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 Flow-shop problems, as a typical manufacturing challenge, have become an interesting area of 
research. The primary concern is that the solution space is huge and, therefore, the set of feasible 
solutions cannot be enumerated one by one. In this paper, we present an efficient solution 
strategy based on a genetic algorithm (GA) to minimize the makespan, total waiting time and 
total tardiness in a flow shop consisting of n jobs and m machines. The primary objective is to 
minimize the job waiting time before performing the related operations. This is a major concern 
for some industries such as food and chemical for planning and production scheduling. In these 
industries, there is a probability of the decay and deterioration of the products prior to 
accomplishment of operations in workstation, due to the increase in the waiting time. We develop 
a model for a flowshop scheduling problem, which uses the planner-specified weights for 
handling a multi-objective optimization problem. These weights represent the priority of planning 
objectives given by managers. The results of the proposed GA and classic GA are analyzed by 
the analysis of variance (ANOVA) method and the results are discussed.  
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1. Introduction  
 
The optimal solution to any flow-shop scheduling problem with n jobs and m machines determines the 
sequence of jobs on each machine with minimum makespan where each job is processed on different 
machines (1, 2, …, m) in an especial order. The number of possible schedules is (n!)m and the general 
problem is NP-hard (Fan & Winley, 2008). For this general problem, it is known that there is an 
optimal solution, in which the sequence of jobs is the same on the first two machines and the sequence 
of jobs is the same on the last two machines. Early research on flow shop problems was mainly based 
on the Johnson’s theorem, which gives an appropriate procedure to locate an optimal solution with two 
or three machines with certain characteristics (Johnson, 1954; Kamburowski, 1997). The first proposed 
meta-heuristics for the permutation flow shop scheduling problem (PFSP) were the simulated annealing 
algorithms in Osman & Potts (1989) and Ogbu & Smith (1990). Espinouse et al. (1999) considered a 
two-machine no-wait flow shop scheduling problem by minimizing the makespan where the machine 



  

       

346

availability was limited. Bertolissi (2000) presented a heuristic method for a no-wait flowshop 
scheduling problem, where the primary criterion was minimization of total flow time. Fink & Vob 
(2003) considered the application of different meta-heuristics including neighborhood search, simulated 
annealing and tabu search to solve a continuous flow-shop problem. They further examined the trade-
offs between the running time and the solution quality as well as the knowledge and effort required to 
apply and calibrate their proposed method. Thornton and Hunsucker (2004) developed a new heuristic 
method, which minimizes the makespan in a flow shop scheduling problem with multiple processors 
and no intermediate storage. Bouquard et al. (2005) provided a complexity classification for different 
versions of a two-machine permutation flowshop scheduling problem for makespan minimization, in 
which some jobs were processed with no-wait in process. 

Spieksma and Woeginger (2005) investigated a no-wait flow-shop paradox and demonstrated that 
increasing the speed of some machines in a no-wait flow-shop instance may increase makespan, 
significantly. Grabowski and Pempera (2005) investigated various local search techniques for a no-wait 
flowshop problem to minimize makespan. Kumar et al. (2006) proposed a Psycho-Clonal algorithm-
based technique to solve a no-wait flowshop scheduling problem to minimize total flow times. Wang 
(2007) considered general, no-wait, and no-idle flowshop scheduling problems with deteriorating jobs. 
Oulamara (2007) presented a method for handling a task-scheduling problem in a no-wait flowshop 
with two batching machines by minimizing the makespan as primary objective. Su and Lee (2008) 
studied a two-machine flow-shop no-wait scheduling problem with a single server, in which the 
performance measure was the total completion time and presented both heuristic and branch-and bound 
(B/B) algorithms to tackle the given problem. 
 
Additionally, some researchers have addressed multi-objective flowshop scheduling problems. Murata 
et al. (1996) considered a flowshop problem under two conditions including minimization of makespan 
and total tardiness penalties and minimization of makespan, total tardiness penalties and total flow 
times and used a multi-objective genetic algorithm to solve the resulted problems. Ponnambalam et al. 
(2004) proposed a multi-objective TSP-GA algorithm for a flow-shop scheduling problem where a 
weighted sum of multiple objectives, i.e. minimizing makespan, mean flow times and machine idle 
times, was considered. Toktas et al. (2004) considered a two-machine flowshop scheduling problem to 
minimize the makespan and maximize earliness. Ravindran et al. (2005) proposed three heuristic 
algorithms to solve a bi-objective flowshop scheduling problem where they minimized makespan and 
total flow times. Rahimi-Vahed and Mirghorbani (2007) devised a multi-objective particle swarm 
optimization for a bi-criteria flowshop scheduling problem to minimize the weighted mean completion 
time and weighted mean tardiness. They demonstrated that their method could outperform a multi-
objective genetic algorithm or a set of representative problems, empirically. Tavakkoli-Moghaddam et 
al. (2007) proposed a multi-objective immune algorithm for a flowshop scheduling and they compared 
this algorithm with a conventional multi-objective genetic algorithm and introduced a new approach for 
solving the given problem. In this paper, planning managers were requested to prioritize the objectives 
of the scheduling then apply a new genetic algorithm (NGA) for solving the presented model.  
 
The high speed of the algorithm and quick convergence of solutions make this approach suitable for 
large-scale scheduling problems with relatively large numbers of jobs. This paper is organized as 
follows. In Section 2, we present the problem definition and formulation. In Section 3, a solution 
procedure is introduced. We develop an algorithm, namely NGA to solve the problem. To examine the 
performance of the proposed NGA, a number of examples are presented and solved in Section 4. The 
related results of this algorithm are analyzed by the analysis of variance (ANOVA) method in Section 
5. Finally, the remarking conclusion is given in Section 6. 
 
2. Flow-shop scheduling problem  
 
The flowshop scheduling problem consists of scheduling n jobs with given the processing times on m 
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machines and n jobs are processed on m machines with the same order, each job has to pass through 
each machine once and a job can be processed, , at the most, on one machine at a time. Each machine 
can perform only one interrupted job at a time. The objective of the problem is to detect an appropriate 
schedule to minimize the makespan and the total queue, simultaneously.  
 
The primary objective is to minimize the job waiting time (i.e., waiting time length) before 
accomplishing the related operations. In some industries such as food and chemical, this goal plays 
essential role in planning and production scheduling, since there is a probability of the decay and 
deterioration of the products prior to accomplishment of operations in the workstation, when waiting 
time increases. In this paper, we present a new multi-objectives mathematical model for the flowshop 
scheduling problem. This scheduling problem is generally modeled based on the following 
assumptions, 
 

 The processing times or operations on all machines are known and fixed.  
 Setup times are included in the processing times and they are independent of the job position in 

the sequence of jobs. 
 At a time, every job is processed on only one machine, and every machine processes only one 

job. 
 The job operations on the machines may not be preempted. 

 
We formulate the multi-objective flowshop scheduling problem using the following notations: 
 
n total number of jobs to be scheduled, 
m total number of machines in the process, 
t(i, j) processing time for job i on machine j (i=1,2,…,n) and (j=1,2,…,m) 
Pi job sequenced in the i-th position of a schedule, 
C(Pi , j) completion time of job Pi on machine j, 
C(Pi , m) completion time of job Pi on the m-th machine,  
D(Pi , j) waiting time for job i for machine j (i=1,2,…,n) and (j=1,2,…,m) 
I(Pi , j) tardiness of job Pi on machine j. 
 
We can also calculate the completion times for an n-job, m-machine flowshop problem as follows, 
 
C(P1, 1)= t(1, 1) (1) 
C(P1, j)=C(P1 , j 1)+t(1, j);   j=1 to m (2) 
C(Pi, j)=max{C(Pi 1, j)}+t(i, j);   i=1 to n  ,  j=1 to m (3) 
Makespan= C(Pn, m) (4) 
C(Pi, j)= max{0, C(Pi 1, j)  C(P1 , j 1)  (5) 

1 2

Total waiting time (TWT)= ( , )
n m

i
i j

D P j
 
  

(6) 

I(Pi, j)=max{0, C(P1 , j 1)  C(Pi 1, j) (7) 

1 1

Total tardiness (TT)= ( , )
n m

i
j i

I P j
 
  

(8) 

In this paper, three objectives minimize the makespan (C(Pn, m)), the total waiting time 

1 2

(TWT)= ( , )
n m

i
i j

D P j
 
  and the total tardiness (

1 1

(TT)= ( , )
n m

i
j i

I P j
 
 ), respectively. 

1min ( , )nz C P m , (9) 

2
1 2

min = ( , ),
n m

i
i j

z D P j
 
  

(10) 



  

       

348

3
1 1

min = ( , ).
n m

i
j i

z I P j
 
  

(11) 

 
3. New genetic algorithm  
 
The genetic algorithm (GA) was proposed by John Holland (1975). However, it has become one of the 
well-known meta-heuristics after Goldberg (1989). The mechanism of the simple GA is demonstrated 
in a pseudo code shown in Fig. 1. 
 
 
 
 
 
 
 
 

 

Fig. 1. Pseudo code of the simple genetic algorithm 

 
There are various methods to improve the performance of the simple genetic algorithm. The first 
possibility is to implement the best configuration of the algorithm itself (Gen & Cheng, 1997; 
Pongcharoen et al., 2002). Alternatively, we could add in other heuristics as sub-process of the genetic 
algorithm, called hybrid GA (HGA). The most popular forms of the hybrid GA are to incorporate one 
or more of hill climbing and/or neighborhood search (Yamada & Reeves, 1998), optimization methods 
(e.g., neural network (Wang, 2005) or tabu search (Kido et al., 1993)), local search (Freisleben & Merz, 
1996) or elitist strategy (Murata, 1996) as an add on extra to the simple GA loop of recombination and 
selection (Roach and Nagi, 1996). In this section, we present a new genetic algorithm (GA) to improve 
the performance of the simple genetic algorithm. 
 
Because of the complexity of the flowshop problem, it is essential to develop an efficient evolutionary 
algorithm. In this paper, a new GA (NGA) is used to compute the optimal (or near-optimal) solution. 
The high performance of the algorithm and quick convergence of the solutions makes it possible to 
solve the above-mentioned problem. The proposed NGA is developed by using some modifications in 
the standard GA (Fig. 2). 

3.1. NGA implementation 

A chromosome is a set of integer values (genes), which represents the sequence of jobs. In the coding 
scheme, each job is represented by a gene and each set of n jobs is represented by a chromosome. The 
main steps of the NGA are as follows: 
 
Step 1. The population size of each generation is set to be N and the proposed GA begins by randomly 

generating N chromosomes. This starting population is called generation 1. 
Step 2. Determining the fitness function (F(s)) for each parent chromosome “S” by using the following 

equation. 
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where wc, wD and wI are the planner-specified weight and indicate the relative importance of the 
makespan, total waiting time and total tardiness, respectively. The values of weight coefficients (i.e., 
wc, wD and wI) are subjectively selected in the range [0,1] by project managers, with wc + wD + wI =1. 

(1) Randomly initialize a population of individual 

(2) Perform a crossover operation to get offspring based on the probability of crossover 

(3) Conduct a mutation based on the probability of mutation 

(4) Fitness evaluation for each individual using an objective function 

(5) Randomly select the survived chromosome for the next generation using roulette wheel 
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Cmax, Cmin, Dmax, Dmin and Imax, Imin are the maximal and minimal values of makespan, total waiting time 
and total tardiness in the current population. γ  is a very small positive number to prevent dividing by 
zero in the fitness function. It also does not permit the fitness function to be become zero because the 
model uses the inverse of the fitness function for the reproduction scale in the proposed NGA.  
 
Step 3. To choose the parents in generation g in Step 1, we compute the normalized fitness based on 

Eq. (13) and Eq. (14), where mg indicates the mean fitness of chromosomes in generation g. σg 

indicates the standard deviation of fitness in generation g and zg
i equals to the fitness 

normalized of the chromosome i. In the later and next step, due to the fact that the problem 
goals function is of the minimization type, chromosome (answer) of 0≤iz  are chosen as elite 

answer, and we add the answer having 0≥iz  to a list entitled the Black List. 

 
Now, in order to escape from locating the algorithm in a local optimum, we should give a chance to the 
chromosomes in the black list to be selected. Thus, we use the crossover and mutation operators. To do 
so, we present the black list crossover rate and black list mutation rate. We employ the crossover 
operator for the black list chromosomes and add the children to the elite list. We use the mutation 
operator for each chromosome of the black list and add the new chromosomes to the elite list. 
 

2
( )

1

( )

1

N
i g

g
i

fit m

N







 , 
(13) 

( ) gg
i

g

fit i m
z




 . 
(14) 

Step 4. In this step, we generate offspring from parents (i.e., elite list) for entering the next generation. 
In this problem, for the number of jobs fewer than 50, a one-point crossover is implemented. 
The uniform crossover was introduced by Hansancebi and Erbatur (2000) and depending on 
the number of jobs, one point mutation is used. For instance, in a scheduling with nine jobs, 
two random chromosomes with feasible genes can be as follows: 

 

Parent 1 2 1 5 3 6 4 7 9 8 
          
Parent 2 4 3 2 5 4 1 3 2 5 

 
For instance, since the number of jobs is small, one-point and two-point mutation are used. By applying 
the above -mentioned operators, the offspring produced from these parents are as follows: 
 
One-cut-point crossover with random points (e1=4). 
 

Offspring 1 4 3 2 5 6 4 7 9 8 
          
Offspring 2 2 1 5 3 6 1 7 9 8 

 
Two point mutation with random points (e1=6, e2=9). 
 

Offspring 1 2 1 5 3 6 8 7 9 4 
 
It should be mentioned that the mutation rate (Fm(g)) decreases and uses Eq. (15), so that in the final 
generation, the mutation rate will be zero. 

gg FmFm  )( 1)-(g)(  (15) 
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Step 5. Repeat Steps 2 to 4 until the σg =0 (i.e., the chromosomes do not change from one generation to 
the next one). 

The steps of our proposed NGA are summarized in Fig. 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. NGA flowchart 

4. Illustrative example 
 
As an example, a two-machine flowshop scheduling problem with 10 jobs is presented in this section 
as depicted in Table 1. The model is programmed in the Microsoft Excel 2010 software using the 
Visual Basic Application (VBA). The project data given in Table 1 is entered in the application 
software. In this example, there are 3628800 solutions. The presented model is solved in order to obtain 
the optimal solution. The planner-specified weights are selected by the planning manager (Wc=0.2, 
WD=0.4, WI=0.4). Since the number of jobs is small in the given example, a combination of a one-point 
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crossover and black list crossover rate with pre-specified weights, two-point mutation and black list 
mutation rate have been used. The NGA parameters are set as follows.  

 
G=100, N=70, two-point crossover rate=0.6, black list crossover rate=0.85, mutation rate=0.2, black 
list mutation rate=0.8.  
 
The program is ran on a Pentium 4 PC with CPU 2.8 GHz, which chromosome [9,10,6,4,1,2,3,5,7,8] 
and its corresponding makespan, total waiting time and total tardiness (C=58, D=6, I=8) were obtained 
as the final solution. The planning manager may then obtain other optimum solutions by changing the 
value for the planner-specified weights, which are presented in the results in Table 2.  
 
Table 1  
Processing time for job i on machine j 
Job t(i, 1) t(i, 1) 
1 5 2 
2 2 6 
3 1 2 
4 7 5 
5 6 6 
6 3 7 
7 7 2 
8 5 1 
9 1 16 
10 20 3 
 
Table 2   
Final outputs of the NGA 
Wc WD WI C D I Solution Chromosome 
0.2 0.7 0.1 59 8 9 3 7 2 5 4 8 6 9 10 1 
0.3 0.6 0.1 58 8 16 2 9 10 6 5 1 4 3 7 8 
0.4 0.3 0.3 58 20 8 2 1 9 3 10 5 7 6 4 8 
0.3 0.3 0.4 58 17 9 9 3 10 6 4 5 1 2 7 8 
0.3 0.4 0.3 58 6 8 9 10 6 4 1 2 3 5 7 8 
0.2 0.3 0.5 59 8 9 2 8 3 6 4 7 5 9 10 1 
0.2 0.4 0.4 59 14 9 9 10 6 4 3 1 5 2 8 7 
0.2 0.5 0.3 59 6 9 3 6 4 5 9 10 8 1 2 7 
0.1 0.6 0.3 60 11 10 9 10 4 2 5 8 1 6 7 3 
 
 

5. Experimental evaluation 
 
This section evaluates the performance of our proposed NGA and the classical GA. These algorithms 
are coded and implemented in Excel 2010 by the VBA and are ran on a Pentium 4 PC with CPU 2.8 
GHz and 512 MB of RAM memory. We use the weight relative deviation (WRD) as a common 
performance measure to compare these algorithms that is computed by: 
 

min

minlg

min

minlg

min

minlg

I

I-D-

C

C- a
I

a
D

a
C

I
w

D

D
w

C
wWRD  , (16)   

 

where Calg , Dalg and Ialg are the makespan, total waiting time and total tardiness for a given algorithm, 
respectively. Cmin , Tmin and Qmax are the best solutions obtained by each algorithm for a given instance, 
respectively. The NGA and GA are implemented with same parameters for twenty five times. Their 
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results are analyzed via the analysis of variance (ANOVA) method. The means plot and least significant 
different (LSD) interval for the NGA and GA are shown as Fig. 3. It demonstrates that the NGA gives 
better outputs than the GA for the given problem statistically. 
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Fig. 3. Means plot and LSD intervals for the NGA and GA 

 
6. Conclusion 
 
In this paper, we have presented a multi-objective technique to consider flowshop problem where the 
objectives include makespan, total waiting time and total tardiness in term of the planner-specified 
weights. These weights have represented the priority of scheduling objectives, which must be selected 
by the managers and by choosing different weights we have managed to find various efficient solutions. 
To solve the given problem, a novel genetic algorithm (NGA) has been also developed. The planning 
managers have been asked to prioritize the objectives of the scheduling, and then we have applied the 
proposed new genetic algorithm (NGA) for solving the presented model. The high speed of the 
proposed algorithm and its quick convergence makes it desirable for large scheduling with a large 
number of jobs. Furthermore, we have used the weight relative deviation (WRD) measure to compare 
the performance of the NGA and GA by the ANOVA method. By considering uncertainty in processing 
time, this model can be extended to the cases which can be more realistic. 
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