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 In recent years, development of freight transport industry has led to fierce competition among 
transportation companies and therefore carrier-pricing issue has received more attention by 
researchers. This paper studies pricing and fleet management decisions for full-truckload 
freight carriers, which compete on a road network. We propose a game theory approach under 
two scenarios. In the first, we model the non-cooperative game wherein the carriers announce 
their prices simultaneously in competition; in the second, we allow the carriers to share their 
information and announce their prices while participating in cooperation. We show that carriers 
can reach the highest profit level in the latter scenario; subsequently, a bargaining game is 
discussed as a scheme to share the extra joint profit. 
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1. Introduction 

A transportation network consists of origin and destination locations including manufacturing 
facilities, warehouses, distribution centers, wholesales, and retail outlets, wherein each lane connects 
a source location to a destination location. Freight carriers provide transportation service for shippers, 
which are usually transportation management departments. In other words, freight carriers are 
profitable companies whose input is the demand of shippers and their output are transportation 
services (Harker, 1985).  
Today, pricing policies, as a main component of activities in manufacturing and service companies, 
have received a great attention by managers. The reason is that “price” is one of the most effective 
variables through which managers can encourage or discourage demand in a short period. In the 
literature, two main approaches are introduced for pricing: posted-price mechanism and price-
discovery mechanism. In posted-price mechanism, the seller determines the prices and announces 
them to the market. The goods and commodities are then sold according to announced prices. In 
price-discovery mechanism, the prices are offered through a suggestion process such as auction or 
bidding (Elmaghraby & Keskinocak, 2003). 
This paper focuses on road transportation freight carriers. According to the American Trucking 
Association (ATA) report in 2005, the industry has 68.9% share of the total volume of freight 
transported in U.S. Road transport industry produced 623$ billion annual revenue by conveying 10.7 
billion tons in 2005, which was 84.3% of the nation’s freight income. Road freight carriers are 
classified into two major sectors: Full truckload (FTL) and less than truckload (LTL). In full 
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truckload sector addressed in this paper, competition is fierce due to relatively low capital entry 
requirements. Therefore, offering lower prices may increase the demand of carriers over different 
lanes. However, proper prices are obtained by considering the downstream effects of fleet 
repositioning along with profit maximizing problem (Topaloglu & Powell, 2007).  
There are few researches in the literature having investigated the pricing issue for full truckload 
carriers. King and Topaloglu (2007) studied the pricing problem for a FTL carrier based on posted-
price mechanism. Their model incorporated the fleet management decisions by considering vehicle 
repositioning in load pricing problem. Topaloglu and Powell (2007) extended the King and 
Topaloglu’s work by proposing a stochastic approach for searching the best prices. Although the 
models presented the above works are able to consider the fleet capacity, but they ignore the fierce 
competition between carriers, which can make their results unreliable. Figliozzi et al. (2007) 
addressed the dynamic pricing problem for FTL carriers based on an auction mechanism. Their model 
considers the environment competition effects through offering different competitive options for the 
carriers. They applied a sequential costing and pricing approach to find the best solutions.  
On the other hand, intense competition, low profit margins and high operating costs of carriers in 
FTL industry, have excluded many small transportation companies. As a result, companies tend to 
merge with each other to take advantage of scale savings, operational cost reductions and order 
density increments with the goal of surviving in the market. A more effective option than merging is 
cooperation among competitor carriers. Through cooperation, freight carriers are able to integrate and 
coordinate their planning and decision making processes and therefore utilize the full capacity of their 
fleets. However, at each level of cooperation, there are some potential benefits for participants, but 
increasing the degree of cooperation often leads to many challenges. In other words, although all 
participants in the cooperation are moving towards a common goal, but each is also guided according 
to its own interests. Therefore, any mechanism for managing the cooperation among different 
companies has to provide the desirability of individual members as well as collective desirability of 
the cooperation (Ozener, 2008).   
Cooperation among different decision makers of a freight transportation network has been studied 
under the title of “collaborative logistics” with the goal of increasing efficiency and reducing the 
hidden costs (Ergun et al., 2007). Ozener and Ergun (2008) studied cooperation opportunities in a 
road freight transport network. They investigated the horizontal cooperation with full information 
among shippers to reduce costs of transportation through a carrier. Ozener et al. (2010) addressed the 
issue of cooperation among freight carriers and proposed a mechanism based on bilateral order 
exchange using a game theoretic approach to manage the cooperation. Hoghtalen et al. (2007) 
examined cooperation among airline carriers. He proposed a mechanism based on capacity exchange 
prices to manage carriers’ behavior in the cooperation. The results showed that the benefits of 
cooperation among carriers increase by the network capacity and fleet size. Agarwal and Ergun 
(2010) studied the cooperation of marine freight carriers from a decentralized perspective. In addition 
to short-term capacity allocation between carriers, long-term decisions on designing the networks are 
also examined. The focus of all above articles is on cost reduction, but the effects of pricing decisions 
and competitive market are neglected.  
To our best knowledge, previous works on carrier pricing in FTL sector have focused on the problem 
of one carrier and they have not considered the effect of competitors’ decisions. The only paper that 
has tried to propose competitive options is based on the auction mechanism (Figliozzi et al. ,2007). In 
this paper, we study pricing decisions for FTL carriers, which compete on a common road network. 
The posted-price mechanism is employed and the fleet decisions, which are most critical for FTL 
carriers, are considered along with pricing. In order to model the carriers’ competition, we use a non-
cooperative game theory approach with simultaneous moves. In addition, we study the cooperation 
among FTL carriers with the goal of identifying and utilizing the synergies among rival carriers using 
a cooperative game approach and a bargaining scheme is presented to share the extra joint profit 
among the participants.   
The rest of this paper is organized as follows. In Section 2, the problem of interest is described and 
formulated as a generalized Nash equilibrium problem (GNEP). Then a relaxed GNEP is proposed as 



M. Mozafari and B. Karimi / International Journal of Industrial Engineering Computations 2 (2011) 
 

469

an approximation approach and a solution approach for the non-cooperative game problem is 
developed. Section 3 models the cooperation among freight carriers and presents a bargaining scheme 
to share the extra joint benefit. Section 4 provides numerical experiments and result analysis. Finally, 
Section 5 is devoted to concluding remarks. 
 
2. Non-cooperative game model 
Consider two rival freight carriers service over a common road network. Each node of this network 
represents a location center, which can be the origin or destination of a freight transportation order 
and the arcs of the network represent the fleet movement lanes. The carriers compete over this 
network to capture the origin-destination demands for freight delivery services from a shipper to a 
receiver. They have potentially different costs for servicing over an arc due to their different 
equipment technology and their orders density. We propose a game theoretic approach to model the 
pricing behavior of the freight carriers in such a network. Carriers are allowed to set the price of 
transportation services over different arcs of the network in order to maximize their profits. The 
demand of each carrier is assumed as a function of its own prices as well as the prices of the rival 
firm. When a freight transportation order is received, the carrier has to decide whether to respond this 
order or not, with regard to related costs including fleet hauling cost and fleet repositioning cost. 
Repositioning or deadheading refers to empty truck movement decreases the capacity utilization of a 
carrier and therefore increases its operational costs. The demand rejected by a carrier is assumed as 
lost sales. Since the customers are not strategic, we suppose that lost sales do not cause any cost. We 
assume that both carriers are Nash agents in such economy and they are profit optimizers with pricing 
power.  
 
2.1. Notations 
The following parameter and variable definitions are used in this paper. 
 

Parameters:  
 l :  set of the existing locations in transportation network 
A :  set of the existing arcs in transportation network  
V:   set of the existing carriers service on the network, },{ 21 vvV =  

v
ijc :  cost of service on arc ij for carrier v 
vθ :  deadheading cost coefficient 
v
ijD :  amount of potential demand for carrier v over arc ij 
vα :  self- price sensitivity coefficient of demand for carrier v 
vβ :  rival-price sensitivity coefficient of demand for carrier v 

 
Variables:  

v
ijp : price charged by carrier v for transporting goods over arc ij   

v
ijp− : price charged by the rival carrier for transporting goods over arc ij  
v
ijy : number of transportation services served by carrier v over arc ij  
v
ijz : number of vehicle repositions of carrier v over arc ij  

We assume that transportation demand is a linear function of carrier’s price v
ijp and the rival’s price

v
ijp− . Thus, the demand for carrier v over arc ij is defined as follows. 

...),( v
ij

vv
ij

vv
ij

v
ij

v
ij

v
ij ppDppd −− +−= βα  

The parameter v
ijD  reflects a forecasted demand, which is not identical for the two carriers due to 

some distinctions such as local reputation, brand, service quality, etc. This potential demand is then 
reduced by the carrier’s self price v

ijp  and is increased by the rival price v
ijp−  with elasticity 



  470

coefficients vα and vβ , respectively. Note that the coefficient of self-price sensitivity is greater than 
rival-price sensitivity is 

vv αβ ≤≤0 . The proposed model uses a linear demand function since it is 
tractable and often satisfactorily fits to the given data set. Fig. 1 depicts a schema of a freight 
transportation network addressed in this paper. 1v

ijd  reflects the demand of carrier v1 on the arc ij , and
2v

efd denotes the demand of carrier v2 over the arc ef . 

 
Fig.1. Network representation of the problem 

 
 

2.2. Mathematical model 
The mathematical model of carrier v is defined as follows, 
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Objective function (1) maximizes the total profit of carrier v. Constraint (2) ensures the flow balance. 
Constraint (3) guarantees that number of transportation services for carrier v over arc ij is at most 
equal to its demand on that arc. Finally, constraint (4) determines the domain of decision variables. 
The problem of interest is to find the optimal prices, the number of transportation services, and the 
number of vehicle repositions over different arcs of the road network in equilibrium point of the Nash 
game. Constraint (3) is a joint constraint, which models the interaction among the rival carriers. This 
constraint causes the game to take the form of generalized Nash equilibrium problem (GNEP) 
(Facchinei & Kanzow, 2007).  
 
2.3. Solution algorithm  
In this section, we propose an algorithm to solve the mixed integer GNEP. The algorithm we use is 
the modified Nonlinear Gauss–Seidel method presented by Facchinei et al. (2007). Nonlinear Gauss–
Seidel method is a decomposition approach using the grasp logic. When the algorithm converges, the 
solution of GNEP is obtained. The statement of this algorithm for our model is as follows: 
 
Step1: Initialization 
Set ),,,,,( 222111 ,0,0,0,0,0,00 vvvvvv zypzypx = as an initial feasible solution for the game. Let 0:=k  ( k
represents the iteration counter), and set kτ such that 0≥kτ .   
 
Step2: Computation 
Consider the price of player 2 (carrier 2) as a constant equals to 2,vkp and compute the optimal 
strategies for player 1 (carrier 1), ),,( *,1*,1*,1*,1 1111 vkvkvkvk zypx ++++ =  by solving the following model, 
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.),,,(),,(subject to
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Step3: Adaption 
Consider the price of player 1 (carrier 1) as a constant equals to 1,1 vkp + ; then compute the optimal 
strategies of player 2 (carrier 2), ),,( *,1*,1*,1*,1 1111 vkvkvkvk zypx ++++ = by solving the following model, 
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Step4: Convergence verification 
If εεε ≤−≤−≤− +++ 111111 ,,1,,1,,1 ,, vkvkvkvkvkvk zzyypp

 
and ,22 ,,1 ε≤−+ vkvk pp ,22 ,,1 ε≤−+ vkvk yy

ε≤−+ 22 ,,1 vkvk zz
 
for all Aij∈  and 0>ε  (a pre-specified tolerance), then stop; otherwise set 1+= kk

and go back to Step 2.  
  

We coded the algorithm in GAMS and solved each subproblem using SBB solver for each iteration. 
The SBB solver works based on the Branch and Bound (B&B) algorithm, which is believed to be an 
efficient algorithm to solve integer problems with a concave continuous relaxed form (Linderoth & 
Savelsbergh, 1999; Tawarmalani & Sahinidis, 2004). 
 
2.4. Approximation method 
As the players’ models are mixed integer nonlinear programs, we use a relaxation method to 
approximate the equilibrium solutions. Through relaxation of integer constraints, a GNEP with 
continuous and differentiable space is achieved. Equilibrium conditions for such a game can be 
formulated as a quasi variational inequality problem (Harker & Pang, 1990). Equilibrium conditions 
are obtained by considering the optimality conditions of the system assuming that the two carriers are 
faced with the optimization problem (1)-(4). So the system–equilibrium condition of both carriers can 
be mathematically expressed as follows, 
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Using the Karush–Kuhn–Tucker (KKT) conditions for player’s optimization problems, a necessary 
condition for a point x to be a solution of the GNEP is that it satisfies, together with suitable 
multipliers, the mixed KKT system of the two players (Facchinei & Kanzow, 2007). In order to 
derive the mixed KKT system, the Lagrange function of each carrier can be expressed as: 

,...)...(

}){.(}){.(

}..).{(),,,,,;;,,(

A AAA

 

 

v
ij

ij ij

v
ij

v
ij

vv
ij

ij

vv
ij

v
ij

vv
ij

vv
ij

ij

v

lj

v
ji

v
ji

v
ij

v
ij

li

v
i

lj

v
ij

v
ij

v
ji

v
ji

li

v
i

Aij

v
ij

v
ij

vv
ij

v
ij

v
ij

v
ij

vvvv
i

v
i

v
ij

v
ij

v
ij

v
ijv

zypyppD

zyzyzyzy

zcycppzypL

ijijij

ijijij

∑ ∑∑∑

∑∑∑∑

∑

∈ ∈∈

−

∈

∈∈∈∈

∈

−

′′+′++−+−+

−−+′+−−++

−−=′′′′

δδδβαγ

λλ

θδδδγλλ

 

 
 

(7)

where v
i

v
i

vvvv
ij ijijij

λλγδδδ ,,,,,  ′′′′  are the Lagrange multipliers respectively, associated with constraints (2)-
(4). Since all of the constraints are linear, Slater’s constraint qualification holds (Bazaraa et al., 1993) 
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and we can inspect the KKT conditions of the mathematical program (1)-(4). The KKT stationary is 
as follows, 
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The complementary slackness accompanying the primal and dual feasibility conditions are as follows, 
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The KKT conditions can be combined into the following linear complementary vectors. One can take 
advantage of such a complementary formulation for which efficient algorithms and commercial 
solvers exist (Harker & Pang, 1990). 
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Solving the linear complementary problem (10) can result in a candidate solution for GNEP. Hence, 
the benefit function of each carrier is pseudo concave and the KKT sufficient conditions hold in the 
problem space (See Appendix), and therefore the obtained candidate solution will be the global 
solution of the carrier pricing game. This linear complementary problem is formulated in GAMS and 
the resulted problem is solved using the PATH solver as a Newton based algorithm (Ferris & 
Munson, 2000).  
 
3. Cooperative game model and bargaining problem 
In this section, we focus on a cooperative game structure in which both competitor carriers agree to 
make decisions jointly such that the total profit would be maximized. We assume that they only share 
the related information and not their fleet capacity. Other assumptions are similar to the non-
cooperative scenario. The demand is price sensitive and defined as a linear function of self prices as 
well as rival prices. The problem of interest is to find the optimal strategies of two carriers service on 
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a common road network cooperatively and share the extra joint profit. Hence, we have the following 
optimization problem, 

∑ ∑ ∑
∈ ∈ ∈

−−=
Vv Aij Aij

v
ij

v
ij

vv
ij

v
ij

v
ijco zcycp }..).({max θπ  (13)

subject to 
Vvlizyzy

lj lj lj lj

v
ij

v
ij

v
ji

v
ji ∈∈∀=−−+∑ ∑ ∑ ∑

∈ ∈ ∈ ∈
,0  (14)

VvAijppdy v
ij

v
ij

v
ij

v
ij ∈∈∀≤− − ,0),(  (15)

.,,, VvAijRpZzy v
ij

v
ij

v
ij ∈∈∀∈∈ ++  (16)

 
The objective of the cooperative game is the summation of the carrier’s individual benefit functions 
(Eq.(13)). The solution must guarantee all the constraints of two carriers (constraints (14)-(16)). 
Regarding to the cooperative game theory assumptions, the cooperation of two competitor carriers is 
meaningful if the solution is in the core of the game. In other words, both sides would participate in 
the cooperation only if their individual profits are higher than those of non-cooperative case. Thus, 
the core of such cooperative game can be defined as follows. 
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where *
1vπ and *

2vπ  are the maximum benefits that carriers v1 and v2 can earn in non-cooperative case, 

respectively. co
v1

π  and co
v2

π  represent the shares of carriers v1 and v2 from the total joint benefit, 

respectively. Here we propose a Nash (1950) bargaining scheme in which carriers offer a set of 
suggestions and discuss on them until an agreement is achieved. The extra joint benefit is calculated 
as: 
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Since the equilibrium point of the carriers’ non-cooperative game is always a feasible solution for the 
cooperative model, thus 0
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According to Nash bargaining, the bargaining outcome is obtained by maximizing the product of 
individual utilities over the feasible solution. Consider the following utility functions for the two 
carriers:  
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where 1λ  and 2λ  are respectively the risk attitudes of carriers v1 and v2. The risk attitude of each 
carrier shows the amount of risk confronted that carrier, if the cooperation is collapsed. Therefore, the 
optimal share of each carrier can be obtained by solving Eqs.(23)-(25). 
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In other words, in Nash bargaining solution, each carrier’s share of extra joint profit is equal to its 
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risk attitude ratio. When both carriers have the same risk attitude ( 21 λλ = ), Nash’s model predicts that 
they will equally split the joint extra-profits, which is common knowledge in the bargaining literature. 
Otherwise, if one carrier’s attitude is to take more risk, this carrier will get more from the joint extra-
profit. Therefore, the total benefit of each carrier in the cooperative game is obtained as follows: 

222111
** , vv

co
vvv

co
v ππππππ ∇+=∇+=                                                                                                     (26) 

 
4.Numerical experiments and discussion 
In this section, we apply the modified Nonlinear Gauss–Seidel method to several numerical examples 
and provide a discussion of the results. In order to develop test networks, we generate a set of 
instances in a 100*100 square mile region by varying the number of locations and the average 
number of lanes incident to a location. Lanes are created by randomly picking an origin and 
destination. The cost of traveling between locations with a full truckload, 

v
ijc , is equal to the 

Euclidean distance between the locations multiplying to a service level coefficient, vσ . The service 
level coefficient reflects the technology of equipment and fleet for each carrier. We assume that 
carrier 2 tolerate more transportation cost traveling over the same lane such that 11 =σ and 05.12 =σ . 
The repositioning cost coefficient for both carriers is equal to 0.5. The number of potential demands 
over different network lanes are generated by a uniform distribution U(40,60) for both carriers. The 
demand function parameters are assumed to be the same for two carriers such that 85.0=α and 

65.0=β . In the following, we first discuss the results and sensitivity analysis for an example and 
then summarize the results for instances of different sizes.     
 
Example 1: Consider two rival carriers service over a common transportation network consisting of 5 
nodes (locations) and 20 arcs (lanes). We solve the example using the modified Gauss–Seidel method 
in GAMS 29.9.2. Fig. 2 and Fig. 3 illustrate the output results in terms of the prices and realized 
demands of the two carriers in the Nash equilibrium point of their game. As we can observe from 
these figures, the realized demands for each carrier are matched with the announced prices over 
different network lanes. For example, on the arcs 12, 14, 15, 16, 17, 19, and 20, carrier 1 can devote 
the market demand to himself by announcing lower prices compared with prices declared by carrier 
2. In contrast, on arc 18, carrier 2 can gain more demands through lower price offered.  
 

 
Fig.2 carriers’ prices in Nash equilibrium point 
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Fig.3 carriers’ realized demands in Nash equilibrium point 

 
The benefit values for carrier 1 and 2 are 24173.51 and 22006.40, respectively. We investigate the 
effects of demand function parameters α  and β . Fig. 4 shows the results of example 1 for 85.0=α
by varying β . As expected, as β  rises, the carrier increases his prices to capture more demands and 
therefore the benefit is increased. Fig. 5 shows the results of example 1 for 65.0=β by varyingα . As 
expected, the carrier decreases his prices by decreasing α  to capture more demands, and therefore 
the benefit is declined. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 sensitivity analysis of β  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 sensitivity analysis of α  
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We model the cooperative game mathematical program of Example 1 in GAMS 29.9.2 using SBB 
solver. The total joint benefit obtained is 75046.52, which shows 62.51% improvements in total 
benefit of carriers. The extra joint benefit of 28866.61 units is then shared among carriers based on 
their risk attitudes. We have applied the solution algorithm and the relaxation approach to test 
problems of different sizes and the results are summarized in Table 1. As can be seen, the results of 
relaxed GNEP have a small gap from mixed integer GNEP’s results, and even for larger instances, 
the gap becomes smaller. It is concluded that the relaxed problem can create a good approximation of 
the mixed integer GNEP in a reasonable amount of time, and the use of relaxed method leads to a 
save time for large-scale instances, significantly.  
 

Table1  
Results of GNEP for different instances 
Problem size Mixed integer GNEP Relaxed GNEP Gap (%) 

l A Benefit of 
carrier 1 

Benefit of 
carrier 2 

Time 
(s) 

Benefit of 
carrier 1 

Benefit of 
carrier 2 

Time 
(s) Carrier 1 Carrier 2 

5 20 24173.51 22006.40 65 24249.63 22052.91 8 0.31 0.27 
10 90 82568.45 68490.32 273 82743.56 68628.34 16 0.21 0.20 
15 210 202387.22 134184.73 566 202677.96 134408.30 32 0.14 0.17 
20 380 421264.36 271484.96 810 421214.74 271422.35 54 0.01 0.02 
25 600 477769.03 399450.97 2520 478080.23 399396.64 120 0.01 0.01 
30 870 698215.31 586379.59 6612 698190.82 586351.00 180 0.003 0.005 
  
The cooperative game scenario has been examined using problem instances of different sizes and 
results are shown in Table 2. Results justify that cooperation among rival carriers can lead to a 
significant improvements (more than 40%) in total benefit achieved. The carriers can then negotiate 
on their risk attitudes to allocate the extra joint benefit.  
 
Table 2  
Comparison of total benefit in two game scenarios 
Problem size Total benefit without cooperation Total benefit with cooperation Improvement (%) l A 
5 20 46179.91 75046.52 62.51 
10 90 151058.77 224719.89 48.76 
15 210 336571.95 474321.52 40.93 
20 380 692749.32 1025503.28 48.03 
25 600 877220 1420596.23 61.94 
30 870 1284594.9 2079854.49 61.91 
 
5. Concluding remarks 
This paper studied pricing issue for freight carriers in full truckload industry which compete on a 
common road network. A review of literature indicated that the existing works on FTL carrier pricing 
have ignored the influence of the fierce competition in this industry. In this paper, we proposed a 
game theory approach to model the competition among freight carriers. The fleet management 
decisions including the number of transportation services, and the number of vehicle repositions over 
different arcs of the road network were also considered. 
The carrier pricing and fleet management problem has been investigated under two scenarios. In the 
first, a non-cooperative game was modeled wherein the carriers announce their prices simultaneously 
in competition; in the second, we allowed the carriers to share their information and announce their 
prices while participating in cooperation. In non-cooperative case, we faced with a generalized Nash 
equilibrium problem with mixed integer space. We proposed a modified Nonlinear Gauss–Seidel 
method to solve this GNEP and a relaxation approach was presented to approximate the equilibrium 
solution. In cooperative case, we showed that carriers could reach the highest profit level. 
Subsequently, a Nash bargaining approach was applied as a scheme to share the extra joint profit.  
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Appendix 
This appendix contains the proof of pseudo concavity for carriers’ benefit function. Due to the fact 
that the constraints are all linear, the pseudo concavity of the benefit functions can prove the KKT 
sufficient conditions. 
 

Theorem 1: The function )(xf is strictly pseudo concave if we have: 
)()(0)(;,, 1212121 12

xfxfxfxxXxx xx <⇒≤′≠∈∀ −  (27)

Theorem 2: The function )(xf is pseudo concave if it is strictly pseudo concave. 
Each player has a benefit function as follows: 
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As it is clear, the second and third terms of the benefit function are linear and the only nonlinear 
function which has to be concave is the first term. Since the sum of several concave functions would 
be a concave function, thus it is sufficient to prove that v
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Since 21 yy ≠ , Thus, Eq. (35) always holds and for 
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 consists of separate terms and 

one can easily prove the pseudo concavity by using induction.  
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Let k be the number of terms in v
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. Eq. (35) holds for 1=k ; now we assume it holds for nk =  

and show that it shall also hold for 1+= nk . Note that Eq. (35) can be written for nk =  and 1+= nk  
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Based on the assumptions of Eq.(36) and Eq. (37), we can conclude that 1
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side of the Eq. (37) is resulted and this completes the proof.  
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