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 The classical production-inventory model assumes that both demand and set-up costs are 
constant. However, in real manufacturing environment, managers usually embark on 
continuous improvement programmes that often lead to more effective use of tools and 
machineries and consequently reduction in set-up costs.  In fact, constant emphasis on reduction 
of set-up costs is usually cited as one of the factors responsible for the efficiency of Japanese 
manufacturing methods. On the other hand, the demand for seasonal product is often 
characterized by a mixture of time-dependent patterns over the entire season.  This paper 
investigates the effect of learning-based reduction in set-up costs on the optimal schedules and 
costs of a production-inventory system for deteriorating seasonal products. The demand pattern 
is a general three-phase ramp-type demand function that represents the various phases of 
demand commonly observed in many seasonal products in the market. A two-parameter 
Weibull-distribution function is used for the deterioration of items in order to make the model 
more generalized and realistic. The study further presents two different multi-period production 
strategies that can ensure a fast-response to customers’ demand and compare them with the 
usual single period strategy. The Numerical example and sensitivity analysis shows that 
learning-based reduction in set-up costs leads to higher production frequency and shorter 
production runs which are vital aspects of the just-in-time (JIT) philosophy.  

© 2011 Growing Science Ltd.  All rights reserved
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1. Introduction 

Seasonal items like fruits, fish, winter cosmetics, fashion apparel, etc. generally exhibits different 
demand patterns at various times during the season. The demand usually begins with increasing trend, 
attains a peak and becomes steady at the middle of the season. Various time-dependent functions 
have been used to depict this demand pattern. These include time dependent quadratic function, 
ramp-type function etc.  This study focuses on seasonal items that deteriorate during inventory. The 
combination of demand fluctuation and deterioration makes it highly risky to adopt a single 
production lot strategy to satisfy customers’ demand for the entire season. Small lots, short-run and 
high-speed multi-period production strategy will enable a fast-response to customers’ demand and 
reduce likely loss due to deterioration for this class of products.  According to Şen (2008), successful 
implementation of a quick-response system will require substantial information sharing between the 
manufacturer and the retailer. It will also require a just-in-time shipping policy with frequent, small 
lots and flexible manufacturing with short-run and high-speed processing. Jaber and Bonney (2003) 
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observed that producing smaller lots and increasing frequency of production are encouraged by the 
incorporation of the effects of learning in set-ups into optimal lot sizing. Thus, this paper incorporates 
the effects of learning in set-ups into a multi-period production-inventory model for deteriorating 
seasonal products. 
 
In production inventory models, the set-up cost represents the cost incurred whenever a production 
run is being prepared/set up and usually includes the labour set-up cost, cost of materials used during 
set-up testing, cost of time during which production cannot take place during set-up, cost of 
inspection of equipment before production, etc. The numerous benefits of reducing this cost have 
been identified as follows: improved quality control, flexibility, increased effective capacity and 
reduced inventory related operating costs (Porteus, 1985). Constant emphasis on reduction of set-up 
costs has also been cited as one of the factors responsible for the efficiency of Japanese 
manufacturing methods (Rachamadugu & Schriber, 1995). Several research efforts have addressed 
set-up cost reduction and its techniques (e.g. Schonberger, 1982; Porteus, 1985; Chand, 1989; 
Paknejad et al., 1996; Andijani, 1998; Jaber & Bonney, 2003; Darwish, 2008). Set-up time/cost 
reduction can be achieved through emphasis on learning effects, continuous system improvement, 
and incremental process improvement (Rachamadugu & Schriber 1995). 
 
It is a common experience in real life that a worker engaged in repetitive operations improves with 
time due to learning effects. The learning phenomenon implies that the performance of a system 
improves with time because the firms and employees perform the same task repeatedly and 
consequently learn how to provide a standard and improved level of performance. In manufacturing 
environment, factors that contribute to this improvement may include the more effective use of tools 
and machines, increased familiarity with operational tasks and work environment, and enhanced 
management efficiency (Jaber & Bonney, 1999). Since the pioneering work of Wright (1936) on 
learning effects in repetitive task, several researchers have studied the effect of learning in optimal lot 
sizing problems. Some of these studies focused attention on the effect of learning on production 
rate/cost when the set-up cost is constant (e.g. Keachie & Fontana, 1966; Steedman, 1970; Adler & 
Nander, 1974; Fisk & Ballou, 1982; Salameh, et al. 1993; Jaber & Bonney, 1997; Jaber & Sikström 
2004). Some other studies considered the effect of learning in set-up costs/time (e.g. Karwan et al., 
1988; Reploge, 1988; Chand 1989; Cheng, 1994). Detailed review of literatures on effect of learning 
in optimal lot sizing problem can be found in the works of Gulledge and Khoshnevis (1987) and 
Jaber and Bonney (1999).  
 
Some recent models recognized the effect of learning on more than one aspect of the production-
inventory system. Jaber and Bonney (2003) investigated the effects of learning and forgetting on set-
ups and product quality while Jaber et al. (2010) presented a joint replenishment inventory model for 
a three-stage (supplier–manufacturer–retailer) decentralized supply chain with the manufacturer 
encountering learning and forgetting effects in set-ups, production, and product quality. Jaber and El 
Saadany (2011) extended the work of Dobos and Richter (2003, 2004) to include the effects of 
learning in production and remanufacturing processes. All the above models assumed demand to be 
constant and no deterioration of items in inventory. However for most seasonal products, the demand 
is time varying and products also deteriorates with time.  
 
Chiu et al. (2003) studied the deterministic time-varying demand lot-sizing problem which 
incorporates the effects of learning and forgetting in set-ups and production simultaneously. Balkhi 
(2003) developed a general production lot size model for deteriorating items whose production is 
subjected to full transmission of learning. The model allowed production, demand and deterioration 
rates to vary with time and shortages were allowed with partial backlogging of demand. Alamri and 
Balkhi (2007) generalized the model of  Jaber and Bonney (1996) by presenting general learn–forget 
curve model in which demand and product deterioration rates are arbitrary functions of time. The 
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effect of learning in set-up and the possibility of variation in demand patterns within a given period 
were, however, not considered in the model.  
 
For most seasonal products, the demand variation is often a mixture of non-decreasing, constant and 
non-increasing functions of time.  The demand for this class of products increases with time at the 
beginning of its season. It attains a peak and becomes steady at the middle of the season and it finally 
decreases when the time reaches to the end of the season. The optimal production strategy for this 
type of goods may vary with a given set of system parameters due to possibility of variation in 
demand patterns within a given period unlike that of products with unidirectional demand pattern. 
Hill (1995) developed the first model for products whose demand variation is a combination of two 
different types of demand in two successive periods over the entire time horizon and termed it as a 
ramp-type demand pattern. Subsequently, many researchers have adopted this pattern for seasonal 
products whose demand is a mixture of non-decreasing, constant and non-increasing functions of 
time.  
 
Panda et al. (2008) developed an inventory model for deteriorating seasonal products using ramp-type 
demand pattern with a three-phase variation in demand. The demand pattern in this case is assumed to 
increase exponentially with respect to time up to a certain point. Then it becomes steady and finally 
decreases exponentially and becomes asymptotic. Another form of this pattern was used by Cheng 
and Wang (2009), in developing an economic order quantity model for deteriorating items.  
Production inventory models for seasonal products using a ramp-type demand pattern in recent time 
includes Manna and Chaudhuri (2006), Panda et al. (2009), Manna and Chiang (2010). The 
production inventory models are, however, single period models and did not allow for the reduction 
in set-up costs. Also none of these models for seasonal products consider the effects of learning on 
set-up and the need to respond quickly to customer demand as they arise during the season.  
 
This paper fill these gaps by considering the multi-period production lot sizing problem that involves 
deteriorating seasonal product whose demand is a mixture of non-decreasing, constant and non-
increasing functions of time. The study incorporates the effect of learning in reducing set-up cost and 
considers various production strategies that can ensure a fast-response to customers’ demand. The 
demand pattern is a general three-phase ramp-type demand function that represents the various phases 
of demand commonly observed in many seasonal products in the market. A two-parameter Weibull-
distribution function is used for the deterioration of items in order to make the model more 
generalized and realistic.  
 
2. Learning in set-up 
 
The simplest and most commonly used learning theory in lot-sizing models is the one introduced by 
Wright (1936) which links the performance of a specific task to the number of times that task is 
repeated. Wright (1936) used a power function formulation to obtain a learning curve which is of the 
form 1

b
nT T n−=  where Tn is the time required to produce the nth unit, T1 is the time required to 

produce the first unit, n is the production count, b is the slope of the learning curve which is often 
expressed as b = - log(φ/100)/log2. φ is the learning rate expressed as a percentage.  
Though Wright’s simple mathematical expression is easier to understand and implement, it has some 
drawbacks that made it necessary for researchers to apply some correction factors to the model. One 
of the drawbacks is that the result obtained becomes practically meaningless when cumulative 
production (with learning) approaches infinity (Jaber & Bonney, 1999). Since for any positive 
learning rate the time required to produce the nth unit according to Wright’s model approaches zero 
as n approaches infinity. This is at variance with real-world situations wherein there exists a 
minimum value of time (Tmin), and as n approaches infinity Tn approaches Tmin (Alamri & Balkhi 
2007).  
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To incorporate the effect of learning in set-up into lot sizing models, most researchers applied the 
Wright’s power function model to set-up costs with some modifications. Chand (1989) used a log-
linear learning function to generate set-up costs in his computational study that investigated the 
effects of learning in set-ups on set-up frequency. In this case, the cost of the n-th set-up, K(n) , is 
given by: 

0( ) ( )K n K K K n ε−
∞ ∞= + − , 

where K0 is the cost of the maximum (initial) set-up and K∞ is the minimum set-up cost. The learning 
function is made up of two components, a minimum set-up cost and a conventional learning curve 
(100 (2-b) %) on the reducible set-up cost (K0 - K∞). Chand (1989) used the following values for ε: 
0.1, 0.3, 0.5, 0.7, 0.9, and 1.3. These values represent 93.3%, 81.2%, 70.7%, 61.5%, 53.5%, and 
40.6% learning curves, respectively. 
 
Cheng (1994) assumed that set-up and unit variable manufacturing costs decrease as a result of 
learning over time and that some percentage of learning is lost between consecutive orders. He 
obtained the cost of the i-th set-up using 1

b
iS S i= , where b < 0 is the learning index of the set-up 

operation and S1 is the cost of the first set-up. 
 
Rachamadugu and Schriber (1995) computed the set-up costs using a power function similar to a 
modified version of Wright (1936) power function thus: { }1 min .b

i iS S i i S S−= ∀ ≥  
Using similar learning relationship to the above, Jabber and Bonney (2003) computed the cost of n-th 
set-up (Kn) using the equation below: 

1

min

if ,
if .

b
s

n
s

K n n n
K

K n n

−⎧ <⎪= ⎨
≥⎪⎩

  

Kmin is the minimum set-up cost that could be achieved when n = ns, and ( ) 1/
min 1/ .b

sn K K −≅  
Jaber and Bonney (2003) described the above model as an adjusted version of the Wright’s learning 
curve with the introduction of a plateau effect. He demonstrated its advantages over the learning 
curve model adopted by Chand (1989) especially for firms that might plan to shift from traditional 
economic order quantity to a JIT system through set-up reduction with a target set-up cost of Kmin.  
Das et al. (2010) assumed a set-up cost in a cycle is partly constant and partly decreasing in the cycle 
due to learning effects of the employees and determined the set-up cost in the j-th period using

'
3 3

j
jC C C e β−= + , where β (> 0) is the learning coefficient associated with the set-up cost. 

 
From the foregoing, it is obvious that most researchers considering the effect of learning in set-up 
agree to the existence of a minimum value of the set-up cost that cannot be affected by learning. This 
is a reasonable assumption when we consider the fact that there are some aspects of the set-up cost 
that may not be subject to the reduction due to learning.  
Some researchers have equally modelled the effect of loss of learning (forgetting) in the set-up cost 
(e,g. Chiu et al., 2003; Jaber et al., 2010) but unlike the learning process a full understanding of the 
forgetting process is yet to be developed (Jaber & Bonney, 2003). 
In this paper, we study the effect of learning in set-up in a multi-period production inventory system 
involving seasonal products with a three phase ramp demand pattern and Weibull distribution 
deterioration. The set-up cost is assumed to reduce due to learning effect and the cost of n-th set-up is 
computed using the learning curve with plateau effect proposed in Jaber and Bonney (2003).  
   
3. Model formulation  
 
3.1 Assumptions and notations 
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The major assumptions of the model are as follows:  
1. A single item multi-period production-inventory system is considered. 
2. The production rate of the item is a known function of demand rate. 
3. Demand rate is a general time dependent three-phase ramp-type function. 
4. Deterioration rate of the item is represented by a two-parameter Weibull-distribution function. 
5. No repair or replacement of deteriorated items during the period. 
6. Set-up cost decreases due to the learning in set-ups while set-up time is negligible. 
7.  Production cost per unit and inventory holding cost per unit are known and constant.  

 
The following notations are used in formulating the models: 
ti-1 is the time when production for the i-th cycle begins  
si  is the time when production for the i-th cycle stops 
ti  is the end of the i-th cycle 
Ti  = ti  - ti-1 is the length of a cycle  
qi-1 is the inventory level at the beginning of the i-th cycle 
qi    is the inventory level at the end of the i-th cycle 
K(t) = α f (t) is the production rate (α > 1) 
CP  is the production cost per unit 
CH  is the inventory holding cost per unit 

1

min

if
if

c
s

n
s

A n n n
A

A n n

−⎧ <⎪= ⎨
≥⎪⎩

 

1A  is the cost of the first set-up, nA is the cost of nth set-up, minA is the minimum set-up that is 
obtainable when n = ns, c is the slope of the learning curve. 
Demand rate f (t) is a general time dependent ramp-type functions (see Fig 1), and is of the form:         

( )
( )
( )
( )

( ) ( ) ( ) ( )

, 0 ,

, ,

, .

0, 0, 0 , .

g t t

f t g t

h t t

g t h t g h

μ

μ μ γ

γ

μ γ μ γ

≤ ≤⎧
⎪

= ≤ ≤⎨
⎪ ≥⎩

≥ ≥ ≤ ≤ =

 

The function g (t) can be a continuous and non-decreasing function of time, while h (t) is a 
continuous and non-increasing function of time in the given interval. Parameters ‘µ’ and ‘γ’ represent 
the trend of the ramp-type demand function. 

 
 Fig. 1. The three-phase ramp-type demand pattern 
 
The system consists of several production-inventory cycles. Each cycle begins with the production at 
time ti-1 and ends with the consumption due to demand and deterioration at time ti. The production 
stops at time si within the interval while demand and deterioration of products occur throughout the 
interval. To allow for a fast-response to customers’ demand, the next production cycle begins when 
the inventory level in the current cycle drops to a predetermined value (qi). As for this strategy, no 
shortage or back order occurs as the inventory level gets to zero only at the beginning of the first 
cycle and at the end of the last cycle. With the three-phase ramp-type demand pattern, a production 

        
 
        f (t)        g(t)             h(t) 
 
 
 
 
 
               0          μ                    γ              t 
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cycle may encounter a different demand pattern during the cycle and the manager is faced with the 
multiple choices of production options to satisfy these demands. He will have to consider all these 
options properly and decide on the optimal option. The variation of inventory level with time for a 
typical cycle is shown in Fig. 2 and the various possible options at the disposal of the manager are 
considered in the cases below followed by the analysis of the cost of each option. 

 
 Fig. 2. Variation of inventory level with time for a typical cycle (Case 1) 
 
3.2 Case 1: A cycle with single demand pattern  
 
Production begins at t = 1it −  and stops at t = is . The consumption within the interval due to demand 
and deterioration also takes place. In the interval [si, ti], production ceases and consumption continue 
to reduce the level of accumulated inventory. The rate of change of inventory level with time is as 
follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1 1 1 1

2
2 2

; ,

, ; . 

i
i i i i i i

i
i i i i i i

dI t
K t f t t I t t t s I t q

dt
dI t

f t t I t s t t I t q
dt

θ

θ

− − −= − − ≤ ≤ =

= − − ≤ ≤ =

 

 
 

(1)

Here we consider all production and consumption cycles that do not involve a change in demand 
pattern. The demand pattern may be any of the patterns given in f (t). Inventory level at any time 
during the production stage of the i-th cycle is represented by ( )1iI t  while ( )2iI t is the inventory 
level at any time during the no-production stage of the i-th cycle.  
 
The solutions to Eq. (1) above are as follows: 

( ) ( )

( ) ( )

1

1

( )
1 1 1

( )
2

( ( ) ) , ,

. 

b b b b
i

i

b b b bi
i

ta t t at ax
i i i it

ta t t at ax
i i i it

I t q e e e K x f x dx t t s

I t q e e e f x dx s t t

−

−

− −
− −

− −

= + − ≤ ≤

= + ≤ ≤

∫

∫
 

 
(2)

 
The inventory holding cost, the production cost, and the set-up cost for one cycle under this case are 
as follows: 

( ) ( )( )
( )

1

1

1 2 ,

,

.

i i

i i

i

i

s t

i H i it s

s

i P t

i n

HC C I t dt I t dt

PRC C K t dt

SUC A

−

−

= +

=

=

∫ ∫

∫  

 
 

(3)

 

 

       I (t) 

              ( )1iI t      

        ( )2iI t  

 

     qi  
       qi-1  
  
     ti-1          si          ti           t 
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The total relevant cost per unit time for one cycle is as follows: 

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
1 1

1
1

1 2
1

1, ,

1 .i i i

i i i

i i i i i i
i i

s t s

H i i P nt s t
i i

TCT s t HC PRC SUC
t t

C I t dt I t dt C K t dt A
t t − −

−

−

= + +
−

= + + +
− ∫ ∫ ∫

 

 
 

(4)

 
The optimal production schedules and the cost for the first and the subsequent cycles can be obtained 
using different values of learning rate by minimizing ( )1 ,i i iTCT s t subject to the constraints below. 
 

( ) ( )1 2

1

. ,
. 0 .

i i i i

i i i

I I s I s
II t s t−

=

< < <
  

3.3 Case 2: Cycle with demand pattern variation once during no‐production stage  
 
The cycle begins with production at time 1it −  ( 10 it μ−≤ < ), and production is stopped at time is  (
0 is μ< ≤ ). This is followed by the no-production stage that ends at time it  ( itμ γ< < ) when the 
inventory gets to a pre-determined level. The demand pattern changes during the no-production stage 
from ( )g t to ( )g μ . The behavior of the inventory level in this case is described by the following 
equations: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1 1 1 1

2
2 2 3

3
3 3

; ,

, ; = ,

, ; .

 

i
i i i i i i

i
i i i i

i
i i i i i

dI t
K t g t t I t t t s I t q

dt
dI t

g t t I t s t I I
dt

dI t
g t I t t t I t q

dt

θ

θ μ μ μ

μ θ μ

− − −= − − ≤ ≤ =

= − − ≤ ≤

= − − ≤ ≤ =

 

 
 
 

(5)

In this case ( )2iI t , and ( )3iI t  represent the inventory levels during the no-production stage of the 

cycle while ( )1iI t is the inventory level during the production stage. The solutions to Eq. (5) are as 
follows: 

( )

( ) ( )
( )

1

1

( )
1 1 1

( )
2

( )
3

( ( ) ( )) , ,

( ) ( ) , ,

( ) . 

b b b b
i

i

b b b b bi
i

b b b bi
i

ta t t at ax
i i i it

ta t t at ax ax
i i it

ta t t at ax
i i it

I t q e e e K x g x dx t t s

I t q e e e g x dx e g dx s t

I t q e e e g dx t t

μ

μ
μ μ

μ μ

−

−

− −
− −

− −

− −

= + − ≤ ≤

= + + ≤ ≤

= + ≤ ≤

∫

∫ ∫

∫

 

 

 

(6)

The inventory holding cost, the production cost, and the set-up cost for one cycle are as follows: 

( ) ( ) ( )( )
( )

1

1

1 2 3 ,

,

.

i i

i i

i

i

s t

i H i i it s

s

i P t

i n

HC C I t dt I t dt I t dt

PRC C K t dt

SUC A

μ

μ−

−

= + +

=

=

∫ ∫ ∫

∫  

 
 

(7)

 
The total relevant cost per unit time for one cycle is as follows: 
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( ) ( ) ( )

( )
( ) ( ) ( )( )
( )

1

1

2
1

1 2 3

1

1, ,

1 .

i i

i i

i

i

i i i i i i
i i

s t

H i i it s

s
i i

P nt

TCT s t HC PRC SUC
t t

C I t dt I t dt I t dt

t t C K t dt A

μ

μ−

−

−

−

= + +
−

⎛ ⎞+ +⎜ ⎟
= ⎜ ⎟− ⎜ ⎟+ +

⎝ ⎠

∫ ∫ ∫

∫

 

 
 
 

(8)

 
The optimal production schedules and the cost for the cycle can be obtained by minimizing 

( )2 ,i i iTCT s t subject to the constraints below. 
 

( ) ( )1 2

1

. ,
. 0 .

i i i i

i i i

I I s I s
II t s tμ γ−

=

< < < < <
  

3.4 Case 3: A cycle with demand pattern varying once during production 
 
The inventory behavior in this case is similar to Case 2 except that, in this case production is stopped 
while the demand is constant (i.e. 10 , ,i i it s tμ μ γ μ γ−< < ≤ < < < ). The demand pattern also 
changes from ( )g t to ( )g μ  during the production stage. The equation of the system is as follows:  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1 1 1 1

2
2 1 2

3
3 2

; ,

; ,

, ; . 

i
i i i i i

i
i i i i

i
i i i i i i

dI t
K t g t t I t t t I t q

dt
dI t

K t g t I t t s I I
dt

dI t
g t I t s t t I t q

dt

θ μ

μ θ μ μ μ

μ θ

− − −= − − ≤ ≤ =

= − − ≤ ≤ =

= − − ≤ ≤ =

 

 
 
 

(9)

1 ( )iI t and 2 ( )iI t represent the inventory levels during the production stage while 3 ( )iI t represents the 
inventory level during the no-production stage. The solutions to Eq. (9) are as follows: 

1

1

1

1

( )
1 1 1

( )
2 1

( )
3

( ) ( ( ) ( )) , ,

( ) ( ( ( ) ( )) ( ( ) ( )) ), ,

( ) ( ) , . 

b b b b
i

i

b b b b b
i

i

b b b bi
i

ta t t at ax
i i it

ta t t at ax ax
i i it

ta t t at ax
i i i it

I t q e e e K x g x dx t t

I t q e e e K x g dx e K x g x dx t s

I t q e e e g dx s t t

μ

μ

μ

μ μ

μ

−

−

−

−

− −
− −

− −
−

− −

= + − ≤ ≤

= + − + − ≤ ≤

= + ≤ ≤

∫

∫ ∫

∫
 

(10)

The inventory holding cost, the production cost, and the set-up cost for one cycle are as follows: 

( ) ( ) ( )( )
( )

1

1

1 2 3 ,

,

.

i i

i i

i

i

s t

i H i i it s

s

i P t

i n

HC C I t dt I t dt I t dt

PRC C K t dt

SUC A

μ

μ−

−

= + +

=

=
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∫  

 
 

(11)

The total relevant cost per unit time for one cycle is as follows: 

( ) ( )
( ) ( ) ( )( )
( )

1

1

1 2 3

3
1

1, .

i i

i i

i

i

s t

H i i it s
i i i s

i i
P nt

C I t dt I t dt I t dt
TCT s t

t t C K t dt A

μ
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−

−

⎛ ⎞+ +⎜ ⎟
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⎝ ⎠

∫ ∫ ∫

∫
 

 
 

(12)

Minimizing ( )3 ,i i iTCT s t subject to the constraints below gives the optimal production schedule and 
cost for the cycle. 
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( ) ( )2 3

1

. ,
. 0 .

i i i i

i i i

I I s I s
II t s tμ γ−

=

< < < < <
  

3.5 Case 4: A cycle with demand pattern declining once during no-production stage 
 
In this case, the cycle begins with the production at time 1it −  ( 1itμ γ−≤ < ) when the demand is 
constant. The production stops at time is  ( isμ γ< < ) when the demand is still constant. The demand 
pattern changes from constant to declining pattern (i.e. from ( )g μ to ( )h t ) during the no-production 
stage. The equation of the system during this stage is as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )
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dI t
K t g t I t t t s I t q

dt
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g t I t s t I I
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h t t I t t t I t q

dt

μ θ

μ θ γ γ γ

θ γ

− − −= − − ≤ ≤ =

= − − ≤ ≤ =

= − − ≤ ≤ =

 

 
 
 

(13)

1 ( )iI t represents the inventory levels during the production stage while 2 ( )iI t and 3 ( )iI t represent the 
inventory level during the no-production stage. The solutions to Eq. (13) are as follows: 
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−
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∫

∫ ∫

∫

 

 

 

(14)

The total relevant cost per unit time for the cycle is as follows: 
 

( ) ( )
( ) ( ) ( )( )
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1 2 3

4
1

1, .

i i
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i

i

s t
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i i
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−

⎛ ⎞+ +⎜ ⎟
= ⎜ ⎟− ⎜ ⎟+ +

⎝ ⎠

∫ ∫ ∫

∫
 

 
 

(15)

Minimizing ( )4 ,i i iTCT s t subject to the constraints below gives the optimal production schedule and 
cost for the cycle. 

( ) ( )1 2

1

. ,
. .

i i i i

i i i

I I s I s
II t s tμ γ−

=

≤ < < <
  

3.6 Case 5: A cycle with demand pattern varying (declining) once during production  
 
The inventory behavior in this case is similar to Case 4 with the exception that production is stopped 
while the demand is decreasing (i.e. 1 , ,i i it s tμ γ γ γ−≤ < > > ). The demand pattern also changes 
from ( )g μ to ( )h t  during the production. The equation of the system during this stage is: 
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( ) ( ) ( ) ( ) ( ) ( )
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(16)

1 ( )iI t  and 2 ( )iI t represent the inventory levels during the production stage while 3 ( )iI t represents the 
inventory level during the no-production stage. The solutions to Eq. (16) are as follows: 
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(17)

The total relevant cost per unit time for the cycle is as follows: 

( ) ( )
( ) ( ) ( )( )
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i
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(18)

Minimizing ( )5 ,i i iTCT s t subject to the constraints below gives the optimal production schedule and 
cost for the cycle. 
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3.7 Case 6: A cycle with variation in demand pattern twice during no-production stage 
 

The cycle begins with the production at time 1it −  ( 10 it μ−≤ < ), and the production is stopped at time 

is  ( 0 is μ< < ) while the demand rate is ( )g t . The no-production stage follows and ends at time it  

( it γ> ). The demand pattern changes twice during no-production stage, the first from ( )g t to ( )g μ

and the later from ( )g μ  to ( )h t .The equation of the system is as follows: 
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dt

θ
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= − − ≤ ≤ =

= − − ≤ ≤ =

= − − ≤ ≤ =

 

 
 
 
 
 

 (19)

While ( )1iI t  represents the inventory level during the production, ( )2iI t , and ( )3iI t , ( )4iI t , represent 
the inventory levels during the no-production stage of the cycle. Solutions to Eq. (19) are as follows: 



A. Abdul and A. Murata / International Journal of Industrial Engineering Computations 2 (2011) 
 

725
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(20)

Total relevant cost per unit time for the cycle is as follows: 
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(21)

Minimizing ( )6 ,i i iTCT s t subject to the constraints below gives the optimal production schedule and 
cost for the cycle. 
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3.8 Case 7: A cycle with variation in demand pattern during and after the production stage 
 
In this case, the production begins at ( )1 10i it t μ− −≤ < and stops at ( )i is sμ γ≤ < . The no-production 

stage follows till the time it  ( it γ> ). The demand pattern changes during the production from ( )g t to

( )g μ and also from ( )g μ  to ( )h t  during no-production stage. The equation of the system is as 
follows:  
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(22)

While ( )1iI t  and ( )2iI t  represent the inventory levels during the production stage, ( )3iI t  and ( )4iI t , 
represent the inventory levels during the no-production stage. The solutions to Eq. (22) are as 
follows: 
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(23)
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The total relevant cost per unit time for the cycle is as follows: 
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(24)

Minimizing ( )7 ,i i iTCT s t subject to the constraints below gives the optimal production schedule and 
cost for the cycle. 
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3.9 Case 8: A cycle with variation in demand pattern twice during production 
 

The production stops at time is when demand is declining and consumption continues till 

1(0 , , )i i i it t s tμ γ γ−≤ < ≥ > .The demand pattern changes twice during production. The equation of 
the system is as follows: 
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The solutions to Eq. (25) are as follows: 
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The total relevant cost per unit time for the cycle is as follows: 
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(27)

Minimizing ( )8 ,i i iTCT s t subject to the constraints below gives the optimal production schedule and 
cost for the cycle. 
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4.  Numerical examples and discussion of results 
 
Consider the production-inventory system for a seasonal product with a three-phase ramp-type 
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demand pattern as shown below.  

( )
0.2( 8)

100 5 , 0 ,
120, ,
120 .t

t t
f t t

e t T

μ
μ γ

γ− −

⎧ + ≤ ≤
⎪= ≤ ≤⎨
⎪ ≤ ≤⎩

 

The system undergoes a learning-based continuous improvement process which results in reduction 
in set-up cost. The initial set-up cost prior to any learning is $200 per production cycle while the 
minimum set-up cost that is not subject to further reduction is $50 per cycle. The production rate is 
1.5 times the demand rate at any point in time; the unit production cost and inventory holding cost per 
unit of the item are $10 and $1.5, respectively. The deterioration of the item follows a Weibull 
distribution ( 1( ) bt abtθ −= ) with parameters a = 0.005, b = 2. The inventory level at the beginning and 
end of the season is zero while at other times during the season a minimum inventory level of 50 
units is maintained. 
The above system is used to illustrate the model by obtaining optimal schedules and costs under 
different learning rates. This will enable us to study the effects of learning in set-up on the production 
and inventory schedules and costs. The values used for the learning index c corresponds to learning 
rates between 40% -100% which is in line with previous studies (e.g. Chand 1989). The system is 
also used to compare three different production policies that can be adopted when dealing with 
seasonal products with varying demand patterns. The policies examined are as follows: 

• Variable demand pattern (VDP) policy 
• Single demand pattern (SDP) policy  
• Single production cycle (SPC) policy 

The VDP and SDP policies, being multi-period policies, can ensure a fast-response to costumers’ 
demand. The solution procedure for obtaining the optimal schedules and costs under each of these 
policies along with the numerical examples using the above input data are presented below. 

4.1 Variable demand pattern (VDP) policy 
 
This policy allows several production cycles during the season without any restrictions by 
accommodating variation in demand pattern within the cycles whenever they occur. 
All production cycles are solved using the procedure for Case 1 except at the points when changes in 
demand pattern occur. The cycles incorporating the change points are identified and the optimal 
values for those cycles are recalculated using the appropriate equations. The algorithm for this policy 
is as follows: 
 
Step 1:  
Determine all the optimal values ( )* * *, ,i i is t TCT  for the first and subsequent production cycles using 
Case 1 by solving a constrained nonlinear optimization problem (CNLOP) problem P1 below with an 
appropriate demand function. 

( )
( ) ( )

1 1

1 2 1

min ,

subject to{ ; 0; 0}.
i i i

i i i i i i i i

P TCT s t

I s I s t s s t−

=

= − ≤ − ≤
  

Step 2:  
Check for demand change points by comparing the values of ti and ti-1.  
Step 3:  
If 10 it μ−< <  and itμ γ≤ ≤  for a given i-th cycle, then a change in demand pattern occurred during 

that cycle. Recalculate the set of values ( )* * *, ,i i is t TCT  for that cycle by solving problems P2 and P3 

below. Determine the optimal cost per unit time for that cycle by using * * *
2 3min[ , ]i i iTCT TCT TCT= , 

where * *
2 3,i iTCT and TCT are the optimal values obtained from the solution to problems P2 and P3 
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respectively.   
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Step 4: 
If 1itμ γ−≤ <  and it γ≥  for a given i-th cycle, then a change in demand pattern occurred during that 

cycle.  Recalculate the set of optimal values ( )* * *, ,i i is t TCT  for that cycle by solving problems P4 and 

P5 below. Determine the optimal cost per unit time for that cycle by using * * *
4 5min[ , ]i i iTCT TCT TCT= , 

where * *
4 5,i iTCT and TCT are the optimal values obtained from the solution to problems P4and P5, 

respectively.    
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Using the algorithm stated above and the data given earlier in this section the optimal production and 
inventory schedules and costs for the seasonal item were obtained for various values of learning index 
c. The results are shown in Table 1 below. From the table, the highest value of total relevant cost for 
the system during the entire season is obtained when the learning index c is zero. This implies that the 
total relevant cost of the system is at the highest level when there is no improvement and no reduction 
in set-up cost due to learning. Table 1 also shows that the lowest value of total cost for the season 
occurs at the highest value of the learning index which corresponds to the highest rate of reduction in 
set-up cost due to learning. The effect of learning is also reflected in the form of the reduction in 
cycle length (Ti) as the number of cycles (n) increases for a given demand pattern. This resulted in the 
increase in the number of lots as the learning index increases, for example when c is 0.5; the total 
number of lots produced is 4, but for c = 0.75 and 1.25, the total number of lots increases to 5 and 6, 
respectively. This corroborates the fact that reduction in set-up cost often leads to higher production 
frequency and shorter production runs, which forms an aspect of the just-in-time (JIT) philosophy 
(Darwish 2008).  
 

4.2 Single demand pattern (SDP) policy 
 
This policy allows several production cycles during the season but ensures that all cycles have single 
demand pattern by deliberately avoiding change of demand pattern   within cycles. The following 
algorithm is designed to deliberately avoid change of demand pattern within the cycles: 
 
Step 1:  
Determine all the optimal values ( )* * *, ,i i is t TCT  for the first and subsequent production cycles using 
Case 1 by solving the CNLOP below with appropriate demand function, 
 
Step 2:  
Check for demand change points by comparing the values of ti and ti-1, 
 
Step 3:  
If 10 it μ−< <  and itμ γ≤ ≤  for a given i-th cycle, then a change in demand pattern occurred during 
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that cycle. Set *
it μ=  for that cycle and recalculate the optimal values ( )* * *, ,i i is t TCT  for the cycle by 

solving problem P1 with appropriate demand function, 
Step 4: 
If 1itμ γ−≤ <  and it γ≥  for a given i-th cycle, then a change in demand pattern occurred during that 

cycle.  Set *
it γ=  for that cycle and recalculate the optimal values ( )* * *, ,i i is t TCT  for the cycle by 

solving problem P1 with appropriate demand function, 

Table 1  
Optimal results using the VDP Policy with various values of learning index 

 n 1it
∗
−  is∗ it

∗
iTCT ∗

iT ∗

 i iTCT T∗ ∗∗

c = 0 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00
2 3.3596 4.8524 5.5227 1464.70 2.1631 3168.29 
3 5.5227 7.0736 7.7407 1484.30 2.2180 3292.18
4 7.7407 10.3129 13 866.69 5.2593 4558.18

Total relevant cost for the season 15780.65

c = 0.25 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00
2 3.3596 4.7213 5.3361 1449.30 1.9765 2864.54 
3 5.3361 6.6781 7.2643 1460.00 1.9282 2815.17
4 7.2643 10.1307 13.0000 918.17 5.7357 5266.35 

Total relevant cost for the season 15708.06 

c = 0.50 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00
2 3.3596 4.6008 5.1638 1435.20 1.8042 2589.39 
3 5.1638 6.3278 6.8428 1438.60 1.6790 2415.41
4 6.8428 9.9749 13.0000 960.31 6.1572 5912.82 

Total relevant cost for the season 15679.62

c = 0.75 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00
2 3.3596 4.4898 5.0046 1422.10 1.6450 2339.35 
3 5.0046 6.0159 6.4683 1420.00 1.4637 2078.45
4 6.4683 7.3822 7.7814 1416.90 1.3131 1860.53 
5 7.7814 10.3287 13.0000 834.13 5.2186 4352.99 

Total relevant cost for the season 15393.33

c = 0.90 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 4.4272 4.9148 1414. 80 1.5552 2200.30 
3 4.9148 5.8449 6.2633 1409.90 1.3485 1901.25
4 6.2633 7.0835 7.4452 1404.90 1.1819 1660.45 
5 7.4452 10.1991 13.0000 878.42 5.5548 4879.45

Total relevant cost for the season 15403.45

c = 1.25 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 4.2927 4.7205 1399.00 1.3609 1903.90 
3 4.7205 5.4866 5.8352 1389.40 1.1147 1548.76
4 5.8352 6.4749 6.7620 1381.30 0.9268 1280.19 
5 6.7620 7.3197 7.5668 1377.30 0.8048 1108.45
6 7.5668 10.2456 13.0000 857.34 5.4332 4658.10

Total relevant cost for the season 15261.40 
 
Table 2 below shows the result obtained by applying this algorithm to the production-inventory 
system described earlier for various values of learning index. The result shows a reduction in the total 
relevant cost of the system with the increase in the value of learning index in addition to the increase 
in production frequency as noted earlier.  
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Table 2  
Optimal results using the SDP Policy with various values of learning index 

 n 1it
∗
−  is∗ it

∗
iTCT ∗

iT ∗

 i iTCT T∗ ∗∗

c = 0 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 3.7966 4.0000 1612.60 0.6404 1032.71 
3 4.0000 5.5319 6.2132 1474.50 2.2132 3263.36 
4 6.2132 7.4619 8.0000 1492.70 1.7868 2667.16 
5 8.0000 10.4147 13.0000 829.08 5.0000 4145.38 

Total relevant cost for the season 15870.60

c = 0.25 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 3.7966 4.0000 1562.77 0.6404 1000. 80 
3 4.0000 5.3326 5.9310 1451.27 1.931 2802.40 
4 5.9310 7.3792 8.0000 1458.92 2.069 3018.51 
5 8.0000 10.4147 13.0000 815.82 5.0000 4079.12 

Total relevant cost for the season 15662.82 

c = 0.50 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 3.7966 4.0000 1521.10 0.6404 974.11 
3 4.0000 5.1601 5.6853 1431.10 1.6853 2411.83 
4 5.6853 6.7703 7.2473 1432.30 1.562 2237.25 
5 7.2473 7.7702 8.0000 1464.00 0.7527 1101.95 
6 8.0000 10.4147 13.0000 814.63 5.0000 4073.16 

Total relevant cost for the season 15560.31 
 N 1it

∗
−  is∗ it

∗
iTCT ∗

iT ∗

 i iTCT T∗ ∗∗

c = 0.75 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 3.7966 4.0000 1485.91 0.6404 951.58 
3 4.0000 5.0105 5.4711 1413.50 1.4711 2079.40 
4 5.4711 6.3790 6.7836 1410.60 1.3125 1851.41 
5 6.7836 7.6309 8.0000 1410.30 1.2164 1715.49 
6 8.0000 10.4147 13.0000 799.51 5.0000 3997.55 

Total relevant cost for the season 15357.43 

c = 0.90 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 3.7966 4.0000 1467.57 0.6404 939.83 
3 4.0000 4.9303 5.3559 1404.10 1.3559 1903.82 
4 5.3559 6.1726 6.5390 1399.30 1.1831 1655.51 
5 6.5390 7.5582 8.0000 1401.70 1.461 2047.88 
6 8.0000 10.4147 13.0000 797.05 5.0000 3985.25 

Total relevant cost for the season 15294.29 

c = 1.25 

1 0 2.6231 3.3596 1417.43 3.3596 4762.00 
2 3.3596 3.7966 4.0000 1431.60 0.6404 916. 80 
3 4.0000 4.7675 5.1211 1384.90 1.1211 1552.61 
4 5.1211 5.7602 6.0507 1376.90 0.9296 1279.97 
5 6.0507 6.6066 6.8562 1372.70 0.8055 1105.71 
6 6.8562 7.6526 8.0000 1377.20 1.1438 1575.24 
7 8.0000 10.4147 13.0000 792.59 5.0000 3962.95 

Total relevant cost for the season 15155.27 
 
For any given value of learning index, the total number of production lots and total relevant cost of 
the system generated under this policy is higher than that obtained under the VDP policy. This shows 
VDP policy outperforms the SDP policy from the costs perspectives. This result further corroborate 
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the assertion that it is better to always consider changes in the demand pattern that may occur within 
production/replenishment cycles because neglecting such changes usually leads to overall increase in 
production/inventory cost (Abdul & Murata 2011). 

4.3 Single production cycle (SPC) policy 
 
Under this policy, there is only one production cycle which begins at the at time t = 0 and stops at 
time t = si However the production stopping time may be while demand is increasing (i.e. Case 6), 
constant (i.e. Case 7), or decreasing (i.e. Case 8).  However the production stopping time may be 
constant while demand is increasing (i.e. Case 6), (i.e. Case 7), or decreasing (i.e. Case 8). The 
optimal values under this policy can be obtained by using the following algorithm: 
 
Step 1: 
 
Formulate a constrained nonlinear optimization problem (CNLOP) for Cases 6, 7, and 8 thus: 
 Case 6: 

( )
( ) ( )

6 6

1 2 1 1

min ,

subject to{ ; 0 ; 0 ; 0; 0; }.
i i i

i i i i i i i i i i i

P TCT s t

I s I s t s t s s t tμ μ γ− −

=

= ≤ < ≤ < − ≤ − ≤ ≥
  

Case 7:  
( )

( ) ( )
7 7

2 3 1 1

min ,

subject to { ;0 ; ; 0; 0; }.
i i i

i i i i i i i i i i i

P TCT s t

I s I s t s t s s t tμ μ γ γ− −

=

= ≤ < ≤ < − ≤ − ≤ ≥
  

Case 8: 

 
( )

( ) ( )
8 8

3 4 1 1

min ,

subject to { ;0 ; ; 0; 0; }.
i i i

i i i i i i i i i i i

P TCT s t

I s I s t s t s s t tμ γ γ− −

=

= ≤ < ≥ − ≤ − ≤ ≥
   

 
Step 2: 
 
Obtain the set of values ( )* * *, ,i i is t TCT  for the cycle by solving problems P6, P7, and P8,  
 
Step 3: 
 
Determine the optimal values for that cycle by using * * * *

6 7 8min[ , , ]i i i iTCT TCT TCT TCT= , where 
* * *

6 7 8,i i iTCT TCT and TCT are the optimal values obtained from the solution to problems P6, P7, and P8 

respectively.    
 

Since only one production cycle and only one set-up is involved, there can be no reduction in set-up 
cost due to learning effects under this policy. The result of using this policy as shown in Table 3 
indicates that the total relevant cost of the system is higher than that obtained under the previous 
policies (VDP and SDP) even when the effect of reduction in set-up cost is not considered. When the 
learning index is zero, VDP, SDP and SPC policies gives total relevant system cost of $15780.65, 
$15870.60, and $17873.70, respectively. This shows that the single period policy is more expensive 
than the multi-period policies. When the effect of reduction in set-up cost due to learning is 
considered, the gap between the costs of single period policy and the multi-period policies further 
widens. This shows the importance of using a multi-period production strategy that involves small, 
frequent and short run production lots when dealing with deteriorating seasonal items with a variable 
demand pattern.  This is more economical and enables a faster response to customers’ demand than 
producing once to meet the entire demand of the season.  
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Table 3  
Optimal results using the SPC policy  

 n 
1it

∗
−  is∗  it

∗  iTCT ∗
iT ∗

 i iTCT T∗ ∗∗  
 1 0 8.2796 13 1374.9 13 17873.7 

Total relevant cost for the season 17873.7 
 

4.4 Sensitivity of model to other cost parameters  
 
We examine the sensitivity of the developed model to other cost parameters different from the set-up 
cost using the VDP policy. This is done by varying the values of the inventory holding cost per unit 
(CH) and the production cost per unit (CP) by +50%, +25%, -25%, -50%, taking one at a time while 
others were kept constant.  
 
Table 4  
Sensitivity of model to production cost ( PC ) using VDP policy (c = 0.5) 

 n 1it
∗
−  is∗ it

∗
iTCT ∗

iT ∗

 i iTCT T∗ ∗∗
1 0 2.4768 3.1539 792.86 3.1539 2500.60 

PC  = 5 
2 3.1539 4.5073 5.1182 816.72 1.9643 1604.28 
3 5.1182 6.4005 6.9649 814.02 1.8467 1503.25 
4 6.9649 10.0195 13.0000 544.43 6.0351 3285.69 

Total relevant cost for the season 8893.82 
1 0 2.563 3.2752 1105.30 3.2752 3620.08 

PC  = 7.5 2 3.2752 4.5678 5.1529 1125.90 1.8777 2114.10 
3 5.1529 6.3715 6.9093 1126.50 1.7564 1978.58 
4 6.9093 9.9991 13.0000 750.54 6.0907 4571.31 

Total relevant cost for the season 12284.07 
1 0 2.6231 3.3596 1417.43 3.3596 4762.00 

PC  = 10 2 3.3596 4.6008 5.1638 1435.20 1.8042 2589.39 
3 5.1638 6.3278 6.8428 1438.60 1.6790 2415.41 
4 6.8428 9.9749 13.0000 960.31 6.1572 5912.82 

Total relevant cost for the season 15679.62 
1 0 2.6675 3.4218 1729.40 3.4218 5917.66 

PC  = 12.5 2 3.4218 4.6182 5.1619 1744.50 1.7401 3035.60 
3 5.1619 6.2785 6.7737 1750.50 1.6118 2821.46 
4 6.7737 9.9498 13.0000 1173.20 6.2263 7304.70 

Total relevant cost for the season  19079.42 
1 0 2.7016 3.4694 2041.10 3.4694 7081.39 

PC  = 15 2 3.4694 4.626 5.1524 2053.70 1.6830 3456.38 
3 5.1524 6.2274 6.7053 2062.00 1.5529 3202.08 
4 6.7053 9.9251 13.0000 1388.90 6.2947 8742.71 

Total relevant cost for the season  22482.56 
 
The results of these analyses are presented in Table 4 and Table 5. Table 4 shows that the total 
relevant cost is highly sensitive to the changes in the value of production cost per unit (CP). It 
increases with increase in CP and vice versa. The number of lots produced is, however, less sensitive 
to changes in CP. On the other hand, Table 5 shows that the total relevant cost is less sensitive to 
changes in the value of inventory holding cost per unit (CH) while the number of lots produced is 
highly sensitive to changes in CH. This in agreement with real-world inventory management practise 
wherein high inventory holding costs motivates increase in the production frequency so as to reduce 
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number of items to be held in inventory at any particular time. One of the major advantages of the 
just-in-time (JIT) policy is to reduce the amount spent in holding items in inventory to the minimum. 
These analyses showed that the model developed in this paper encourages higher production 
frequency whenever there is an increase in inventory holding cost but discourages increase in 
production frequency when there is an increase in production cost per unit of item. The implication of 
this is that the effect of the increases in costs on the total relevant cost of the system cost will be 
minimized and this is one of the advantages of the VDP policy.   
 
Table 5  
Sensitivity of model to inventory holding cost ( HC ) using VDP policy (c = 0.5) 

 n 1it
∗
−  is∗ it

∗
iTCT ∗

iT ∗

 i iTCT T∗ ∗∗
1 0.0000 2.9387 3.7991 1359.50 3.7991 5164.88 

HC  = 0.75 2 3.7991 5.3786 6.0821 1376.80 2.2830 3143.23 
3 6.0821 8.0000 8.8636 1382.30 2.7815 3844.87 
4 8.8636 10.7351 13.0000 635.64 4.1364 2629.25 

Total relevant cost for the season 14782.23 
1 0 2.7667 3.5603 1389.30 3.5603 4946.32 

HC  = 1.125 2 3.5603 4.9513 5.578 1407.20 2.0177 2839.31 
3 5.578 6.855 7.412 1410.40 1.8340 2586.67 
4  7.412 10.1865 13.0000 863.66 5.5880 4826.13 

Total relevant cost for the season 15198.43 
1 0 2.6231 3.3596 1417.43 3.3596 4762.00 

HC  = 1. 5 2 3.3596 4.6008 5.1638 1435.20 1.8042 2589.39 
3 5.1638 6.3278 6.8428 1438.60 1.6790 2415.41 
4 6.8428 9.9749 13.0000 960.31 6.1572 5912.82 

Total relevant cost for the season 15679.62 
1 0 2.5010 3.1879 1444.30 3.1879 4604.28 
2 3.1879 4.3075 4.8168 1461.10 1.6289 2379.99 

HC  = 1.875 3 4.8168 5.8906 6.3711 1466.60 1.5543 2279.54 
4 6.3711 7.3838 7.8245 1465.50 1.4534 2129.96 
5 7.8245 10.3456 13.0000 859.53 5.1755 4448.51 

Total relevant cost for the season  15842.28 
1 0 2.3954 3.0389 1470.00 3.0389 4467.18 
2 3.0389 4.0578 4.5215 1485.50 1.4826 2202.40 

HC  = 2.25 3 4.5215 5.5218 5.9736 1494.20 1.4521 2169.73 
4 5.9736 6.916 7.3312 1491.50 1.3576 2024.86 
5 7.3312 10.1559 13.0000 958.97 5.6688 5436.21 

Total relevant cost for the season  16300.38 
 
 
5.  Conclusions 
 
In this paper, we have considered the multi-period production lot sizing problem that involves 
deteriorating seasonal products with a three-phase ramp-type demand pattern. The study also included 
the effects of learning in set-up on the production and inventory schedules and costs. Two different 
production strategies (VDP and SDP policies) that can ensure a fast-response to customers’ demand 
were presented. These strategies were compared with the common single production cycle (SPC) 
strategy usually adopted in most production-inventory models. Through numerical examples, we 
showed that the total relevant cost of a production-inventory system is the highest when there is no 
improvement and no reduction in set-up cost due to learning.  
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It was equally shown that the learning-based reduction in set-up costs led to higher production 
frequency and shorter production runs which are vital aspects of the just-in-time (JIT) philosophy. 
Comparison between the VDP and SDP policies showed the importance of allowing for changes in 
the demand pattern within production/replenishment cycles whenever such changes occur. It was 
shown that neglecting such changes usually lead to overall increase in the total relevant cost of the 
production-inventory system. A multi-period production strategy that involves small, frequent and 
short-run production lots was also shown to be economically better than the single period strategy 
when dealing with deteriorating seasonal items with a varying demand pattern. The study showed that 
the gap between the cost of a single period production policy and that of a multi-period production 
policy is further widened when the effect of the reduction in set-up cost due to learning is considered. 
The sensitivity analysis showed that the model generated higher number of production lots at higher 
values of inventory holding cost thereby minimizing its effect on total relevant cost. The number of 
lots produced by the model is, however, less sensitive to changes in production cost per unit of item. 
This study can be extended by considering the effect of learning and forgetting on set-up, production 
rate and product quality for seasonal product with a ramp-type demand pattern.  
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