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 This paper studies the problem of single machine stochastic scheduling with random processing 
times, deterministic due dates and an independent setup time. The jobs are also deteriorated 
based on the position, which their processes are done. The objective function is to find a 
schedule of jobs, which minimizes the expected value of maximum lateness. A branch and 
bound scheme is presented to solve the problem analytically and a simulated annealing meta-
heuristic (SA) is also provided for solving the problem in larger scales. Computational 
experiments demonstrate that the proposed SA is capable of finding near optimal solutions with 
very low gap. 
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1. Introduction 

Generally, it is desired for the manufacturer to provide the orders on time and reduce the penalty 
costs of lateness in the production system. Therefore, a suitable sequence of processing jobs is 
required for all machines. Based on this regard, there are many researchers studying the problems of 
tardiness and lateness in deterministic scheme in which the values of all the parameters of the 
problem (including processing time, due date, etc.) are known in advance. However, under some 
conditions, especially in project management, it is not logical to consider all the parameters as 
deterministic values. Some researchers are interested in studying the problem in stochastic version 
that is more complex than the deterministic ones. 

Gutjahr et al. (1999) studied the single machine stochastic problem to minimize the total weighted 
tardiness by using a stochastic branch and bound which portioned the solution space and could find 
the optimal solution based on the certain search of solution space. Gutjahr and Pflug (1996) 
considered the same problem and modified a stochastic simulated annealing to find near optimum 
solutions. Norkin et al. (1994) presented a stochastic branch and bound for solving the total tardiness 
scheduling problem. Soroush (2007 a) studied the problem of minimizing weighted numbers of early 
and tardy jobs in which the processing times were random variables and the due dates were 
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considered as deterministic values. He showed that the problem is NP-hard, but developed the certain 
conditions where the problem was exactly solvable. Furthermore, he proposed an efficient heuristic, 
which was capable of finding the near optimum solutions in larger scales of problem. 

Balut (1973) presented a chance constrained programming for the problem where the processing 
times and setup times were independent and followed the normal distribution. Pinedo (1983) 
considered the problem of minimizing stochastic tardiness when the due dates were deterministic and 
the processing times followed the exponential distribution. Soroush (2010 b) considered the 
stochastic problem in which an initial idle time was inserted before the first job of schedule and a 
quadratic objective function was proposed as minimizing the ∑ ݈ݓ

ଶwhere ݈ is the lateness of each 
job. He presented an exact algorithm based on a precedence relationship structure among adjacent 
jobs, which that could solve the problem quickly, even for large-scale problems. 

Portougal and Trietsch (2006) studied the stochastic version of the setting due date problem by 
considering the random processing times and solved it by using an o (n log n) algorithm. The same 
problem by considering deterministic due date and random processing time was studied by Soroush 
and Fredendall (1994). Soroush (1999 c) studied the simultaneous due date setting and sequencing 
problems in stochastic environment in order to minimize earliness and tardiness penalties. He showed 
that the variations in processing time increase the costs of earliness and tardiness and affect the 
optimum solutions. He also solved the proposed problem analytically and offered two O (n log n) 
heuristic algorithms. Cheng (1986 a) used the total work due date assignment method in stochastic 
mode when the due dates were proportion to the processing times to minimize expected value of 
missed due date costs. 

In another study, He (1991 b) used the Slack due date assignment method in order to minimize the 
values of waiting allowances and missed due dates. Seo et al. (2005) presented a new approach based 
on mathematical programming for the problem of minimizing expected number of jobs in stochastic 
environment in which the jobs follows normal distribution. By using the mentioned method, the 
stochastic problem was transmitted to a non-linear optimization problem. 

Cheng and Yao (1993) presented a general approach to solve the stochastic scheduling problems. De 
et al. (1991) studied the problem of minimizing the expected weighted number of tardy jobs when the 
processing times followed general random variables and the common due date had exponential 
distribution. Sarin et al. (1991) considered the problem with a common due date and normal 
processing times to minimize the expected tardiness costs. Cai and Zhou (1997) studied a multi 
objective stochastic problem to minimize weighted earliness and tardiness penalties and flow time. 
Jang (2002) studied the problem of minimizing expected number of tardy jobs and presented a 
dynamic scheduling policy based on myopic heuristic. 

In this paper, we consider the single machine stochastic problem with random processing times 
following the normal distribution, deterministic due dates and independent setup times to minimize 
the maximum lateness. We also assume that the jobs are deteriorated based on the position that their 
processes are accomplished, which causes the problem to be more complex in stochastic version. 
Based on our knowledge, there is no other research, which has studied the deterioration and 
maximum lateness in stochastic situation, simultaneously. The remaining part of this paper is 
organized as follows. In Section 2, we formulate and describe the proposed model. In Section 3, we 
offer the solution approach and in section 4, the computational section is presented. 

2. Problem formulation 

Consider a problem where one machine and n  jobs are available for processing at time zero.  The 
machine works with no idleness and without preemption. Each job has a random processing time, 
which follows the normal distribution and a deterministic due date. On the other hand, when a job is 
delayed, its processing time will be affected by a linear deterioration function. It is also assumed that 
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when the process of a distinct job is finished, an independent setup time is required to provide the 
settings for next job arrival.  The objective function of the problem is to minimize the expected value 
of maximum lateness. The parameters and variables of the problem are presented as follows: 

ܰ Number of jobs ready to be scheduled 
µ  The mean of processing time of job ݅ 
 ݅  The standard deviation of processing time of jobߜ
݀ The due date of i-th job 
݈ The lateness of  job scheduled on j-th position 
µܿ  The mean of completion time of job where located in j-th position 
ߜ ܿ The standard deviation of completion time of job where located in 

j-th position 
S The independent setup time between the jobs 
.ሺݎܨ ሻ The cumulative normal distribution 
ܾ The rate of deterioration 

⎩
⎨
⎧

=
0
1

ijy  
If job ݅ is assigned to position j in the sequence 
 
Otherwise 
 

and the mathematical model is as given as follows: 

jlmaxzmin =   (1)

subject to  

µܿ ൌ µܿିଵ    .ݕ µ . ݆  ݏ
ே

ୀଵ

ே

ୀଵ

 
  

(2)

ߜ ܿ ൌ ඩ ሺݕ. .ߜ ݆

ଶሻଶ

ே

ୀଵ

ே

ୀଵ

 ߜ ܿିଵ
ଶ 

 (3)

µܿ ൌ 0   (4)
ܿߜ ൌ 0   (5)

݈ ൌ   ݎܨ ቤ
µܿ െ ݀

ߜ ܿ
ቤ . .ݕ หµܿ െ ݀ห

ே

ୀଵ

ே

ୀଵ

 
  (6)

 ݕ

ே

ୀଵ

ൌ 1
 

j=1,2,…,N                                (7)

 ݕ

ே

ୀଵ

ൌ 1 
i=1,2,…,N                               (8)

ݕ ൌ 1 ݎ 0 j=1,2,…,N            i=1,2,…,N     (9)
 

Eq. (1) tries to find a schedule of jobs, which minimizes the expected value of maximum lateness. 
Constraint 2 demonstrates that the mean value of completion time of each job is affected by the 
deterioration and independent setup time and constraint 3 shows how the standard deviations of 
completion times are calculated.  Constraints 4 and 5 declare that both the machine and all of the jobs 
are ready for processing at time zero. Constraint 6 demonstrates how the value of lateness in 
stochastic mode is calculated. Constraint 7 declares that each position could be occupied by only one 
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job and constraint 8 shows that each job is processed by the machine only once. Finally, constraint 9 
demonstrates that y is a binary variable. 

3. Solution approach 

3.1 Simulated annealing 

Simulated annealing (SA) is a class of metaheuristics optimization technique, which performs a 
stochastic neighborhood search through the solution space. SA has been applied to solve many 
combinatorial optimization problems, widely. The immense advantage of SA over classical local 
search methods is its ability to avoid getting trapped in local optima while searching for a global 
optimum (see Van Laarhoven (1998) for more details about the performance of SA). In this case, SA 
starts with a randomly generated solution in T temperature, which is a sequence of jobs. A sample 
string consists of four jobs is represented in Fig. 1.  

2 4 3 1 

Fig. 1. Representation of a sample string 

This procedure continues until the equilibrium condition in this temperature is met. In this problem, 
the equilibrium condition occurs when the gaps between the proposed objective functions in 
consecutive iterations in a certain temperature are in minimum possible level. This condition is stated 
as follows, 

1 ,
Iter

i i
i Iter E

best best ε−
= −

− ≤∑  (10)

where, besti is the best solution until i iterations after previous change in temperature are found, and ε 
is a predetermined small value. By reaching the equilibrium in the temperature, the temperature is 
decreased and the procedure starts from the lower temperature and continues until the next 
equilibrium. Neighborhood search is also implemented by swapping two randomly selected positions 
in the second string (batch string) to meet other nodes of solution space. The performance of the 
proposed SA is depicted in below figure. 

1.Generate two strings randomly (state k) 
2.T=T0 
3.Do while T<TF 
4.   Do while the equilibrium condition has not occurred  
5.       Generate a neighborhood ( state j) 
6.       Z=f(j)-f(k) 
7.       If z <0 then k:=j 

8.       Else if random (0,1) < ݁
ష∆

  
9.       K:=j 
10.     loop 
11.   T:= T.(cooling rate) 
12.   Loop 
13. End 

Fig. 2. the pseudo-code of proposed SA 

In order to calibrate the proposed SA, a Taguchi approach is presented.  Taguchi designs recognize 
that not all factors that cause variability can be controlled in practice. These uncontrollable factors are 
called noise factors. Based on this fact, Taguchi attempts to identify controllable factors (control 
factors), which minimizes the effect of the noise factors. During experimentation, the noise factors 
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are manipulated to force variability to occur and then finding the optimal control factor settings, 
which makes the process or product robust, or resistant to variation from the noise factors. 

Taguchi uses orthogonal arrays, which estimate the effects of factors on the response mean and 
variation. Orthogonal arrays allow investigating each effect independently of each other and may 
reduce the time and cost associated with the experiment when fractionated designs are used. In this 
paper the S/N ratio considered as nominal is the best and is calculated by: 

ܵ
ܰ ݅ݐܽݎ  ൌ ሻଶ (11)݊݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܿ݁ଵሺ݃10݈

The effective factors and their levels are also described in Table 1. 

Table 1  
Taguchi experiment inputs 
Factor symbol levels type Degree of freedom 
Number of total 
iterations 

A 5 A(1)=100 
A(2)=200 
A(3)=300 
A(4)=400 
A(5)=500 

4 

The equilibrium 
condition (E) 

B 5 B(1)=2 
B(2)=3 
B(3)=4 
B(4)=5 
B(5)=6 

4 

 

The associated degree of freedom for these two factors is equal to 8; therefore, according to Taguchi 
standard table of orthogonal array, the L25 should be selected, which fulfils all the minimum 
necessary requirements. In order for the Taguchi experiments to be conducted, three important 
measures are considered containing the S/N ratio (as robust measure), average responses for each 
combination of control factors and the variability in the response due to the noise (standard 
deviation). The results are depicted in below figures. 
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Fig. 3. The results for response based on S/N 
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Fig. 4. The results for response based on means 
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Fig. 5. The results for response based standard deviations 

 
A measure of robustness is used to identify control factors, which reduces variability in a product or 
process by minimizing the effects of uncontrollable factors. Fig. 3 indicates the robustness of each 
combination of factors. Clearly, it is desired to select a pair of factors that generate the maximum 
robustness. Therefore, based on this figure, A(4) and B(5) should be selected. Fig. 4 shows the 
average responses for each combination of control factors. Since the objective function is in 
minimization form, the minimum value for this measure is desired; therefore, A (4) and B (5) are 
selected. 

Finally, Fig. 5 shows the variability in the response due to the noise, which is desired to be minimal. 
Therefore, A (4) and B (5) should be selected. Based on the mentioned measures, the most efficient 
combination of proposed factors would be A (5) and B (5), which could satisfies the response values 
in all the mentioned measures.  

3.2 Branch and Bound scheme 

In this section, a Branch and Bound algorithm (B&B) method is presented to possibly reach the 
global optimum solutions of the problem. Therefore, the solution space is searched by constructing a 
depth search fashion tree, in which each node represents assigning a job to a specific position in the 
schedule. The construction of this tree is shown as follows: 

 

 

 

 

 

 

 

Fig. 6. The construction of the search tree 
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A node is fathomed if: 

• It is a leaf node which means all the jobs have been scheduled. 
• In this node the value of considered lower bound is equal or greater than upper bound.  

By fathoming a node, the search continues based on the parent of current node, and the algorithm 
would be terminated if all the nodes have been fathomed. 

3.2.1 upper bound 

In this problem, the upper bound is calculated once for the root of tree based on the proposed 
simulated annealing. It is obvious that since SA is a class of meta-heuristic algorithms, its result is 
greater than the global optimum of the problem. 

3.2.2 lower bounds 

Lemma1. 

During searching the tree, a lower bound value for the objective function of the problem can be found 
as follows: 

 a. In each node, sequence the unscheduled jobs as EDD order, 

b. Put the constructed sequence after the scheduled jobs, 

c. Calculate the value of completion times for the scheduled jobs using the following, 

µܿଵ ൌ 0 
ଵܿߜ ൌ 0 
µܿ ൌ µܿିଵ  ∑ ∑ .ݕ µ. ݆ே

ୀଵ  ேݏ
ୀଵ            j=2,…, ns 

ߜ ܿ ൌ ටߜିଵ
ଶ  ∑ ∑ ሺݕ. .ሻଶߜ ݆ே

ୀଵ
ே
ୀଵ              j=2,…, ns 

and ns is equal to the number of scheduled jobs. 

d. Calculate the value of completion times for the unscheduled jobs using the following equation: 

µܿ ൌ µܿିଵ  ∑ ∑ .ݕ µ
ே
ୀଵ

ே
ୀଵ            j=ns,…, n 

ߜ ܿ ൌ ටߜିଵ
ଶ  ∑ ∑ ሺݕ. ሻଶேߜ

ୀଵ
ே
ୀଵ              j=ns,…, n 

e. Calculate the value of lateness for each job using the following equation, 

݈ ൌ   ݎܨ ቤ
µܿ െ ݀

ߜ ܿ
ቤ . .ݕ หሺµܿ െ ݀ሻห

ே

ୀଵ

ே

ୀଵ

 

f. Consider Lmax  as the maximum value of lateness in constructed sequence. 

Proof 

For the problem of minimizing maximum lateness without deterioration and setup time, an optimal 
order could be gathered by ordering the jobs as EDD rule. 

First, we show that the objective function of maximum lateness without deterioration and setup time 
is a lower bound for the objective function of maximum lateness with presence of mentioned factors. 
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Let’s consider c2 as the value of completion time with no deterioration and setup time effect and c1 as 
the value of completion time with considering the deterioration and setup time. 

It is obvious that c2 <= c1. We must show L2 <= L1. 

ଶܮ   ଵܮ ՜ |ܿଶ െ ݀|  |ܿଵ െ ݀| ՜ ሺ|ܿଶ െ ݀|ሻଶ  ሺ|ܿଵ െ ݀|ሻଶ 

՜ ܿଶ
ଶ െ 2. ܿଶ. ݀  ݀ଶ  ܿଵ

ଶ െ 2. ܿଵ. ݀  ݀ଶ ՜ ܿଶ
ଶ  ܿଵ

ଶ 

Since cj is a positive variable, so it can be concluded that: 

c2 <= c1. 

Therefore 

l2 <= l1.              (12)

On the other hand, let’s consider Lmax(sch)* and Lmax(usch)* as the optimal values of maximum 
lateness for scheduled jobs and values of maximum lateness for unscheduled jobs, respectively. 

if  Lmax(sch)* < Lmax(usch)* then the optimal value is equal to Lmax(usch)* 

if  Lmax(sch)* > Lmax(usch)* then the value is equal to Lmax(sch)* 

Therefore, from Eq. (11) we have, 

Lmax(usch)* <= Lmax(sch)*          (13)

Since Lmax(sch)* is associated with a partial sequence, its value is less than or equal to the optimal 
value of the problem. 

Lmax(sch)*<= Lmax
*                      (14)

From Eq. (13) and Eq. (14) it can be concluded that: 

Lmax(usch)*<= Lmax
* 

and the proof is completed ■. 

 

4. Computational study 

All the computations for this problem were coded by the Visual Basic 6 software and were run on a 
core I 7 Intel CPU with 4 GB of RAM. The required data was also generated randomly based on Seo 
et al. (2005) as follows: 

• The means of processing times were selected randomly from uniform [20,30], 
• The standard deviations were selected randomly from uniform [1, µ

ଶ.ଷଷ
],  

• The due dates were selected from uniform [0.1 ∑ µ , 0.4 ∑ µ]. 
 

The instances were solved by Lingo 10 solver as well as the proposed SA and B&B to determine the 
capability of proposed methods in solving the problem. For SA, each instance was solved 5 times and 
the best result was recorded as the value of objective function. 
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Table 2 
Sensitivity analysis based on small problem dimension  

instance 
number 

Number 
of jobs 

Lingo solver SA 

% gap 

B&B % 
gap 

VOF Run time 
(sec) VOF 

Run 
time 
(sec) 

VOF 
Run 
time 
(sec) 

1 3 32.11 2 32.18 6 0.002 32.11 0.01 0 
2 4 54.22 25 54.22 9 0 54.22 0.03 0 
3 5 51.49 236 51.66 10 0.003 51.49 0.04 0 
4 6 71 256 71.59 2.30 0.008 71 0.14 0 
5 7 84.41 507 85.24 5.83 0.009 84.41 0.39 0 
6 8 97.77 331 98.77 5.69 0.01 97.77 0.64 0 
7 9 116.72 365 117.44 6.16 0.006 116.72 1.38 0 
8 10 - - 141.47 5.92 - 139.32 1.93 - 
9 11 - - 171.29 6.39 - 161.11 4.08 - 
10 12 - - 165.20 9.93 - 165.20 1.94 - 
11 13 - - 99.12 5.58 - 91.18 19.08 - 
  

Table 2 presents the results of proposed SA via the Lingo solver where the column 3, shows the 
properties of Lingo, including the value of objective function (VOF) and the run times and column 4 
presents the results of SA. Lingo solver is incapable of solving the instances, which consist of greater 
than seven jobs in a reasonable amount of time. As shown in Table 2, the proposed SA performs very 
well in order to find a near optimal solution in a reasonably low running time. The results of SA are 
also presented for greater dimensions, which are recorded in Table 3. 

Table 3   
The results of SA for medium and large problem dimension 

instance number Number of jobs SA 
VOF Run time (sec) 

1 20 5890 1.89 
2 30 22155 1.75 
3 40 40290 1.99 
4 50 64129 2.30 
5 60 102556 2.41 
6 70 136850 2.94 
7 80 205559 2.48 
 

As mentioned in solution approach section, the SA is used as an upper bound in the branch and bound 
procedure. In order to determine the effect of proposed upper bound in pruning the solution space, the 
problem is also solved without considering the upper bounds. The results are depicted in Table 4, 
where the column 3 shows the properties of B&B without upper bound, and column 4 is related to 
B&B when the proposed SA acts as an upper bound. It can be concluded from Table 4 that by 
considering a suitable upper bound, a greater number of nodes are pruned and branch and bound is 
able to search the solution space much faster. On the other hand, even without using upper bound, the 
B&B has the ability to find the global optimum; however, it would require more searching and 
running times. To make the sensitivity analysis, a number of effective factors of the problem are 
considered, including the rate of deterioration and common setup time. 
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Table 4  
The impact of SA as an upper bound in B&B procedure 

instance 
number 

Number of 
jobs 

B&B B&B + SA 

VOF 
Run 
time 
(sec) 

Number of 
visited nodes VOF 

Run 
time 
(sec) 

Number 
of visited 
nodes 

1 3 32.11 0.01 10 32.11 0 6 
2 4 54.22 0.03 19 54.22 0.03 10 
3 5 51.49 0.04 25 51.49 0.03 15 
4 6 71 0.14 94 71 0.12 59 
5 7 84.41 0.39 163 84.41 0.34 100 
6 8 97.77 0.64 267 97.77 0.50 193 
7 9 116.72 1.38 536 116.72 0.54 173 
8 10 139.32 1.93 703 139.32 1.09 342 
9 11 161.11 4.08 1207 161.11 2.08 576 
10 12 165.20 1.94 310 165.20 0.84 106 
11 13 91.18 19.08 9088 91.18 4.94 1991 
 

Table 5 presents the results of SA and branch and bound for various rates of deteriorations for six 
numbers of jobs. In this case, the common setup time is considered equal to 3. 

Table 5  
Sensitivity analysis based on rate of deterioration for N=6 

instance 
number 

Rate of 
deterioration 

Branch and Bound SA 

VOF Run time 
(sec) VOF Run time 

(sec) 
1 0.1 344.83 1.93 349.08 1.25 
2 0.2 396.37 1.77 405.08 1.01 
3 0.3 453.22 1.96 462.35 0.98 
4 0.4 518.05 1.76 518.25 0.84 
5 0.5 591.91 1.93 601.11 0.89 
6 0.6 674.37 1.69 685 0.73 
7 0.7 768.94 1.73 770.48 0.71 
8 0.8 876.41 1.77 885.75 0.74 
9 0.9 995.62 1.74 1013.16 0.61 
  
Based on the results from Table 5, the value of objective function is sensitive to the rate of 
deterioration for both methods. However, there is no relationship between the running times and the 
rate of deterioration. The sensitivity is also checked based on the common setup times and the results 
are presented in Table 6. In this case, the rate of deterioration is considered equal to 0.1. 

Table 6   
Sensitivity analysis based on setup time for N=6 
instance 
number 

Common setup 
time 

Branch and Bound SA 
VOF Run time (sec) VOF Run time (sec) 

1 1 291.71 1.87 300.697 1.32 
2 3 344.83 1.93 349.08 1.25 
3 10 534.82 1.83 538.27 0.84 
4 25 943.60 1.96 958.86 0.61 
5 50 1619.85 1.87 1619.85 0.52 
6 100 2969 1.90 2975.86 0.5 
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The results of Table 6, indicates that by increasing the setup time, the value of objective function 
would increase clearly, but the run time is not affected by changing the setup time. 

5. Conclusion and future researches 

This paper considered the single machine stochastic scheduling in which the processing of jobs were 
random variables and the due dates were considered as deterministic values. The jobs were also 
deteriorated based on the position in which their processes were executed. The objective function of 
the problem was to find a schedule of jobs by minimizing the expected value of maximum lateness. A 
branch and bound scheme was presented to solve the problem analytically and a simulated annealing 
meta-heuristic (SA) was offered to solve the problem in larger scales. Some sensitivity analyses were 
accomplished for a number of effective factors, including rate of deterioration and the common setup 
time.  

Computational experiments demonstrated that the proposed SA acted highly capable of finding near 
optimal solutions with the least gap. Furthermore, the role of SA was checked as an upper bound for 
the proposed branch and bound, which expedite the speed of direct solution. For future research, the 
objective function could be considered as a multi objective along with other objectives, including 
maintenance, batch delivery costs, etc. 
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