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 Selection of industrial robots for the present day’s manufacturing organizations is one of the most 
difficult assignments due to the presence of a wide range of feasible alternatives. Robot 
manufacturers are providing advanced features in their products to sustain in the globally 
competitive environment. For this reason, selection the most suitable robot for a given industrial 
application now becomes a more complicated task. In this paper, four models of data 
envelopment analysis (DEA), i.e. Charnes, Cooper and Rhodes (CCR), Banker, Charnes and 
Cooper (BCC), additive, and cone-ratio models are applied to identify the feasible robots having 
the optimal performance measures, simultaneously satisfying the organizational objectives with 
respect to cost and process optimization. Furthermore, the weighted overall efficiency ranking 
method of multi-attribute decision-making theory is also employed for arriving at the best robot 
selection decision from the short-listed competent alternatives. In order to demonstrate the 
relevancy and distinctiveness of the adopted DEA-based approach, two real time industrial robot 
selection problems are solved. 
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1. Introduction  
 
The word ‘robot’ was first conceived by Czech author K. Capeak in 1920 and it came from the word 
‘robota’, which means ‘worker’. According to the American Robots Association, a robot can be defined 
as a multi-functional operator, which can be controlled by programs. It shifts materials, components, 
tools and other special apparatus through control programs to complete a series of jobs. From the very 
first day to present, there is a huge change in industrial robots with respect to incorporation of newer 
features, technological advancements, artificial intelligence and so on. In the present era of micro-
electronics, automation and information technology, the adoption of industrial robots in reputed 
manufacturing organizations is rapidly increasing day-by-day. The application domain of industrial 
robots comprises of welding, material handling, component assembling, painting, surface treatment etc. 
It is observed that there are so many mutually conflicting criteria, like repeatability, load capacity, 
speed, accuracy, handling coefficient, program flexibility, memory capacity, supplier’s service quality 
etc. that influence the robot selection decision. Repeatability is articulated as how well a robot can 
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come back to a programmed location; load capacity indicates the weight (load) a robot can pick up; 
speed is defined as how quickly a robot can position its arm/actuator and accuracy is understood as how 
closely a robot can attain a commended point. Among these criteria, some are advantageous in nature 
(beneficial) and some are non-advantageous (non-beneficial). For beneficial criteria, like load capacity 
and program flexibility, higher values are always desirable, whereas, for non-beneficial criteria, like 
cost and repeatability, lower values are preferable. Due to availability of a wide range of robots in the 
market, selection of the most suitable robot for a specific application becomes a challenging task. 
Improper selection of robot may not only adversely affect productivity and quality of products but also 
the reputation of the manufacturing organizations is negatively affected. However, executing the 
application of a robot is a capital-intensive job. Therefore, prior to its implementation, a vigilant 
examination regarding its practicability and performance is required, in which the impact of various 
selection criteria should be assessed. While selecting the most suitable robot for a given application, the 
decision maker requires to consider different robot selection attributes, which often involve swapping 
between a varieties of robot performance measures. Numerous approaches, including multi-criteria 
decision-making (MCDM) methods and optimization techniques have already been proposed by the 
past researchers for robot selection. Decision analysis is primarily concerned with those circumstances 
where a decision maker has to opt for the best alternative amongst several competent alternatives at the 
same time considering a set of conflicting criteria. In order to weigh up the overall effectiveness of the 
candidate alternatives and select the most suitable robot, the primary objective of an MCDM approach 
is thus to identify the significant robot selection criteria for a given application, assess the information 
relating to those criteria and develop methodologies for evaluation to meet the decision maker’s 
requirements. 

2. Review of literature 
 
Liang and Wang (1993) combined fuzzy set theory and hierarchical structure analysis for solving robot 
selection problems. Khouja and Booth (1995) proposed a decision model for robot selection using 
fuzzy cluster analysis. Khouja (1995) applied a two-phase model for solving robot selection problems. 
In the first phase, data envelopment analysis (DEA) was used to identify the feasible robot alternatives 
based on satisfaction of some predefined performance measures and in the second phase, an MCDM 
model was employed to select the best robot from those identified in the first phase. Goh et al. (1996) 
presented a revised weighted sum model incorporating the values assigned by a group of experts on 
different factors for selecting industrial robots.  
 
Karsak (1998) proposed a two-phase methodology for robot selection. In the first phase, DEA was used 
to determine the technically efficient robot alternatives, considering cost and technical performance 
parameters. In the second phase, a fuzzy robot selection algorithm was applied to rank the technically 
efficient robots based on both predetermined objective criteria and additional vendor-related subjective 
criteria. Goh (1997) applied analytic hierarchy process (AHP) for solving robot selection problems 
having both subjective and objective data for alternative robot evaluation. Parkan and Wu (1999) 
compared the performance of OCRA (Operational Competitiveness RAting) and TOPSIS (Technique 
for Order Preference by Similarity to Ideal Solution) methods through a robot selection problem. It was 
proposed to make the final selection on the basis of rankings obtained by averaging the results of 
OCRA, TOPSIS and a utility model.  
 
Khouja (1999) proposed a novel approach for robot selection, which in turn, would provide the 
decision maker the option of replacing the selected robot with a better one during the life of products 
with uncertain demand. Braglia and Petroni (1999) adopted DEA approach for selection of industrial 
robots. It would aim at identification, in a cost/benefit perspective, of the optimal robot, by measuring, 
for each robot, the relative efficiency through the resolution of linear programming (LP) problems. 
Talluri and Yoon (2000) utilized a cone-ratio DEA (CRDEA) method for robot selection, while 
considering the decision maker’s preferences. Braglia and Gabbrielli (2000) considered the application 
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of dimensional analysis (DA) for robot selection. The proposed DA approach would provide an easy, 
efficient and robust decision support system overcoming all attribute dimension problems. Chu and Lin 
(2003) applied a fuzzy TOPSIS method for robot selection, where the ratings of various alternatives 
with respect to different subjective criteria and weights of all criteria were assessed in linguistic terms 
using fuzzy numbers.  
 
Bhangale et al. (2004) developed a reliable and exhaustive database of robot manipulators to 
standardize the robot selection procedure, and help the robot user for selecting the most appropriate 
robot system to meet the operational requirements. Bhattacharya et al. (2005) integrated AHP and 
quality function deployment (QFD) model to justify the implementation of a robotic system in a 
manufacturing organization. Karsak and Ahiska (2005) solved the robot selection problems using the 
cross-efficiency analysis of DEA method. The proposed methodology would enable evaluation of the 
relative efficiency of decision-making units with respect to multiple outputs and a single exact input. 
Rao and Padmanabhan (2006) proposed a digraph and matrix-based approach for evaluation of 
alternative industrial robots. A robot selection index was suggested to evaluate and rank the robots for a 
given industrial application.  
 
Kahraman et al. (2007) used a fuzzy hierarchical TOPSIS model for multi-criteria evaluation of the 
industrial robotic systems. Karsak (2008) introduced a decision model for robot selection based on 
QFD and fuzzy linear regression. Shih (2008) evaluated the performance of alternative robots based on 
an incremental benefit-cost ratio model and then ranked the robots using group TOPSIS method. 
Kumar and Garg (2010) developed a distance-based approach for evaluation, selection and ranking of 
robots. Chatterjee et al. (2010) solved two real time robot selection problems using VIKOR 
(VIsekriterijumsko KOmpromisno Rangiranje) and ELECTRE (ELimination and Et Choice Translating 
REality) methods, and also compared their relative performance.  
 
Rao et al. (2011) applied a subjective and objective-integrated MCDM method for the purpose of robot 
selection. Alinezhad et al. (2011) integrated MCDM and DEA methods in order to evaluate the relative 
efficiency of alternative robots with respect to multiple outputs and a single input. Athawale & 
Chakraborty (2011) compared the ranking performance of ten most popular MCDM methods while 
solving an industrial robot selection problem. It was concluded that for a given robot selection problem, 
more attention should be given on proper selection of criteria and alternatives, not on choosing the most 
appropriate MCDM method to be employed. Koulouriotis and Ketipi (2011) developed a digraph 
model for evaluation of the alternative robots and selection of the most appropriate one from the 
feasible alternatives. Devi (2011) extended VIKOR method in intuitionistic fuzzy environment for 
solving MCDM problems in the area of robot selection. Athawale et al. (2012) applied VIKOR method 
for evaluating and ranking of industrial robots. Karsak et al. (2012) presented a decision model based 
on fuzzy linear regression for industrial robot selection. 
 
It is observed that the past researchers have adopted different variants of DEA method to solve the 
robot selection problems. No attempt has yet been made to compare the ranking performance and 
solution accuracy of various DEA models. This paper evaluates the performance of four commonly 
employed DEA models while solving two real time robot selection problems.   
 
3. Data envelopment analysis  
 
Data envelopment analysis (DEA) is a data oriented mathematical programming-based technique which 
is generally used to measure the performance efficiency of a set of entities (alternatives), popularly 
known as decision-making units (DMU). Basic DEA models employ the concept of ‘system efficiency’ 
(output/input) for determining the overall efficiency of a DMU. A DMU is considered inefficient if it 
fails to attain maximum output value depending upon input constraints or vice versa. Till date, different 
DEA models have been developed to cope with diverse industrial requirements. While evaluating the 
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efficiency of a DMU, most of the DEA models assign the score of 1 to the efficient DMUs with respect 
to other inefficient DMUs. Generally, a DMU is held responsible for converting inputs into outputs for 
evaluating its performance scores (Cooper et al., 2011; Roghanian & Foroughi, 2010). The main 
advantage of DEA lies in its ability to deal with multiple inputs and outputs having different units. It 
also does not require any particular functional form related to inputs and outputs. In spite of having 
these advantages, DEA models have some limitations too. Being a non-parametric mathematical 
technique, statistical hypothesis tests are difficult to perform and the LP formulations associated with 
DEA models may be sometimes computationally intensive. Although there are several DEA models, 
this paper mainly focuses on the application of four most potential models, i.e. Charnes, Cooper and 
Rhodes (CCR), Banker, Charnes and Cooper (BCC), additive, and cone-ratio models. 
 
3.1 CCR model 
 
The CCR model is the most basic and widely applied model of DEA. This model was first introduced 
by Charnes, Cooper and Rhodes in 1978, from the earlier work of Farell on a basic theory of 
productivity measurement using single output and single input ratio concept (Cooper et al., 2011). 
Basically, the CCR model is the extension of Farell’s model to measure organizational efficiency by 
using multiple outputs/multiple inputs ratio concept with no priori information about the relative 
importance on inputs and outputs. The main objective of CCR model is to identify the corresponding 
efficient DMUs against each inefficient DMU (Kuah et al., 2010). A DMU is more efficient if it can 
create a larger number of outputs with the same quantity of inputs (output-oriented approach) or vice 
versa (input-oriented approach).  
 
Let, there are n number of alternatives (DMU) to be evaluated on the basis of some conflicting input 
criteria (non-beneficial) and output criteria (beneficial). There are m number of input criteria for each 
alternative denoted by xik (for i = 1,…,m) and s is the number of output criteria for each alternative 
denoted by yrk (for r = 1,…,s). xik and yrk denote the values of ith input criterion and rth output criterion 
for kth alternative. The basic fractional non-convex programming mode of CCR model can be expressed 
by the following equations (Cooper et al., 2011).  
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where yrj is the value of jth alternative on rth output criterion and xij is the value of ith input for jth 
alternative. ur and vi are the non-negative variable weights to be determined by the solution of the 
above maximization problem. The above fractional non-convex programming model is computationally 
much difficult to solve for the decision maker. To overcome the computational difficulties of Eq. (1) 
and Eq. (2), Charnes et al. (1978) developed a LP model of CCR approach. This LP model can be 
articulated either by maximizing output criteria or minimizing input criteria values.  In this paper, the 
input minimization formulation of CCR model is adopted as given below. 
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Charnes et al. (1978) also adopted the following expression to compute the efficiency measures. 
 

Hk = 1/gk, (6) 
 

where Hk is the efficiency measure of kth DMU. In CCR model, a DMU is considered efficient if it 
achieves a score of 1, otherwise, it is treated as inefficient. The identified efficient DMUs act as a 
benchmarking standard for future improvements. Although the CCR model is the simplest DEA model, 
but its major disadvantage lies in the fact that an inefficient DMU and its benchmarking DMU may not 
be same in their operations (Kuah et al., 2010). 
 
3.2 BCC model 
 
The BCC model of DEA was first initiated by Banker in 1984 (Banker et al., 1984). In BCC model, if 
all the inputs are changed by equal proportion, there will be a huge change in the outputs crossing the 
proportional limit by a great extent. This property of BCC model is known as variable return to scale 
(VRS). The basic difference between BCC and CCR models lies in the fact that CCR model works on 
the concept of constant return to scale (CRS) which can be defined as scaling the inputs and outputs 
linearly without increasing or decreasing efficiency (Ramanathan, 2003). Additional convexity 
constraint (∑λj = 1) is also added in this model. The BCC model scores higher efficiency as compared 
to CCR model. Generally, a DMU is BCC efficient if it is CCR efficient, but it is not required that a 
BCC efficient DMU is CCR efficient (Cook & Seiford, 2009). The input-oriented minimization 
formulation of BCC model is shown as below (Banker et al., 1984): 
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where yrj is the amount of rth output for jth DMU and xij 

is the amount of input for the same DMU. λ is 
the non-negative vector. The BCC model evaluates the efficiency of Oth DMU (O = 1,...,n) by solving 
the above LP problem. A DMU is BCC efficient if it has a relative efficiency score of 1, and a relative 
efficiency score less than 1 shows the inefficiency of the DMU. 
 
3.3 Additive model  
 
In DEA, there are two types of efficiency evaluating models, i.e. radial projection approach and non-
radial projection approach. In radial DEA model, the inputs are proportionally reduced while outputs 
remain constant (input-oriented case) and for output-oriented case, outputs are proportionally increased 
while inputs remain fixed, whereas, non-redial approach maximizes outputs and minimizes inputs 
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simultaneously (Sun & Gui, 2011). The basic models of DEA, like CCR and BCC belong to radial 
category, whereas, additive model belongs to non-redial category. The additive model of DEA was first 
introduced and advocated by Charnes et al. (Charnes et al., 1985). The additive model is also known as 
welfare efficiency model or Pareto-Koopmans efficiency model as it is not possible to improve any 
input or output without worsening some other inputs or outputs. The unique characteristic of additive 
model is that it can shift an inefficient DMU to the efficient boundary. As the additive model combines 
both input-oriented and output-oriented approaches, it considers slacks (input excesses and output 
shortfalls) directly in the objective function. A DMU is said to be additive efficient if its all slacks 
become zero at its optimal solution (Cook & Seiford, 2009). There are several forms of additive model 
in DEA literature and the most basic form of the additive model is shown in Eqn. (10) in LP format. 
Consider there are n DMUs, i.e. DMU1, DMU2,…,DMUn. Each DMUj (j = 1,…,n) uses m inputs xij (i = 
1,…,m) and generates s outputs yrj (r = 1,…,s). 
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where Si

- and Sr
+ are the slacks, Si

- is the input excess and Sr
+ is the output shortfall. The DMUj to be 

evaluated on any trial is designated as DMUo (o = 1,…,n) and λ is the non-negative vector. The 
efficiency of each DMUo and the value of Po are thus found by solving the LP models. 
 

3.4 Cone-ratio model 
 

The fundamental concept of cone-ratio DEA (CRDEA) is based on the principle of assurance region 
(AR) (Charnes et al., 1990). Similar to AR philosophy, CRDEA approach allows for weight restrictions 
which ultimately improve the discriminating power of DEA. These weight restrictions are specified by 
linear inequalities defining bounds on weights which reflect the importance of inputs and outputs, and 
ultimately lead to the development to CRDEA model with input and output cones specified by their 
respective weight restrictions. There are several forms and extensions of DEA, but the cone-ratio 
approach makes it possible to enhance both the power and flexibility of DEA by recourse to 
supplementary information to effect data adjustments which can be brought to allow in carrying out 
evaluations from the acceptable solutions (Brockett et al., 1997). In CRDEA model, the number of 
cones depends on the number of beneficial attributes. If s is the number of beneficial attributes 
considered, then the number of cones will be factorial s.  Here, the output maximization formulation of 
CRDEA model is shown as below. 
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where qth DMU is being evaluated. Here, s, m and n represent the output, input and number of DMUs 
respectively, yki and xji are the amount of kth output and jth input respectively for ith DMU, vk and uj are 
the variable weights, and γ, δ, c and d are the non-negative scalars. The above fractional program can 
be transformed into LP problem to solve it easily. 
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To determine the relative efficiencies of DMUs, the above LP problem is required to be solved n 
number of times. The efficiency values of DMUs come from the efficiency scores of the individual 
DMUs. A relative efficiency score of 1 signifies that the DMU is efficient, however, a relative 
efficiency score less than 1 signifies that the DMU is inefficient. Although the CRDEA model can 
effectively integrate the decision maker’s preferences, but it is unable to solve the problems with 
multiple optimal solutions (Talluri & Yoon, 2000). 
 

3.5 Weighted overall efficiency ranking method  
 

Let α designate a unit and Β denote the set of all the performance units. With each unit α in B associate 
k attributes (variables or performance measures) X1,…, Xk 

whose values are denoted by x1,…, xk. The 
problem is to choose α in B so that the decision maker is the happiest with the payoff x1,…, xk. Thus, an 
index that combines X1,…, Xk 

into a scalar quantity, u of preferability or value is needed. To solve the 
above problem, a scalar-valued function, u(X1,…,Xk) that models the decision maker’s preference for 
the attributes is estimated. The function, u is also referred to as a utility function, a worth function or a 
preference function. When the attributes are mutually preferentially independent, the function 
u(X1,…,Xk) is additive. Preferential independence can be illustrated as follows: suppose, while making 
decision for robot selection, the decision maker is concentrated with only two criteria of the robot, e.g. 
repeatability and cost. If the decision maker’s preference for repeatability is independent of cost and 
when this independence relation holds for both the attributes, they are mutually preferentially 
independent. Thus, the additive utility function, when the attributes are mutually preferentially 
independent, can be given as below: 
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where ui(Xi) is the single-attribute utility function for ith performance measure. For non-beneficial 
attributes, the single-attribute utility function can be defined as follows: 
 

)/()()( minmaxmax
iiiiii XXXXXu  , (22) 

where max
iX  and min

iX  are the highest and lowest values of ith attribute respectively. 
On the other hand, for beneficial attributes, the single-attribute utility function can be expressed as: 
 

5.0minmaxmin )]/()[()( iiiiii XXXXXu  . (23) 

 
With an additive value function, the utility value that the decision maker obtains from a unit with 
performance measure, x1,…, xk 

is equal to the sum of the utility which is obtained from each measure 
for that unit. Thus, the decision maker’s preference for the performance measures can be evaluated 
individually which simplifies their assessment. Furthermore, as the single-attribute utility function, 
ui(Xi) is usually non-linear, thus it better captures the preference of the decision maker. The additive 
utility function, u(X1,…,Xk) and the single-attribute utility function, ui(Xi) are usually scaled from 0 to 1 
for convenience, i.e. 
  

0 ≤ u(X1,…,Xk) ≤ 1 and 0 ≤ ui(xi) ≤ 1 
 

It results in the additive utility function of the following form: 
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Here wi is the scaling constant and can be thought of as the weight associated with ith attribute. Thus, 
the unit selection problem using the MCDM theory is to find the unit α in B that maximizes the additive 
utility function as expressed below: 
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where Xi 
is a variable denoting the value of ith 

performance measure (attribute) associated with the units 
and u(X1,…,Xk) is the overall utility function evaluated at (X1,…,Xk). The value of the scaling constant 
can be obtained by asking the decision maker to rate the important of each attribute relative to the most 
important attribute which receives a weight of 100 (Khouja, 1995). 
 

4. Illustrative examples 
 

In order to demonstrate the applicability and solution accuracy of the four considered DEA methods, 
the following two robot selection problems are cited. 
 

4.1 Example 1 
 
The first example deals with selection of industrial robots for some pick-n-place operations in a 
manufacturing environment. Bhangale et al. (2004) applied TOPSIS and graphical methods to solve 
this robot selection problem, considering repeatability (RE), load capacity (LC), maximum tip speed 
(MTS), memory capacity (MC) and manipulator reach (MR) as the predominant robot selection 
attributes. Repeatability is described as the returning ability of a robot manipulator to its original 
position after a certain period of time. Load capacity is the maximum load that can be carried by a 
manipulator. Maximum tip speed is the speed at which a robot can move in an intertial reference frame. 
Memory capacity is the capacity to store the steps of a predefined program in memory by a robot. 
Manipulator reach is the maximum distance to be covered by a manipulator to grasp objects for a given 
pick-n-place operation. Among these, LC, MTS, MC and MR are beneficial in nature, and RE is the 
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only non-beneficial attribute. In this example, repeatability is considered as input and others are 
considered as output variables. The decision matrix with seven robot alternatives and five selection 
criteria is shown in Table 1. Here, four popular DEA models are first applied to identify the efficient 
robots and then a weighted overall efficiency-based method is employed to determine the final ranking 
of the efficient robots.  
 

Table 1  
Robot selection decision matrix for example 1 (Bhangale et al., 2004) 

Robot LC (in kg) 
RE  

(in mm) 
MTS  

(in mm/sec) 
MC (in points or steps) MR (in mm) 

ASEA-IRB 60/2 60 0.4 2540 500 990
Cincinnati Milacrone T3-726 6.35 0.15 1016 3000 1041
Cybotech V15 Electric Robot 6.8 0.1 1727.2 1500 1676
Hitachi America Process Robot 10 0.2 1000 2000 965
Unimation PUMA 500/600 2.5 0.1 560 500 915
United States Robots Maker 110 4.5 0.08 1016 350 508
Yaskawa Electric Motoman L3C 3 0.1 1778 1000 920
 
Table 2  
Normalized decision matrix for example 1 
Robot LC RE MTS MC MR
ASEA-IRB 60/2 0.9705 0.7861 0.6355 0.1217 0.3557
Cincinnati Milacrone T3-726 0.1027 0.2948 0.2542 0.7304 0.3740
Cybotech V15 Electric Robot 0.1100 0.1965 0.4321 0.3652 0.6022
Hitachi America Process Robot 0.1618 0.3931 0.2502 0.4869 0.3467
Unimation PUMA 500/600 0.0404 0.1965 0.1401 0.1217 0.3288
United States Robots Maker 110 0.0728 0.1572 0.2542 0.0852 0.1825
Yaskawa Electric Motoman L3C 0.0485 0.1965 0.0494 0.2435 0.3306
 

The decision matrix, as shown in Table 1, is first normalized to transform all the criteria values into 
dimensionless and comparable units, ranging from 0 to 1. The normalized decision matrix is exhibited 
in Table 2. The main objective of DEA-CCR model is to identify the most feasible alternatives by 
maximizing the output criteria or by minimizing the input criteria. Eqns. (1) and (2) show the basic 
non-convex programming models for DEA-CCR approach which can be restructured as LP models 
using Eqns. (3)-(5). Now, to obtain the efficiency score for each robot alternative, Eqns. (3)-(5) are 
solved for seven robot alternatives using the data of the normalized decision matrix of Table 2. A 
model mathematical formulation for robot alternative 1 (ASEA-IRB 60/2) is shown in Table 3.  
 

Table 3  
Mathematical modeling of CCR model for ASEA-IRB 60/2 robot 
min g = 0.7861v1  
subject to   
-0.9705u1 - 0.6355u2 - 0.121u3 - 0.3557u4 + 0.7861v1 ≥ 0, -0.1027u1 - 0.2542u2 - 0.7304u3 - 0.3740u4 + 0.2948v1 ≥ 0 
-0.1100u1 - 0.4321u2 - 0.3652u3 - 0.6022u4 + 0.1965v1 ≥ 0, -0.1618u1 - 0.2502u2 - 0.4869u3 - 0.3467u4 + 0.3931v1 ≥ 0 
-0.0404u1 - 0.1401u2 - 0.1217u3 - 0.3288u4 + 0.1965v1 ≥ 0, -0.0728u1 - 0.2542u2 - 0.0852u3 - 0.1825u4 + 0.1572v1 ≥ 0 
-0.0485u1 - 0.0494u2 - 0.2435u3 - 0.3306u4 + 0.1965v1 ≥ 0, 0.9705u1 + 0.6355u2 + 0.1217u3 + 0.3557u4 = 1 

Objective function value (g) is 1.0000.  

The developed LP problem is solved using LINDO software (version 6.1) and the derived efficiency 
score of ASEA-IRB 60/2 robot is shown in Table 4. Similarly, the mathematical formulations of all the 
remaining robot alternatives are solved and their efficiency scores are also enlisted in Table 4.  

 

Table 4  
CCR efficiency scores for robot alternatives 

Robot Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 
Efficiency score 1.0000 1.0000 1.0000 1.4596 1.8315 1.3038 1.6024 
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From Table 4, it is observed that robot 1 (ASEA-IRB 60/2), robot 2 (Cincinnati Milacrone T3-726) and 
robot 3 (Cybotech V15 Electric Robot) are the efficient choices among the seven considered 
alternatives. Now, this robot selection problem is solved using BCC model of DEA. While applying 
BCC model, the mathematical formulation for each robot alternative is developed using Eqns. (7)-(9). 
The LP model for the first robot is shown in Table 5. It is also solved using LINDO software and the 
efficiency scores are given in Table 6. This table shows that robot 1 (ASEA-IRB 60/2), robot 2 
(Cincinnati Milacrone T3-726), robot 3 (Cybotech V15 Electric Robot) and robot 6 (United States 
Robots Maker 110) are the efficient choices. 
 
Table 5   
Mathematical modeling of BCC model for ASEA-IRB 60/2 robot 
Min G 
subject to 
0.7861G - 0.7861λ1 - 0.2948λ2 - 0.1965λ3 - 0.3931λ4 - 0.1965λ5 - 0.1572λ6 - 0.1965λ 7 ≥ 0 
0.9705λ1 + 0.1027λ2 + 0.1100λ3 + 0.1618λ4 + 0.0404λ5 + 0.0728λ6 + 0.0485λ7  ≥  0.9705 
0.6355λ1 + 0.2542λ2 + 0.4321λ3 + 0.2502λ4 + 0.1401λ5 + 0.2542λ6 + 0.0494λ7 ≥ 0.6355 
0.1217λ1 + 0.7304λ2 + 0.3652λ3 + 0.4869λ4 + 0.1217λ5 + 0.0852λ6 + 0.2435λ7 ≥ 0.1217 
0.3557λ1 + 0.3740λ2 + 0.6022λ3 + 0.3467λ4 + 0.3288λ5 + 0.1825λ6 + 0.3306λ7 ≥ 0.3557 
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 = 1 
Objective function value (G) is 1.0000. 

 
Table 6  
BCC efficiency scores for robot alternatives 

Robot Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 
Efficiency score 1.0000 1.0000 1.0000 0.6888 0.8697 1.0000 0.9131 

 

Further, this robot selection problem is again solved using a non-radial approach of additive model of 
DEA. The corresponding mathematical models for the seven robot alternatives are developed using 
Eqns. (10)-(12) and solved using LINDO software. The detailed mathematical formulation for ASEA-
IRB 60/2 robot is shown in Table 7.  
 
Table 7  
Mathematical modeling of additive model for ASEA-IRB 60/2 robot 
Max Po = S1

- + S1
+ + S2

++ S3
++ S4

+ 
subject to 
0.7861λ1 + 0.2948λ2 + 0.1965λ3 + 0.3931λ4 + 0.1965λ5 + 0.1572λ6 + 0.1965λ7 + S1

-

 = 0.7861 
0.9705λ1 + 0.1027λ2 + 0.1100λ3 + 0.1618λ4 + 0.0404λ5 + 0.0728λ6 + 0.0485λ7  - S1

+= 0.9705 
0.6355λ1 + 0.2542λ2 + 0.4321λ3 + 0.2502λ4 + 0.1401λ5 + 0.2542λ6 + 0.0494λ7 - S2

+

 = 0.6355 
0.1217λ1 + 0.7304λ2 + 0.3652λ3 + 0.4869λ4 + 0.1217λ5 + 0.0852λ6 + 0.2435λ7 - S3

+= 0.1217 
0.3557λ1 + 0.3740λ2 + 0.6022λ3 + 0.3467λ4 + 0.3288λ5 + 0.1825λ6 + 0.3306λ7 - S4

+= 0.3557 
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 = 1 
Objective function value (Po) is 0. 

As mentioned earlier, a robot alternative is said to be additive efficient if all its slacks become 0 at its 
optimal solution. The additive efficiency scores of seven robot alternatives are given in Table 8. From 
this Table 8, it is clearly observed that robot 1 (ASEA-IRB 60/2), robot 2 (Cincinnati Milacrone T3-
726), robot 3 (Cybotech V15 Electric Robot) and robot 6 (United States Robots Maker 110) are the 
additive efficient choices. 
 
Table 8  
Additive efficiency scores for robot alternatives 

Robot Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 
Efficiency score 0 0 0 0.4045 0.8785 0 0.8375 
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Lastly, this robot selection problem is solved using DEA cone-ratio (CRDEA) model. The previous 
three DEA-based models do not include the decision maker’s preferences in terms of criteria weights or 
preference preorder of the criteria. Here, v1, v2, v3 and v4 indicate the relative preferences of LC, MTS, 
MC and MR (all beneficial criteria) respectively. There are 24 preference relationships or cones for the 
four considered beneficial criteria which are given in Table 9. Each cone is used as a set of linear 
inequality constraints in CRDEA model. In this robot selection problem, among 24 cones, the first cone 
is developed using the preference order of the beneficial criteria as v1 ≥ v2 ≥ v3 ≥ v4, which indicates that 
LC (v1) is preferred to MTS (v2), MTS (v2) is preferred to MC (v3) and MC (v3) is preferred to MR (v4). 
These 24 sets of linear preference relationships are incorporated into CRDEA model. For 
demonstration purpose, the mathematical model for the first cone of ASEA-IRB 60/2 robot is shown in 
Table 10. The above-developed mathematical model is solved using LINDO software and the 
efficiency scores of ASEA-IRB 60/2 robot for 24 cones are given in Table 11. Similarly, the efficiency 
scores of the remaining alternative robots are calculated, as shown in Table 11. This table identifies 
Cybotech V15 Electric Robot as the best choice for all the cones. 

 
Table 9  
Cones utilized for example 1 (Four variables: v1, v2, v3, v4) 

Cone number Preference relationship CRDEA constraint 
1 v1 ≥ v2 ≥ v3 ≥ v4 v1 - v2 ≥ 0, v2 - v3 ≥ 0, v3 - v4 ≥ 0 
2 v1 ≥ v2 ≥ v 4 ≥ v3 v1 - v2 ≥ 0, v2 - v4 ≥ 0, v4 - v3 ≥ 0 
3 v1 ≥ v4 ≥ v2 ≥ v3 v1 - v4 ≥ 0, v4 - v2 ≥ 0, v2 - v3 ≥ 0 
4 v1 ≥ v4 ≥ v3 ≥ v2 v1 - v4 ≥ 0, v4 - v3 ≥ 0, v3 - v2 ≥ 0 
5 v1 ≥ v3 ≥ v2 ≥ v4 v1 - v3 ≥ 0, v3 - v2 ≥ 0, v2 - v4 ≥ 0 
6 v1 ≥ v3 ≥ v4 ≥ v2 v1 - v3 ≥ 0, v3 - v4 ≥ 0, v4 - v2 ≥ 0 
7 v2 ≥ v1 ≥ v3 ≥ v4 v2 - v1 ≥ 0, v1 - v3 ≥ 0, v3 - v4 ≥ 0 
8 v2 ≥ v4≥ v1≥ v3 v2 - v4 ≥ 0, v4 - v1 ≥ 0, v1 - v3 ≥ 0 
9 v2 ≥ v4 ≥ v3 ≥ v1 v2 - v4 ≥ 0, v4 - v3 ≥ 0, v3 - v1 ≥ 0 
10 v2 ≥ v1 ≥ v4 ≥ v3 v2 - v1 ≥ 0, v1 - v4 ≥ 0, v4 - v3 ≥ 0 
11 v2 ≥ v3 ≥ v1 ≥ v4 v2 - v3 ≥ 0, v3 - v1 ≥ 0, v1 - v4 ≥ 0 
12 v2 ≥ v3 ≥ v4 ≥ v1 v2 - v3 ≥ 0, v3 - v4 ≥ 0, v4 - v1 ≥ 0 
13 v3 ≥ v1 ≥ v2 ≥ v4 v3 - v1 ≥ 0, v1 - v2 ≥ 0, v2 - v4 ≥ 0 
14 v3 ≥ v1 ≥ v4 ≥ v2 v3 - v1 ≥ 0, v1 - v4 ≥ 0, v4 - v2 ≥ 0 
15 v3 ≥ v2 ≥ v1 ≥ v4 v3 - v2 ≥ 0, v2 - v1 ≥ 0, v1 - v4 ≥ 0 
16 v3 ≥ v2 ≥ v4 ≥ v1 v3 - v2 ≥ 0, v2 - v4 ≥ 0, v4 - v1 ≥ 0 
17 v3 ≥ v4 ≥ v2 ≥ v1 v3 - v4 ≥ 0, v4 - v2 ≥ 0, v2 - v1 ≥ 0 
18 v3 ≥ v4 ≥ v1 ≥ v2 v3 - v4 ≥ 0, v4 - v1 ≥ 0, v1 - v2 ≥ 0 
19 v4 ≥ v1 ≥ v2 ≥ v3 v4 - v1 ≥ 0, v1 - v2 ≥ 0, v2 - v3 ≥ 0 
20 v4 ≥ v1 ≥ v3 ≥ v2 v4 - v1 ≥ 0, v1 - v3 ≥ 0, v3 - v2 ≥ 0 
21 v4 ≥ v2 ≥ v1 ≥ v3 v4 - v2 ≥ 0, v2  - v1 ≥ 0, v1 - v3 ≥ 0 
22 v4 ≥ v2 ≥ v3 ≥ v1 v4 - v2 ≥ 0, v2 - v3 ≥ 0, v3 - v1 ≥ 0 
23 v4 ≥ v3 ≥ v2 ≥ v1 v4 - v3 ≥ 0, v3 - v2 ≥ 0, v2 - v1 ≥ 0 
24 v4 ≥ v3 ≥ v1 ≥ v2 v4 - v3 ≥ 0, v3 - v1 ≥ 0,  v1 - v2 ≥ 0 

 
Based on the results derived by the four adopted DEA models, it is clear that CRDEA identifies robot 3 
(Cybotech V15 Electric Robot) as a unique choice. On the other hand, CCR, BCC and additive models 
of DEA short-list some of the robots as efficient ones. To overcome this problem and find out the most 
suitable robot alternative among the short-listed ones, the weighted overall efficiency ranking method 
is now employed to rank the efficient robots.  
 

Table 12 exhibits the criteria-wise utility values for three efficient alternative robots. Rao (2007) 
determined the weights (importance) of the considered robot selection criteria using AHP method, as 
given in Table 13. Now based on the criteria-wise utility functions of ASEA-IRB 60/2 robot and using 
Eqs. (24), the overall utility value of that robot is formulated as follows: 
Overall utility = w1(LC)xu1(LC) + w2(RE)xu2(RE) + w3(MTS)xu3(MTS) + w4(MC)xu4(MC)  + 
w5(MR)xu5(MR)  = 0.036u1(LC) + 0.192u2(RE) + 0.326u3(MTS) + 0.326u4(MC) + 0.120u5(MR) 
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Table 10  
Mathematical modeling of CRDEA model for ASEA-IRB 60/2 (for cone 1) 
Max 0.9705v1 + 0.6355v2 + 0.1217v3 + 0.3557v4  
subject to  
0.9705v1 + 0.6355v2 + 0.1217v3 + 0.3557v4 - 0.7861u1 ≤ 0 0.1027v1 + 0.2542v2 + 0.7304v3 + 0.3740v4 - 0.2948u1 ≤ 0 
0.1100v1 + 0.4321v2 + 0.3652v3 + 0.6022v4 - 0.1965u1 ≤ 0 0.1618v1 + 0.2502v2 + 0.4869v3 + 0.3467v4 - 0.3931u1 ≤ 0 
0.0404v1 + 0.1401v2 + 0.1217v3 + 0.3288v4 - 0.1965u1 ≤ 0 0.0728v1 + 0.2542v2 + 0.0852v3 + 0.1825v4 - 0.1572u1 ≤ 0 
0.0485v1 + 0.0494v2 + 0.2435v3 + 0.3306v4 - 0.1965u1 ≤ 0 0.7861u1 = 1 
v1 - v2 ≥ 0, v2 - v3 ≥ 0,  v3 - v4 ≥ 0 Objective function value is 1.000. 
 
Table 11  
Cone-ratio efficiencies for the alternative robots 
Cone number Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 

1 1.0000 0.7988 1.0000 0.5680 0.4180 0.7670 0.4452 
2 1.0000 0.6453 1.0000 0.5261 0.4451 0.7670 0.4452 
3 1.0000 0.6453 1.0000 0.5261 0.5184 0.6436 0.5323 
4 1.0000 0.7468 1.0000 0.5590 0.5184 0.6103 0.5779 
5 1.0000 1.0000 1.0000 0.6848 0.4180 0.6465 0.5608 
6 1.0000 1.0000 1.0000 0.6851 0.4556 0.6103 0.5998 
7 0.7405 0.7988 1.0000 0.4952 0.4180 0.7540 0.4452 
8 0.4285 0.6453 1.0000 0.4125 0.4534 0.7354 0.4452 
9  0.3676 0.6470 1.0000 0.4124 0.4533 0.7353  0.4455 
10 0.7405 0.6452 1.0000 0.4124 0.4450  0.7540  0.4451 
11 0.4759  0.8231 1.0000  0.4952 0.4180 0.7353 0.4451 
12  0.3676 0.8231 1.0000  0.4621  0.4220  0.7353 0.4455 
13 0.5296 1.0000 1.0000 0.5971 0.4180 0.5679 0.5599 
14 0.5006 1.0000 1.0000 0.5954 0.4556 0.4925 0.6163 
15 0.4760 1.0000 1.0000 0.5597 0.4180 0.5679 0.5595 
16 0.3450 1.0000 1.0000 0.5435 0.4220 0.5321 0.5595 
17 0.3450 1.0000 1.0000 0.5435 0.4657 0.4925 0.6241 
18 0.3450 1.0000 1.0000 0.5502 0.4657 0.4925 0.6241 
19 0.4655 0.6453 1.0000 0.4125 0.5460 0.5566 0.5490 
20 0.4655 0.7468 1.0000 0.4618 0.5460 0.4925 0.5779 
21 0.4285 0.6453 1.0000 0.4125 0.5460 0.5566 0.5490 
22 0.3450 0.6471 1.0000 0.4125 0.5460 0.5278 0.5490 
23 0.3450 0.7609 1.0000 0.4307 0.5460 0.4925 0.5934 
24 0.3450 0.7609 1.0000 0.4618 0.5460 0.4925 0.5934 

Using Eq. (22) and Eq. (23), the utility functions for different criteria for ASEA-IRB 60/2 robot are 
calculated, as given below. 

 
Utility function for LC : u1(LC) = [(LC - 2.5)/(60 - 2.5)]0.5 
Utility function for RE : u2(RE) = (0.4 - RE)/(0.4 - 0.08) 
Utility function for MTS : u3(MTS) = [(MTS - 560)/(2540 - 560)]0.5 
Utility function for MC : u4(MC) = [(MC - 350)/(3000 - 350)]0.5 
Utility function for MR : u5(MR) = [(MR - 508)/(1676 - 508)]0.5 

Table 12  
Criteria-wise utility values for example 1 
Robot LC RE MTS MC MR
ASEA-IRB 60/2 1 0 1 0.2379 0.6424
Cincinnati Milacrone T3-726 0.25876 0.78125 0.4799 1 0.6755
Cybotech V15 Electric Robot 0.273464 0.9375 0.7678 0.6588 1
 

Table 14 shows the overall utility values and rankings of the efficient robot alternatives. From these 
utility values, it is clear that Cybotech V15 Electric Robot is the best choice followed by Cincinnati 
Milacrone T3-726 and ASEA-IRB 60/2. Bhangale et al. (2004), Rao (2007) and Chatterjee et al. (2010) 
also identified Cybotech V15 Electric Robot as the best choice. While comparing the obtained rankings 
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with those of the past researchers, excellent consistency is observed for all the DEA-based models. Fig. 
1 portrays the utility functions for all the five considered criteria. 
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Fig. 1. Utility functions for different criteria for example 1 

Table 13  
Weights of different criteria  

Criteria LC RE MTS MC MR 
wi 0.036 0.192 0.326 0.326 0.120 

 
Table 14  
Overall utility values and rankings of the robots 
Robot Overall utility Rank Bhangale et al. (2004) Rao (2007) Chatterjee et al. (2010)
ASEA-IRB 60/2 0.5166 3 2 4 3
Cincinnati Milacrone T3-726 0.7228 2 3 2 2
Cybotech V15 Electric Robot 0.7749 1 1 1 1

 

4.2 Example 2 
 
To validate the robustness of DEA models, another industrial robot selection problem is considered 
here. Karsak et al. (2012) applied the cross efficiency analysis model of DEA to solve a robot selection 
problem in a given industrial scenario while considering 12 competitive robot alternatives and five 
criteria, i.e. cost (C), handling coefficient (HC), load capacity (LC), repeatability (R) and velocity (V). 
Among these, cost is the only input (non-beneficial) and the remaining four criteria are considered as 
outputs (beneficial). In this example, the reciprocal of repeatability is considered as a beneficial 
attribute. Cost is the catalogue price of a robot. The value of handling coefficient can be determined 
from various features, like diameter (in mm), elevation (in mm), basic rotation (in degree), roll (in 
degree), pitch (in degree) and yaw (in degree). The diameter, elevation and basic rotation are related to 
the work area to a robot arm, whereas, roll, pitch and yaw are related to rotational angles of the robot 
wrist about the three principal axes. The original decision matrix is shown in Table 15 and the 
corresponding normalized decision matrix is given in Table 16.  
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Using the normalized decision matrix of Table 16, the corresponding LP formulations for CCR, BCC, 
additive and cone-ratio models are developed for all the alternative robots. Tables 17, 18, 19 and 20 
respectively show those mathematical formulations as involved in CCR, BCC, additive and cone-ratio 
models for robot 1. The LP problems are subsequently solved using LINDO software and the obtained 
results are given in Table 21.  

 
Table 15  
Robot selection decision matrix for example 2 (Karsak et al., 2012) 

Robot Cost  (US$)  Handling Load capacity  1/Repeatability  (mm-1) Velocity  (m/s)
1 100000 0.995 85 1.7 3
2 75000 0.933 45 2.5 3.6
3 56250 0.875 18 5 2.2
4 28125 0.409 16 1.7 1.5
5 46875 0.818 20 5 1.1
6 78125 0.664 60 2.5 1.35
7 87500 0.88 90 2 1.4
8 56250 0.633 10 8 2.5
9 56250 0.653 25 4 2.5

10 87500 0.747 100 2 2.5
11 68750 0.88 100 4 1.5
12 43750 0.633 70 5 3

 
Table 16  
Normalized decision matrix for example 2 

Robot C HC LC R V
1 0.4220 0.3698 0.3898 0.1210 0.3749
2 0.3165 0.3468 0.2064 0.1780 0.4499
3 0.2374 0.3252 0.0825 0.3560 0.2749
4 0.1187 0.1520 0.0734 0.1210 0.1874
5 0.1978 0.3040 0.0917 0.3560 0.1375
6 0.3297 0.2468 0.2751 0.1780 0.1687
7 0.3692 0.3271 0.4127 0.1424 0.1749
8 0.2374 0.2353 0.0459 0.5696 0.3124
9 0.2374 0.2427 0.1146 0.2848 0.3124

10 0.3692 0.2777 0.4586 0.1424 0.3124
11 0.2901 0.3271 0.4586 0.2848 0.1874
12 0.1846 0.2353 0.3210 0.3560 0.3749

 
Table 17  
Mathematical modeling of CCR model for robot 1 
min g = 0.4220v1  
subject to  
-0.3698u1 - 0.3898u2 - 0.1210u3 - 0.3749u4 + 0.4220v1 ≥ 0 -0.3468u1 - 0.2064u2 - 0.1780u3 - 0.4499u4 + 0.3165v1 ≥ 0
-0.3252u1 - 0.0825u2 - 0.3560u3 - 0.2749u4 + 0.2374v1 ≥ 0 -0.1520u1 - 0.0734u2 - 0.1210u3 - 0.1874u4 + 0.1187v1 ≥ 0
-0.3040u1 - 0.0917u2 - 0.3560u3 - 0.1375u4 + 0.1978v1 ≥ 0 -0.2468u1 - 0.2751u2 - 0.1780u3 - 0.1687u4 + 0.3297v1 ≥ 0 
-0.3271u1 - 0.4127u2 - 0.1424u3 - 0.1749u4 + 0.3692v1 ≥ 0 -0.2353u1 - 0.0459u2 - 0.5696u3 - 0.3124u4 + 0.2374v1 ≥ 0
-0.2427u1 - 0.1146u2 - 0.2848u3 - 0.3124u4 + 0.2374v1 ≥ 0 -0.2777u1 - 0.4586u2 - 0.1424u3 - 0.3124u4 + 0.3692v1 ≥ 0 
-0.3271u1 - 0.4586u2 - 0.2848u3 - 0.1874u4 + 0.2901v1 ≥ 0 -0.2353u1 - 0.3210u2 - 0.3560u3 - 0.3749u4 + 0.1846v1 ≥ 0 
0.3698u1 + 0.3898u2 + 0.1210u3 + 0.3749u4 = 1 Objective function value (g) is 1.5308. 

 
Table 18  
Mathematical modeling of BCC model for robot 1 
Min G 
subject to 
0.4220G - 0.4220λ1 - 0.3165λ2 - 0.2374λ3 - 0.1187λ4 - 0.1978λ5 - 0.3297λ6 - 0.3692λ7 - 0.2374λ8 - 0.2374λ9 - 0.3692λ10 - 0.2901λ11 - 0.1846λ12 ≥ 0 
0.3698λ1 + 0.3468λ2 + 0.3252λ3 + 0.1520λ4 + 0.3040λ5 + 0.2468λ6 + 0.3271λ7 + 0.2353λ8 + 0.2427λ9 + 0.2777λ10 + 0.3271λ11 + 0.2353λ12 ≥ 0.3698 
0.3898λ1 + 0.2064λ2 + 0.0825λ3 + 0.0734λ4 + 0.0917λ5 + 0.2751λ6 + 0.4127λ7 + 0.0459λ8 + 0.1146λ9 + 0.4586λ10 + 0.4586λ11 + 0.3210λ12 ≥ 0.3898 
0.1210λ1 + 0.1780λ2 + 0.3560λ3 + 0.1210λ4 + 0.3560λ5 + 0.1780λ6 + 0.1424λ7 + 0.5696λ8 + 0.2848λ9 + 0.1424λ10 + 0.2848λ11 + 0.3560λ12 ≥ 0.1210 
0.3749λ1 + 0.4499λ2 + 0.2749λ3 + 0.1874λ4 + 0.1375λ5 + 0.1687λ6 + 0.1749λ7 + 0.3124λ8 + 0.3124λ9 + 0.3124λ10 + 0.1874λ11 + 0.3749λ12 ≥ 0.3749 
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11+λ12 = 1 
Objective function value (G) is 1.0000. 
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Table 19  
Mathematical modeling of additive model for robot 1 
Max Po = S1

- + S1
+ + S2

++ S3
++ S4

+ 
subject to     
0.4220λ1 + 0.3165λ2 + 0.2374λ3 + 0.1187λ4 + 0.1978λ5 + 0.3297λ6 + 0.3692λ7 + 0.2374λ8 + 0.2374λ9 + 0.3692λ10 + 0.2901λ11 + 0.1846λ12 + S1

- = 0.4220 
0.3698λ1 + 0.3468λ2 + 0.3252λ3 + 0.1520λ4 + 0.3040λ5+ 0.2468λ6 + 0.3271λ7 + 0.2353λ8 + 0.2427λ9 + 0.2777λ10 + 0.3271λ11 + 0.2353λ12 - S1

+ = 0.3698 
0.3898λ1 + 0.2064λ2 + 0.0825λ3 + 0.0734λ4 + 0.0917λ5 + 0.2751λ6 + 0.4127λ7 + 0.0459λ8 + 0.1146λ9 + 0.4586λ10 + 0.4586λ11 + 0.3210λ12 - S2

+ = 0.3898 
0.1210λ1 + 0.1780λ2 + 0.3560λ3 + 0.1210λ4 + 0.3560λ5 + 0.1780λ6 + 0.1424λ7 + 0.5696λ8 + 0.2848λ9 + 0.1424λ10 + 0.2848λ11 + 0.3560λ12 - S3

+

 
= 0.1210 

0.3749λ1 + 0.4499λ2 + 0.2749λ3 + 0.1874λ4 + 0.1375λ5 + 0.1687λ6 + 0.1749λ7 + 0.3124λ8 + 0.3124λ9 + 0.3124λ10 + 0.1874λ11 + 0.3749λ12 - S4
+ = 0.3749 

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 + λ9 + λ10 + λ11+ λ12 = 1 
Objective function value (Po) is 0. 

 
Table 20  
Mathematical modeling of CRDEA model for robot 1 (for cone 1) 
Max 0.3698v1 + 0.3898v2 + 0.1210v3 + 0.3749v4  
subject to  
0.3698v1 + 0.3898v2 + 0.1210v3 + 0.3749v4 - 0.4220u1 ≤ 0 0.3468v1 + 0.2064v2 + 0.1780v3 + 0.4499v4 - 0.3165u1 ≤ 0 
0.3252v1 + 0.0825v2 + 0.3560v3 + 0.2749v4 - 0.2374u1 ≤ 0 0.1520v1 + 0.0734v2 + 0.1210v3 + 0.1874v4 - 0.1187u1 ≤ 0 
0.3040v1 + 0.0917v2 + 0.3560v3 + 0.1375v4 - 0.1978u1 ≤ 0 0.2468v1 + 0.2751v2 + 0.1780v3 + 0.1687v4 - 0.3297u1 ≤ 0 
0.3271v1 + 0.4127v2 + 0.1424v3 + 0.1749v4 - 0.3692u1 ≤ 0 0.2353v1 + 0.0459v2 + 0.5696v3 + 0.3124v4 - 0.2374u1 ≤ 0 
0.2427v1 + 0.1146v2 + 0.2848v3 + 0.3124v4 - 0.2374u1 ≤ 0 0.2777v1 + 0.4586v2 + 0.1424v3 + 0.3124v4 - 0.3692u1 ≤ 0 
0.3271v1 + 0.4586v2 + 0.2848v3 + 0.1874v4 - 0.2901u1 ≤ 0 0.2353v1 + 0.3210v2 + 0.3560v3 + 0.3749v4 - 0.1846u1 ≤ 0
0.4220u1 = 1 v1 - v2 ≥ 0, v2 - v3 ≥ 0, v3 - v4 ≥ 0 
Objective function value is 0.6532465.  

 

It is observed from Table 21 that robot alternatives 5, 8 and 12 emerge out as the efficient choices from 
CCR, BCC and additive models. It is also found that robot 12 is the most consistent efficiency scorer 
among all the 24 cones for CRDEA model. 
 
Table 21  
Efficiency scores for alternative robots 

Robot CCR efficiency score BCC efficiency score Additive efficiency score
1 1.5308 1.0000 0 
2 1.2171 1.0000 0.3608E-15 
3 1.2171 1.0000 0 
4 1.0521 1.0000 0 
5 1.0000 1.0000 0 
6 1.7738 0.5644 0.5468 
7 1.4627 0.7702 0.2799 
8 1.0000 1.0000 0 
9 1.3066 0.7673 0.3746 
10 1.3999 1.0000 0 
11 1.0999 1.0000 0 
12 1.0000 1.0000 0 

Now, the weighted overall efficiency ranking method is applied to identify the most competent robot 
among the short-listed alternatives. Based on Eqns. (22)-(23), the computations of criteria-wise utility 
functions for robot 1 are shown as below.  

    
Utility function for C : u1(C) = (100000-C)/(100000-28125) 
Utility function for HC : u2(HC) = [(HC - 0.409)/(0.995 - 0.409)]0.5 
Utility function for LC : u3(LC) = [(LC - 10)/(100 - 10)]0.5 
Utility function for R : u4(R) = [(R - 1.7)/(8 - 1.7)]0.5 
Utility function for V : u5(V) = [(V - 1.1)/(3.6 - 1.1)]0.5  
 
The weights of different criteria for this robot selection problem are calculated using AHP method, as 
given in Table 22.  
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Table 22  
Weights of different criteria  

Criteria C HC LC R V
wi 0.1071 0.1071 0.1624 0.3910 0.2323 

The overall utility value for a robot is derived from the criteria weights and criteria-wise utility values, 
using the flowing expression:  
 

Overall utility = w1(C)xu1(C) + w2(HC)xu2(HC) + w3(LC)xu3(LC) + w4(R)xu4(R) + w5(V)xu5(V) 
                        = 0.1071u1(C) + 0.1071u2(HC) + 0.1624u3(LC) + 0.3910u4(R) + 0.2323u5(V) 

Table 23 shows the results of weighted overall efficiency ranking method. From this table, it is clear 
that the overall utility value of robot 12 is higher than that of the other two candidate robots. So, the 
best choice of alternative is robot 12. Braglia and Gabbrielli (2000) and Karsak et al. (2012) also 
identified robot 12 as the best selection. Hence, from the derived results, it is found that the two-phase 
method employing DEA models is a consistent and effective technique for robot selection decision-
making. Fig. 2 shows the utility functions for all the five criteria as involved in this example.        
 

Table 23  
Overall utility values of robots for example 2  

Robot C HC LC R V Overall utility Rank
5 0.7391 0.8354 0.3333 0.7237 0 0.5058 3
8 0.6087 0.6183 0 1.0000 0.7483 0.6963 2

12 0.7826 0.6183 0.8165 0.7237 0.8718 0.7682 1
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Fig. 2. Utility functions for different criteria for example 2 

5. Conclusions 
 
The two demonstrated robot selection examples show that the DEA models can derive quite acceptable 
and satisfactory ranking results to assist the decision makers in taking appropriate decisions. The most 
efficient robot alternatives are first identified by CCR, BCC and additive models of DEA and then, the 
best robot alternative is chosen using the weighted overall efficiency ranking method. Thus, this 
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combined approach helps to determine the most appropriate robot by eliminating the unsuitable ones. 
The CCR, BCC and additive models usually provide multiple choices as the efficient alternative 
solutions, whereas, CRDEA model provides a single unique solution. But in a general case, CRDEA 
model may also identify multiple efficient alternatives to be considered. The main disadvantage of 
CRDEA model is that it is mathematically rigorous and not easily comprehensible. Thus, the two-phase 
approach combining any of the CCR, BCC and additive models of DEA and weighted overall 
efficiency ranking method can be effectively employed to any type of complex decision-making 
problems, involving selection of the most appropriate alternative with conflicting performance 
measures. 
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