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 Ultrasonic machining (USM) process has multiple performance measures, e.g. material removal 
rate (MRR), tool wear rate (TWR), surface roughness (SR) etc., which are affected by several 
process parameters. The researchers commonly attempted to optimize USM process with respect 
to individual responses, separately. In the recent past, several systematic procedures for dealing 
with the multi-response optimization problems have been proposed in the literature. Although 
most of these methods use complex mathematics or statistics, there are some simple methods, 
which can be comprehended and implemented by the engineers to optimize the multiple 
responses of USM processes. However, the relative optimization performance of these 
approaches is unknown because the effectiveness of different methods has been demonstrated 
using different sets of process data. In this paper, the computational requirements for four simple 
methods are presented, and two sets of past experimental data on USM processes are analysed 
using these methods. The relative performances of these methods are then compared. The results 
show that weighted signal-to-noise (WSN) ratio method and utility theory (UT) method usually 
give better overall optimisation performance for the USM process than the other approaches. 
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1. Introduction  
 
Ultrasonic machining (USM) process is of particular interest for cutting of non-conductive, brittle workpiece 
materials, such as inorganic glasses, titanium alloys, engineering ceramics etc. because unlike other non-
traditional machining processes, it does not thermally damage the workpiece or introduce significant levels of 
residual stress.In this process, as there is no direct contact between the tool and the workpiece surface, it is 
appropriate for machining of very thin components. It is also considered as quite safe because it does not involve 
high voltage, chemicals, mechanical force and heat. The fundamental principles of the USM process, the 
material removal mechanisms involved and the effect of operating parameters on material removal rate (MRR), 
tool wear rate (TWR) and surface roughness (SR) are available in Thoe et al. (1998) and Singh and Khamba 
(2006). Whereas Singh and Khamba (2006) focussed their discussion on the machining of titanium and its 
alloys, Thoe et al. (1998) have given emphasis on the machining of engineering ceramics. They identified the 



  
important parameters of the USM process as power rating, type of the tool, slurry concentration, slurry type, 
slurry temperature, slurry size, ultrasonic amplitude and machining time.  

Since each performance measure (response) of USM process is affected by several process parameters, 
determination of the optimal process condition is essential for achieving the best quality machining performance. 
Many authors have attempted to determine the optimal process conditions for USM process for different 
response variables using Taguchi method (Phadke, 1989). The advantage of Taguchi method (Phadke, 1989) is 
that it facilitates assessing the effects of a large number of process parameters using lesser number of 
experimental trials. Another important advantage of Taguchi method is that it optimizes the process with respect 
to signal-to-noise (SN) ratio of the response instead of the response itself and thus, it can make the performance 
of a process to be insensitive to noise factors. However, in this method, each performance characteristic is 
separately analysed and therefore, the parametric settings can be optimised with respect to one performance 
characteristic at a time. 

Singh and Khamba (2007) have observed that ultrasonic power rating significantly improves MRR (having 28% 
contribution), followed by type of the tool (with contribution of 24.6%) in case of ultrasonic machining of 
titanium and its alloys. Dvivedi and Kumar (2007) have found that the slurry concentration and grit size have 
significant effects on SR as compared to other parameters in case of ultrasonic drilling of titanium and its alloys. 
Kumar et al. (2009) have studied ultrasonic machining of commercially pure titanium and have observed that the 
tool material and power rating contribute more to the machining performance of USM for titanium in terms of 
tool wear rate (TWR). Singh and Khamba (2009) and Kumar and Khamba (2010) have developed a models for 
prediction of the MRR in ultrasonic machining of titanium. Rao et al. (2010) have applied three non-traditional 
optimization algorithms, namely, artificial bee colony (ABC), harmony search (HS) and particle swarm 
optimization (PSO) aiming to determine the optimal process condition that would maximize the MRR. They 
have found that the three algorithms led to three different optimal combinations. It may be noted that all these 
researchers (Singh & Khamba, 2007; Dvivedi & Kumar, 2007; Singh & Khamba, 2009; Kumar et al., 2009, 
Kumar & Khamba, 2010; Rao et al., 2010) have studied the effects of various parameters of the USM process on 
a single response only. 

Some other researchers, e.g. Kumar et al. (2008), Kumar and Khamba (2008) and Jadoun et al. (2009) have 
observed multiple responses while studying the USM processes. However, they have attempted to determine the 
optimal process conditions separately for different responses. Kumar and Khamba (2008) have optimized TWR 
and SR separately. Kumar et al. (2008) have determined the optimal conditions for MRR, TWR and SR 
separately. Jadoun et al. (2009) have carried out a study on ultrasonic drilling of engineering ceramics and 
observed three performance measures, e.g. out-of-roundness (OOR), hole oversize (HOS) and conicity (CC). 
Kumar et al. (2008) and Jadoun et al. (2009) have found that the optimal process conditions with respect to 
different response variables are different. But, during practical operation, the engineers are required to use only 
one set of optimal condition for the process parameters. Phadke (1989) has recommended using experience and 
engineering knowledge when the optimal process conditions for various responses are different. However, by 
human judgment, contradictory results may be reached by different engineers implying that the uncertainty in the 
optimal factor levels will be increased. 

The real life need is to determine the parametric settings is such a way that the multiple performance measures 
are optimized simultaneously. In the recent past, several systematic procedures for dealing with the multi-
response optimization problems have been proposed in the literature, which can be effectively used to optimize 
the multiple responses of USM processes. Although most of these methods use complex mathematics or 
statistics, there also exist some simple methods, which can easily be comprehended by the engineers. All the 
necessary computations for application of these methods can be performed using Excel worksheet and so can 
easily be implemented by the engineers. These approaches are weighted signal-to-noise (WSN) ratio method 
(Tai et al., 1992), grey relational analysis (GRA) method (Singh et al., 2004), multi-response signal-to-noise 
(MRSN) ratio method (Ramakrishnan & Karunamoorthy, 2006) and utility theory (UT) approach (Walia, 2006). 
None of these methods take into consideration the correlation among the responses. 

Only a few researchers (Kumar & Khamba, 2010; Gauri et al., 2011) attempted to simultaneously optimize the 
multiple responses of USM process. Kumar and Khamba (2010) simultaneously optimized MRR and TWR in 
the ultrasonic machining of co-based super alloy using multiple SN ratio (MSNR) method, which is essentially 
MRSN method (Ramakrishnan & Karunamoorthy, 2006). On the other hand, Gauri et al. (2011) took into 
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account the correlations among the multiple responses of USM process and compared the optimization 
performances of three methods that take care of the correlations among the multiple responses. However, 
multiple responses of USM process may not be truly correlated always. For example, correlation analysis of the 
experimental data of Kumar and Khamba (2010) reveals that correlation coefficient between MRR and TWR is 
0.15, which is not statistically significant at 5% level. Selection of the most appropriate method for optimization 
in such situations remains an important point of concern to the engineers. 

The aim of this paper is to compare the overall performances of four methods, e.g. WSN, GRA, MRSN and UT 
methods in optimizing the multiple responses of USM process. The computational requirements of the four 
methods are standardized first for meaningful comparison of the optimization performances and then two sets of 
past experimental data on USM processes are analyzed using these methods and the results are compared. 

2. Literature Review on Multi-response Optimization Methods 

Often the required process conditions for two or more response variables are contradictory. The goal of multi-
response optimization is, therefore, to find out the settings of the input variables that can achieve an optimal 
compromise of the response variables. With this aim, several multi-response optimization approaches, mostly 
response surface methodology (RSM)-based, have been proposed in statistical literature. These include 
desirability function approach (Derringer & Suich, 1980; Kim & Lin, 2000), multivariate loss function approach 
(Pignatiello & Joseph, 1993; Tsui, 1999), Mahalanobis distance minimization approach (Khuri & Conlon, 1981) 
etc. These mathematically rigorous techniques are usually impractical for application by the engineers who may 
not have a strong background in mathematics/statistics.  

Some researchers have been motivated to make use of the techniques of artificial intelligence, like artificial 
neural network (Tong and Hsieh, 2000; Hsieh and Tong, 2001), genetic algorithm (Hsi et al., 1999; Jeyapaul et 
al., 2005) etc. for optimization of multi-response processes. The problem with the artificial intelligence-based 
techniques is that, in these approaches, the parameters can be set optimally, but nothing can be known about the 
relationship between the control factors and the responses, and so they do not help the engineers to acquire 
sufficient engineering experience during optimization of the concerned process. 

Considerable researches have been carried out in recent time aiming to establish an objective method for solving 
multi-response optimization problems using Taguchi method. Some of the proposed approaches in this regard, 
usually found in engineering literature, are WSN method (Tai et al., 1992), GRA method (Singh et al., 2004), 
MRSN method (Ramakrishnan & Karunamoorthy, 2006) and UT approach (Walia, 2006). These methods do not 
take into consideration the correlation among the multiple responses and hence, are ideally applicable when the 
multiple responses are uncorrelated. In these approaches, the quality losses or SN ratios of individual responses 
are first converted into an overall process performance index (PPI) and then, the factor-level combination that 
will optimize the PPI is determined examining the level averages on the PPI. However, all these four methods 
may not result in the same optimal solution. So it is very important to know which method can give the best 
optimization performance. 

3. The WSN, GRA, MRSN and UT Methods 

Taguchi (Phadke, 1989) categorized the response variables into three different types, e.g. the smaller the better 
(STB), the larger the better (LTB) and nominal the best (NTB). Assuming that there are m experimental trials 
and in each trial quality losses of a set of p response variables are measured, the formulas for computation of 
quality loss ( ijL ) for thj response corresponding to thi trial (i = 1,2,…,m; j = 1,2,…,p) for different types of 
response variables are given as follows: 
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experimental value of thj response variable in thi trial at thk  replication and ijL  is the computed quality loss for 
thj response in thi trial. Taguchi recommended to convert the quality losses, ( )m pL ×  into signal-to-noise (SN) 

ratios, ( )m pη × . The SN ratio ( ijη ) for the thj response in thi trial for STB and LTB response variable are 
computed using the equation shown below: 
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The SN ratio is always expressed in decibel (dB) unit. Since log is a monotone function, minimization of quality 
loss is equivalent to maximization of SN ratio. 

For solving a multi-response optimization problem, all the four methods considered in this paper involves the 
following three generic steps: (a) conversion of the multiple responses into a single PPI, (b) estimation of the 
factor effects on the PPI and then determining the optimal factor-level combination that can optimize the PPI 
value, and (c) validation of the optimal factor-level combination using confirmatory experiment. The four 
methods differ mainly with respect to the adopted approaches for conversion of the multiple responses into the 
PPI. The remaining two generic steps are the same for all the four methods. 

It may be noted that Tai et al. (1992) derived the PPI values using the SN ratios as the input data, Sing et al. 
(2004) and Walia et al. (2006) derived the PPI values using the observed responses as the input data and 
Ramakrishnan and Karunamoorthy (2006) derived the PPI values using the quality losses as the input data. On 
the other hand, often it is required to normalise or scale first the input data for each response variable prior to 
computation of the PPI values. The aim of this normalisation or scaling is to reduce the variability among 
different responses. Past researchers have adopted different formulas for normalisation of the input data. For 
example, Ramakrishna and Karunamoorthy (2006) and Singh et al. (2004) have normalised the input data using 
the following equation: 
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have normalised the input data using the following equation: 
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The overall understanding and comparison of various methodologies can be better if all the four methods are 
applied taking similarly transformed data as the input data and the same formula is used for normalisation or 
scaling of the input data. According to Taguchi (Phadke, 1989), the logarithmic transformation improves 
additivity of effects of two or more control factors, and therefore, optimization of SN ratios is always preferred 
to quality losses or observed responses. So, in this paper, all the four methods except the MRSN ratio method are 
described considering the SN ratio values as the input data. In case of the MRSN ratio method, the SN ratio 
value for a trial is computed after estimating the weighted total quality loss in the trial and so, in this method, 
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quality losses are considered as the input data. On the other hand, for all the four methods, it is planned to scale 
the SN ratio values of each response into (0, 1) interval using Eq. (7)before computation of the PPI value. Based 
on standardisation of these initial computational requirements, the detailed procedures for computing the PPI 
values and subsequent determination of the optimal factor-level combinations in the considered four methods are 
described in the following sub-sections. 

3.1 WSN ratio method (Tai et al., 1992) 

In this method, the weighted signal-to-noise (WSN) ratio is considered as the PPI value. The procedure for 
computation of WSN values for different trials and determination of the optimal process condition can be 
described as below:  

Step 1: Compute the SN ratio values of each response for all the trials using Eqns. (1) - (5) as appropriate 

Step 2: Obtain the scaled SN ratio values of each response for all the trials using Eqn. (7) 

Step 3: Compute the WSN ratio value for thi trial using the following equation: 

)(
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Step 4: Use arithmetic average to calculate the factor effects on WSN and then decide the optimal factor-level 
combination by higher-the-better factor effects. 

3.2 GRA method(Singh et al., 2004) 

In this method, the grey relational grade (GRG) is considered as the PPI. The procedure for 
computation of GRG value for different trials and determination of the optimal process condition can 
be described as below: 
Step 1: Compute the SN ratio values of each response for all the trials using Eqns. (1) – (5). 

Step 2: Obtain the scaled SN ratio values for all the responses for all the trials using Eqn. (7). 

Step 3: Compute the grey relational coefficients of each response for all the trials. 

For a response j of alternative (trial) i , if the value of S
ijη is equal to 1, the performance of alternative i  is 

the best one for response j . So the grey relational coefficient ( ijγ ) for thj response in thi trial can be 
computed as below: 
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distinguishing coefficient ( [0,1]ξ ∈ ). The purpose of the distinguishing coefficient is to expand or 
compress the range of the grey relational coefficient and usually, it is set equal to 0.5 

Step 4: Calculate the grey relational grade ( iGRG ) corresponding to thi  trial using the following equation: 
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Step 5: Use arithmetic average to calculate the factor effects on GRG value and then decide the optimal factor-
level combination by higher-the-better factor effects. 

3.3 MRSN ratio method(Ramakrishnan & Karunamoorthy, 2006) 

In the MRSN ratio method, the multi-response signal-to-noise (MRSN) ratio is taken as the PPI value. The 
procedure for computation of MRSN values for different trials and determination of the optimal process 
condition can be described as below:  

Step 1: Compute the quality losses of each response for all the trials using Eqns. (1) - (5) as appropriate. 

Step 2: Obtain the scaled quality loss ( S
ijL ) for each response variable in all the trials using Eqn. (7) 

Step 3: Compute the total weighted quality loss ( iTL ) for thi trial as given below:  

∑
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S
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where, jW  is the assigned weight for thj response and 1
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Step 4: Determine the multi-response signal-to-noise ( iMRSN ) ratio for thi trial as follows: 

)(log10 10 ii TLMRSN −=  (12) 

Step 5: Use arithmetic average to calculate the factor effects on MRSN and then decide the optimal factor-level 
combination by higher-the-better factor effects. 

3.4 UT approach(Walia, 2006) 
The UT approach for the multi-response optimization is developed based on the utility concept. So the utility 
concept is described first and then the utility method for the multi-response optimization is presented. 

3.4.1 The utility concept  

Utility can be defined as the usefulness of a product or a process in reference to the expectations of the users. 
The overall usefulness of a process/product can be represented by a unified index termed as utility which is the 
sum of the individual utilities of various quality characteristics of the process/product. The methodological basis 
for utility approach is to transform the estimated value of each quality characteristic into a common index.  

If iy is the measure of effectiveness of an attribute or quality characteristic (response) i  and there are p attributes 
evaluating the outcome space, then the joint utility function can be expressed as: 

( ))( ),...,( ),() y,..., y,( 221121 ppp yUyUyUfyU = , (13) 

where )( ii yU is the utility of the thi attribute or quality characteristic. The overall utility function is the sum of 
individual utilities if the attributes are independent, and is given as follows: 
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The attributes may be assigned weights depending upon the relative importance or priorities of the 
characteristics. The overall utility function after assigning weights to the attributes can be expressed as: 

∑
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where iW  is the weight assigned to the attribute i . The sum of the weights for all the attributes must be equal to 
1. A preference scale for each attribute or response variable is constructed for determining its utility value. Two 



R. Chakravorty et al. / International Journal of Industrial Engineering Computations 4 (2013) 
 

arbitrary numerical values (preference number) 0 and 9 are assigned to the just acceptable and the best value of 
the response variable respectively. The preference number ( iP ) for the thi response variable can be expressed on 
a logarithmic scale as follows (Kumar et al., 2000): 

⎟⎟
⎠

⎞
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where iy  = value of thi response variable, iy′= just acceptable value of thi response variable and iA  = constant 
for the thi response variable. The value of iA  can be found by the condition that if iy  = *

iy (where *
iy is the 

optimal or best value for the thi response), then iP  = 9. Therefore, 
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The overall utility (U) can be calculated as follows: 
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3.4.2 The utility method 

The overall utility value is considered as the PPI in the utility method for multi-response optimization. This 
method can be implemented using the following six steps: 

Step 1: Compute the SN ratio values for each response for all the trials using Eqns. (1) – (5) as appropriate. 

Step 2: Determine the optimal process condition separately for each response variable using Taguchi method and 
then predict optimal value for each response variable. 

For a response variable, the optimal process condition will be that one which maximizes the SN ratio 
value. The optimal SN ratio for the response variable can be estimated using additive model. Suppose 
the optimal SN ratio for a response variable is optη . Then, the optimal value ( optV ) of the STB and LTB 
type response variable can be obtained using Eqns. (19) and (20) respectively. 

)10/(10 opt
optV η−=  (19) 

)10/(10
1
optoptV η−=  

(20) 
 

Step 3: Determine the just acceptable values for all the response variables.  

If the response variable is STB type, the maximum observed value of the response variable will be 
taken as the just acceptable value for the variable. On the other hand, if the variable is LTB type, the 
minimum observed value of the variable will be taken as the just acceptable value for the variable. 

Step 4: Construct the preference scale for each response variable using Eqns. (16) and (17) 

Step 5: Determine the overall utility value for each trial using Eqn. (18) 

Step 6: Use arithmetic average to calculate the factor effects on the overall utility value and then decide the 
optimal factor-level combination by higher-the-better factor effects. 

4. Analyses and Results 

As the computational procedures in various methods are different, often the derived optimal solutions differ. One 
natural interest, therefore, is to know which method gives the best solution. For this purpose, it is necessary to 
define an appropriate utility measure. From a process engineer’s perspective, the best solution should result in 



  
the minimum total quality loss which implies the maximum total SN ratio. Therefore, it is decided that the 
expected total SN ratio at the derived optimal process conditions will be considered as the utility metric for 
comparison of the optimization performances of the chosen four multi-response optimization methods. Two sets 
of past experimental data on USM processes (Kumar & Khamba, 2010; Kumar & Khamba, 2008) are taken here 
as two case studies for illustrative analyses and comparison of optimization performances. 

4.1 Case study 1 

Kumar and Khamba (2010) investigated ultrasonic machining of co-based super alloy. They used Stellite 6, the 
most useful cobalt, as the work material. In their investigation, the effects of five control factors, e.g. tool 
material (A), abrasive slurry material (B), slurry concentration in percentage by volume with water (C), grit size 
of slurry material (D) and power rating in percent of 500W (E) on two response variables, e.g. material removal 
rate (MRR)(higher-the-better) and tool wear rate (TWR)(smaller-the-better) were studied. They designed the 
experimentation considering three levels for factor A (Titan12, Titan15 and Titan31), three levels for factor B 
(Al2O3, SiC and B4C), three levels for factor C (20, 25 and 30), three levels for factor D (220, 320 and 500) and 
three levels for factor E (25, 50 and 75). Since they were interested to study the main effects only, they prepared 
the experimental layout using 18L  orthogonal array. The experimental layout along with the quality losses and 
the SN ratio values for various responses as obtained from Kumar and Khamba’s (2010) experimental data are 
given in Table 1.  

Often the relative importance of different responses is known to the process engineers. It can be observed from 
section 3 that all the four methods can take into account the relative importance of different responses by 
assignment of weights at some stages of computation of the PPI. According to Kumar and Khamba (2010) the 
weights for MRR and TWR should be 0.8 and 0.2 respectively.  It is decided to apply all the four optimization 
methods assuming the same weighting scheme for MRR and TWR.  The PPI values for WSN, GRA, MRSN and 
UT methods are computed using the steps as mentioned in sections 3.1, 3.2, 3.3 and 3.4.2 respectively. Table 2 
shows the computed PPI values for the four multi-response optimization methods. 

The level averages of the control factors on the PPI values of the four methods, i.e. WSN, GRG, MRSN and 
utility value are given in Table 3. It may be recalled from the discussion in section 3 that larger values of WSN, 
GRG, MRSN and utility value (bold faced) signify better quality. Consequently, the optimal conditions for the 
factors A, B, C, D and E with respect to WSN, GRG, MRSN and utility values are found to be 32331 EDCBA , 

22331 EDCBA , 22331 EDCBA and 32331 EDCBA  respectively. It is interesting to note that both WSN and UT 
methods result in the same optimal process condition. On the other hand, GRA and MRSN methods lead to the 
same optimal process condition. 

Table 1 
Experimental layout, quality loss and SN ratio values (case study 1) 
Sl. 
No. 

Factors Quality loss SN ratio 
A B C D E MRR TWR MRR TWR

1 1 1 1 1 1 34.67 0.0101 -15.40 19.95
2 1 2 2 2 2 36.86 0.0088 -15.67 20.57
3 1 3 3 3 3 29.20 0.0107 -14.65 19.69
4 2 1 2 2 3 35.52 0.0076 -15.50 21.21
5 2 2 3 3 1 47.21 0.0098 -16.74 20.07
6 2 3 1 1 2 33.94 0.0107 -15.31 19.71
7 3 2 1 3 2 73.45 0.0078 -18.66 21.05
8 3 3 2 1 3 56.35 0.0072 -17.51 21.43
9 3 1 3 2 1 79.21 0.0073 -18.99 21.39
10 1 3 3 2 2 21.52 0.0095 -13.33 20.23
11 1 1 1 3 3 37.05 0.0103 -15.69 19.86
12 1 2 2 1 1 33.97 0.0104 -15.31 19.81
13 2 2 3 1 3 36.75 0.0108 -15.65 19.66
14 2 3 1 2 1 36.39 0.0125 -15.61 19.04
15 2 1 2 3 2 41.35 0.0143 -16.17 18.45
16 3 3 2 3 1 63.21 0.0102 -18.01 19.93
17 3 1 3 1 2 66.55 0.0106 -18.23 19.75
18 3 2 1 2 3 57.73 0.0106 -17.61 19.77
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Table 2 
Computed PPI values (case study 1) 
Trial no. Process performance index (PPI)

WSN GRG MRSN Utility value 
1 0.6078 0.5622 5.77 6.56 
2 0.6121 0.5651 5.90 6.75 
3 0.6964 0.6374 6.86 7.55 
4 0.6777 0.6266 6.89 7.40 
5 0.4262 0.4671 3.66 5.04 
6 0.6052 0.5638 5.68 6.82 
7 0.2208 0.4368 1.32 3.76 
8 0.4091 0.5229 3.16 5.11 
9 0.1971 0.4611 0.96 3.18 
10 0.9198 0.9110 11.92 9.41 
11 0.5615 0.5338 5.18 6.15 
12 0.6114 0.5664 5.78 6.55 
13 0.5528 0.5307 5.04 6.09 
14 0.5176 0.5199 4.51 5.77 
15 0.3990 0.4662 3.23 4.79 
16 0.2381 0.4012 1.79 3.62 
17 0.1940 0.3867 1.42 3.28 
18 0.2826 0.4127 2.24 4.20 

 

Table 3 
Level averages on the WSN, GRG, MRSN and utility value (case study 1) 

Factor WSN GRG MRSN Utility value 
Level Level Level Level Level Level Level Level Level Level Level Level

A 0.668 0.530 0.257 0.629 0.529 0.437 6.90 4.83 1.82 7.16 5.99 3.86
B 0.440 0.451 0.564 0.506 0.496 0.593 3.91 3.99 5.65 5.23 5.40 6.38
C 0.466 0.491 0.498 0.505 0.525 0.566 4.12 4.46 4.98 5.54 5.70 5.76
D 0.497 0.534 0.424 0.522 0.583 0.490 4.48 5.40 3.67 5.74 6.12 5.15
E 0.433 0.492 0.530 0.496 0.555 0.544 3.74 4.91 4.90 5.12 5.80 6.09

 

The ultimate interest of an engineer is to minimise the overall quality loss, i.e. maximise the overall SN ratio 
value for his/her USM process. So the SN ratios of the individual responses under the optimal conditions with 
respect to different PPI values are predicted using the additive model (Phadke, 1989). Table 4 displays the 
predicted SN ratios for MRR and TWR under different optimal conditions. The results in Table 4 reveal that the 
optimal process condition derived based on the WSN or UT methods leads to higher total SN ratio value, i.e. 
better overall quality than what can be achieved under the optimal condition derived by the GRA or MRSN 
method. 

Table 4  
Predicted SN ratios under different optimal conditions (case study 1)  

Optimization method Optimization 
criteria Optimal condition 

Predicted SN ratio 
Total 

MRR TWR 
WSN method WSN ratio  32331 EDCBA  -13.89 dB 20.45 dB 6.56 dB 
GRA method  MRSN ratio  22331 EDCBA  -14.01 dB 20.14 dB  6.13 dB 
MRSN method GRG  22331 EDCBA  -14.01 dB 20.14 dB 6.13 dB  
UT method Utility value 32331 EDCBA  -13.89 dB 20.45 dB 6.56 dB 

 

4.2 Case study 2 

Kumar and Khamba (2008) studied the influence of operating parameters of USM of tungsten carbide on the 
MRR (higher-the-better) and SR (smaller-the-better). They carried out the experimentation on a Sonic-Mill, 
500W (Albuquerque, NM). They decided to study the effects of five control factors, e.g. tool material (A), 
abrasive slurry (B), slurry concentration (C), grit size of slurry (D) and power rating of the ultrasonic machine 
(E). Kumar and Khamba (2008) considered three levels for each control factor and planned to study the main 



  
effects of the control factors only. So they prepared the experimental layout using 18L  orthogonal array. Kumar 
and Khamba (2008) determined the optimal machining conditions separately for MRR and SR using usual 
Taguchi method (Phadke, 1989) and found that the optimal process conditions for the two responses were 
different. The same experimental data of Kumar and Khamba (2008) are analyzed here using the considered four 
methods for the multi-response optimization. 

The experimental layout along with the quality losses and the SN ratio values for various responses as obtained 
from Kumar and Khamba’s (2008) experimental data are given in Table 5. Relative importance of MRR and SR 
are unknown. In the absence of any prior knowledge about the relative importance of the various responses, it is 
the most logical to assign the equal weights to all the responses. Therefore, all the methods are applied here 
considering that both MRR and SR are of equal importance, i.e. having equal weights. The PPI values for WSN, 
GRA, MRSN and UT approach are computed using the steps as mentioned in sections 3.1, 3.2, 3.3 and 3.4.2 
respectively. Table 6 shows the computed PPI values for the four multi-response optimization methods. 

Table 5 
Experimental layout, quality loss and SN ratio values (case study 2) 
Sl. 
No.

Factors Quality loss SN ratio 
A B C D E MRR SR MRR TWR

1 1 1 1 1 1 32.22 0.325 -15.08 4.89
2 2 2 2 2 2 34.15 0.407 -15.33 3.90
3 3 3 3 3 3 24.75 0.733 -13.94 1.35
4 1 1 2 2 3 32.91 0.512 -15.17 2.91
5 2 2 3 3 1 41.25 0.400 -16.15 3.98
6 3 3 1 1 2 31.15 0.543 -14.93 2.65
7 1 2 1 3 2 84.96 0.172 -19.29 7.65
8 2 3 2 1 3 50.31 0.310 -17.02 5.09
9 3 1 3 2 1 76.63 0.175 -18.84 7.58
10 1 3 3 2 2 19.71 0.611 -12.95 2.14
11 2 1 1 3 3 35.34 0.441 -15.48 3.56
12 3 2 2 1 1 30.64 0.369 -14.86 4.33
13 1 2 3 1 3 34.38 0.512 -15.36 2.90
14 2 3 1 2 1 32.63 0.528 -15.14 2.78
15 3 1 2 3 2 38.78 0.312 -15.89 5.06
16 1 3 2 3 1 60.72 0.206 -17.83 6.86
17 2 1 3 1 2 64.92 0.188 -18.12 7.26
18 3 2 1 2 3 53.03 0.205 -17.25 6.87
 

Table 6 
Computed PPI values (case study 2) 
Trial no. Process performance index (PPI)

WSN GRG MRSN Utility value
1 0.6124 0.5652 6.34 7.56
2 0.5144 0.5136 4.94 6.50
3 0.4221 0.5478 2.69 5.50
4 0.4480 0.4933 3.93 5.76
5 0.4561 0.4796 4.34 5.97
6 0.4466 0.5007 3.78 5.76
7 0.5000 0.6667 3.01 6.58
8 0.4756 0.4946 4.46 6.29
9 0.5291 0.6629 3.58 7.66
10 0.5626 0.6819 4.07 6.99
11 0.4754 0.4954 4.44 6.11
12 0.5856 0.5552 5.86 7.21
13 0.4329 0.4833 3.81 5.66
14 0.4406 0.4921 3.81 5.69
15 0.5628 0.5339 5.67 7.03
16 0.5520 0.5963 4.62 7.01
17 0.5610 0.6347 4.43 7.09
18 0.5994 0.6131 5.44 7.46
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The level averages of the control factors on the PPI values of the four methods, i.e. WSN, GRG, MRSN and 
utility value are given in Table 7. The larger values of WSN, GRG, MRSN and utility value (bold faced) signify 
better quality. Therefore, the optimal conditions for the factors A, B, C, D and E with respect to WSN, GRG, 
MRSN and utility values are chosen as 11213 EDCBA , 22311 EDCBA , 12213 EDCBA and 11213 EDCBA  
respectively. It can be noted that both WSN and UT methods result in the same optimal process condition.  

Table 7 
Level averages on the WSN, GRG, MRSN and utility value (case study 2) 

Factor WSN GRG MRSN Utility value 
Level Level Level Level Level Level Level Level Level Level Level Level

A 0.518 0.487 0.524 0.581 0.518 0.569 4.30 4.40 4.50 6.59 6.28 6.77
B 0.531 0.515 0.483 0.564 0.552 0.552 4.73 4.57 3.91 6.87 6.56 6.21
C 0.512 0.523 0.494 0.556 0.531 0.582 4.47 4.92 3.82 6.53 6.63 6.48
D 0.519 0.516 0.495 0.539 0.576 0.553 4.30 4.78 4.13 6.68 6.60 6.37
E 0.529 0.525 0.476 0.559 0.589 0.521 4.76 4.32 4.13 6.85 6.66 6.13

 

With the aim to compare the overall optimization performance of the four methods, the SN ratios of the 
individual responses under the optimal conditions with respect to different PPI values are predicted using the 
additive model (Phadke, 1989). Table 8 displays the predicted SN ratios for MRR and SR under different 
optimal conditions. The results in Table 8 reveal that the optimal process condition derived based on the WSN or 
UT methods leads to higher total SN ratio value, i.e. better overall quality than what can be achieved under the 
optimal conditions derived by the GRA and MRSN methods. 

Table 8  
Predicted SN ratios under different optimal conditions (case study 2) 
Optimization 
method 

Optimization 
criteria Optimal condition 

Predicted SN ratio 
Total 

MRR TWR 
WSN method WSN ratio  11213 EDCBA  -16.47 dB 5.96 dB -10.51 dB 
GRA method  GRG 22311 EDCBA  -16.00 dB 4.94 dB -11.06 dB 
MRSN method MRSN ratio  12213 EDCBA  -16.36 dB 5.80 dB -10.55 dB 
UT approach Utility value 11213 EDCBA  -16.47 dB 5.96 dB -10.51 dB 

 

One limitation of the current research work is that there is no scope to carry out the confirmatory trial with any 
of the optimal factor-level combination. However, taking into consideration that the additive model for 
prediction is appropriate, which is usually true as highlighted by Phadke (1989) and Montgomery (1984), it can 
be said based on the above results that the WSN and UT method give better overall optimization performance 
than the GRA and MRSN methods for the multi-response optimization of USM process. However, WSN method 
is preferable to the UT method because its computational procedure is simpler. Therefore, it is recommended to 
use WSN method for simultaneous optimization of the multiple responses of USM process. 

5. Conclusions 

Ultrasonic machining (USM) process has multiple performance measures (responses), which are affected by 
several process parameters and the researchers commonly attempted to optimize USM process with respect to 
individual responses separately. In this paper, four relatively simple and easily comprehendible methods have 
been presented that can be effectively utilized for simultaneous optimization of the multiple responses of USM 
process and the overall optimization performances of the four methods have been compared. Based on the results 
the following conclusions are made: 

a) The WSN or UT method, in general, gives better overall optimization performance for the USM process. 
b) However, WSN method is preferable to the UT method because it involve lesser computational 

complexity. 
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