

u r T v r T u v T rT rT

b b Tb ki Tb ki Tb kr Tb ku TbTakr Takv
e e e e

b k b k b k T b kr T b ir T b kv T b iv Tb k Tb i
e e e e e

Tb k
e

   

    

       

       



   

    



        

        


2 2 2 2

( ) ( )1 2 2 1 2 1 2

2 2 2 2 2

2 2
( ) ( ) ( ) ( ) ( )1 2 1 2 2 2 1

2 2 2 2 2

( )1

2

2 2
vT vT rT vT v r T v r T

v r T v r T v r T v r T v r T

v r

Tb k T b kr T b kv Tb ki Tb ki Tb k Tb k
e e e e e

Tb i Tb i Tb u Tb v T b ikr T b kiv Tb ki
e e e e e

Tb ku
e

     

    



     

     



    

    



      

      


2 2

( ) (1 )2 2 2 2 2 2

2 2 2 3

2 2 2 2
(1 ) (1 )2 2 2 2 2 2

2 2 2 3 2
)

2 2

T v r T r T

r T r T

Tb kv Tb r T b ir Tb i T b ki b Ta
e e

Tb T b T b r T b r b Tb ia a Tar
e e

 

 

     

       

 

 

      

        

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(9) 



H. Dem et al.  / International Journal of Industrial Engineering Computations 5 (2014) 
 

131  

 
Production cost for ith cycle is 
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Sales revenue for ith cycle is 
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Total profit per unit time of the system is 
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3.2 Case (II) When ( 1 ) ( 1 )i r T i v T iT       

 
Fig. 2. Graphical representation of the system for Case II 

 
The differential equations governing the system are given as follows: 
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22
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Solving the Eqs. (13-16) using the boundary conditions,  11 ( 1) 0I i T  ,  
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Production cost for ith cycle is 
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3.3 Case (III) When ( 1 ) ( 1 )i r T i u T iT       

 

 
                           Fig. 3. Graphical representation of the system for Case III 
 
The differential equations governing the system are given as follows: 
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Production cost for ith cycle is 
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Sales revenue for ith cycle is 
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Total profit per unit time of the system is 
 

 3 3 3 3 1

1
i i i

i

TP SR PC HC C
H

     
 

(36) 

Our objective is to find maximum total profit per unit time in each case, i.e.,  

 1

1
max ( , )m im im im

i

TP n r SR PC HC C
H

    , where n is a positive integer and 0<r<1, m=1, 2, 3 

4 Solution Procedure 
 
The solution procedure is as follows:  
 
Step 1. Let n be a fixed positive integer.  
 
Step 2. Equate the first derivatives of TPm in Eq. (12), Eq. (24) and Eq. (36), denoted by TPm(r│n) with 
respect to r to zero and solve all the three equations for r.  

Step 3. Check for concavity. The sufficient condition for maximum TPm(r│n) is 
 2

2
0

md TP r n

dr


 .  

Step 4. If 0 1r  , calculate TPm from Eq. (12), Eq. (24) and Eq. (36). 
Step 5. Repeat Step 2 to Step 4 by assuming different positive integer values of n. The optimal 
solution,(n*, r) must satisfy the following condition: 

( *-1,  ) ( *,  )  ( * 1,  )m m mTP n r TP n r TP n r    

 
5 Numerical Example and Sensitivity Analysis 
 
We determine the optimal value of decision variables and net profit using solution procedure defined in 
last section. We use the following values of the parameters in appropriate units: So=10, T=6, k=1.5, 
C1=100, C2=1, a= 10, b1= b2=0.1, θ=0.01. The optimal net profit TPm

*, optimal number of cycles n*and 
optimal time parameter for production run time r* for the three cases are provided in Table 1. 
 
Table 1   
Summary of results 

Case n* r* TPm
* 

I 6 0.1065 1539 
II 6 0.9585 688.90 
III 6 0.9585 718.10 

 
 

  
Fig. 4.  Net profit in Case (I) Fig. 5.  Net profit in Case (II) 
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Fig. 6.  Net profit in Case (III) 

Keeping in view the above experimental results, sensitivity analysis is performed for Case I in which 
the maximum profit is obtained. It is carried out by changing the parameters by 50% and 25%, taking 
one parameter at a time and keeping all other parameters fixed. Change in percentage in total cost of 
the system, denoted by PCT, corresponding to various parameters is calculated and specified in last 
column of each of the tables given below. 
 
Table 2   
Sensitivity analyses 

 
The effect of various parameters on total profit is listed in tabular form (see, Table 2).The observations 
are as follows: 
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2
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4
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P

Parameter Value TPm Parameter Value TPm 
 

So 
5 -298.40  

a 
5 1212 

7.5 620.20 7.5 1379 
12.5 2457 12.5 1705 
15 3385 15 1872 

 
b1 

0.05 1481  
k 

0.75 1880 
0.075 1526 1.125 1713 
0.125 1568 1.875 1368 
0.15 1596 2.25 1197 

 
θ 

0.005 1545  
u 

0.15 1532 
0.0075 1549 0.225 1537 
0.0125 1536 0.375 1547 
0.015 1533 0.45 1551 

 
v 

0.3 1400  
R 

2.5 1939 
0.45 1474 3.75 1740 
0.75 1625 6.25 1337 
0.9 1722 7.5 1152 

 
G 

9 1573 
13.5 1556 
22.5 1528 
27 1518 
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1. Total profit increases with the increasing selling price So, which is a quite expected 
phenomenon. 

2. Total profit increases with the increasing initial parameter ‘a’ and time sensitive parameter 
‘b1’of demand. High demand of manufactured units motivates more production which in turn 
becomes a significant reason to earn extra profit. 

3. As the coefficient related to production rate ‘k’ increases, total profit decreases. For higher 
values of ‘k’, quantity of production becomes more in proportion to the demand. 

4. Total profit decreases with increasing value of the deterioration rate ‘θ’. Because the greater 
amount of deteriorated units results into loss of sales that could have been contributed to profit. 

5. As the parameters ‘u’ and ‘v’ increase, total profit increases. Since, ‘u’ contributes to the point 
up to which demand stabilizes and ‘v’ contributes to the point till the demand remains stable, 
therefore, their increment results into greater demand which causes greater profit. 

6. The value of profit function decreases with the increasing value of parameters ‘R’ and ‘G’ and 
‘J’. It is suitable that the unit production cost increases with the increasing material cost, labor 
cost and tool/die cost. If unit production cost becomes more than selling price, the total profit 
turns out to be negative. This is a disagreeable condition for any business policy whereas less 
unit production cost is always acceptable. 
 

6. Conclusion 
 
In this paper, particular items following trapezoidal ramp type demand has been considered. Three 
cases according to the demand has been focused and for each case, a profit function is formulated, 
which is to be maximized. The condition to find the optimal solution is provided and using numerical 
experiment, we observe that the profit is maximum when the demand starts declining before the 
production stops. Sensitivity analysis is performed corresponding to various parameters and the results 
show that our mathematical model is more realistic. The proposed model can be further enriched in 
several ways like stochastic or fuzzy modelling.   
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