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  Location-routing problem (LRP) is established as a new research area in the context of location 
analysis. The primary concern of LRP is on locating facilities and routing of vehicles among 
established facilities and existing demand points. In this work, we address the capacitated LRP 
which arises in many practical applications within logistics and supply chain management. The 
objective is to minimize the overall system costs which include the fixed costs of opening 
depots and using vehicles at each depot site, and the variable costs associated with delivery 
activities. A novel heuristic is proposed which is based on variable neighborhood descent 
(VND) algorithm to solve the resulted problem. The computational study indicates that the 
proposed VND based heuristic is highly competitive with the existing solution algorithms in 
terms of solution quality. 
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1. Introduction 
 

The efficient and effective movement of goods from raw material sites to processing facilities, 
component fabrication plants, finished goods assembly plants, distribution centers, retailers and 
customers is critical in today’s competitive environment. Approximately 10% of the gross domestic 
product of any country is devoted to supply-related activities (Simchi-Levi et al. 2003) and it can 
easily exceed this value within individual industries. In many real life situations, shipments are made 
in less-than-truckload (LTL) quantities from a facility to customers along a multiple-stop route. In the 
case of full truckload quantities, the cost of delivery is independent of the other deliveries made, 
whereas in the case of LTL quantities, the cost of delivery depends on the other customers on the 
route and the sequence in which customers are visited.  

Location-routing problem is not a single well defined problem like the Weber or the travelling 
salesman problem. It can be thought of as a combination of sub-problem within location analysis and 
logistics. However, it is preferred to think of the LRP as an approach for modeling and solving 
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problems in the location theory. Thus, we use the definition of location-routing introduced by Nagy 
and Salhi (2007), as “location planning with tour planning aspects taken into account”. This 
definition stems from a hierarchical viewpoint, whereby the aim is to solve a facility location problem 
(the “master problem”), but in order to achieve this, we also need to solve a vehicle routing problem 
as the sub-problem. This also implies an integrated solution approach, i.e. an approach that considers 
both location and routing aspects of a problem but does not address their correlation to the LRP 
problem. Another important characteristic of above definition is the requirement for the existence of 
tour planning, i.e. the existence of multiple stops on routes. This specially occurs in situations where 
customers demands are less than a full truckload, as mentioned earlier. Location-routing problems are 
closely related to both the classical location-allocation and the vehicle routing problems. In fact, both 
of the latter problems can be thought of as special cases of the LRP. If we require all customers to be 
directly linked to the existing depots, the LRP is reduced to a standard location problem. On the other 
hand, if we fix the depot locations, the LRP becomes a VRP. From a practical viewpoint, location-
routing is a part of distribution management, while theoretically it can usually be modeled as a 
combinatorial optimization problem. We note that this is an NP-hard problem, since it encompasses 
two NP-hard problems called facility location and vehicle routing. This paper is organized as follows. 
Section 2 briefly surveys the literature of location-routing problem. In section 3 a mathematical 
formulation of the capacitated location-routing problem (CLRP) is introduced. In section 4, the 
details of the implementation of VND-based heuristic to solve the CLRP is described. Computational 
results obtained by applying the presented solution scheme on a series of benchmark problem 
instances, are reported in section 5. Finally, the paper is concluded in Section 6. 

2. Literature review 
 

During the past three decades, there have been tremendous efforts on integrated location-routing 
models. Eilon et al. (1971) were among the first to highlight the error introduced by approximating 
LTL shipments by full truckloads. Integrated location-routing problem is composed of three crucial 
sub-problems in supply chain design: facility location, customer allocation to facilities and vehicle 
routing. So far, many different location-routing problems have been presented in the literature, and 
they tend to be very difficult to solve since they merge two NP-hard problems: facility location and 
vehicle routing. Laporte (1988) reviewed early work on location-routing problems where he 
summarized different types of formulations, solution algorithms and computational results of work 
published prior to 1988. Laprote et al. (1988) examined a class of asymmetrical multi-depot vehicle 
routing and location-routing problems, under capacity or maximum cost restrictions. By using a 
suitable graph representation, and then a graph extension, they transformed the problem into 
equivalent constrained assignment problems. They found optimal solutions by means of a branch and 
bound tree and solved problems for up to 80 nodes without difficulty.  

More recently, Min et al. (1998) developed a hierarchical taxonomy and classification scheme to 
review the existing location-routing literature. They categorized different works in terms of problem 
characteristics and solution methodology. One means of classification was the number of layers of 
facilities. Typically, three-layer problems include flows from plants to distribution centers to 
customers, while two-layer problems focus on flows from distribution centers to customers. Tuzun 
and Burke (1999) presented a two-phase tabu search scheme for solving the LRP. They introduced a 
two-phase approach which offers a computationally efficient strategy that integrates facility location 
and routing decisions. An extensive computational study shows that their TS algorithm achieves 
significant improvement over an existing effective LRP heuristic. Nagy and Salhi (2007) conducted a 
comprehensive survey of location-routing problems. They proposed a classification scheme and 
looked at a number of problem variants. Both exact and heuristic algorithms were investigated in 
their work. Prins et al. (2006) proposed a new two-phase meta-heuristic to solve the capacitated LRP. 
In the first phase which is based on greedy randomized adaptive search procedure (GRASP), a 
randomized version of Clarke and Wright (1964) algorithm is implemented. This phase is executed 



M. S. Jabal-Ameli et al. / International Journal of Industrial Engineering Computations 2 (2011) 
 

143

with a learning process on the choice of depots. The second phase produces new solutions using a 
post-optimization and path re-linking. Barreto et al. (2007) considered a discrete LRP with two 
levels: a set of potential capacitated distribution centers (DC) and a set of ordered customers. They 
used a number of hierarchical and non-hierarchical clustering techniques along with several 
proximity functions and integrated them in a sequential heuristic algorithm for the above mentioned 
LRP model. Prins et al. (2007) presented a cooperative heuristic to solve the capacitated location-
routing problem (CLRP). Their heuristic is based on the principle of alternating between a depot 
location phase and a routing phase, exchanging information on the most promising edges. Marinakis 
and Marinaki (2008) considered a large-scale real-world problem of location-routing within food 
industry in Greece and proposed a new formulation of the LRP based on bi-level programming to 
solve their proposed model.  In any LRP problem, decisions are made at a strategic level and at an 
operational level. Therefore, they formulated the problem in such a way that in the first level, the 
decisions of the strategic level are made, namely, the top manager finds the optimal location of the 
facilities; while in the second level, the operational level decisions are made, namely, the operational 
manager finds the optimal routing of vehicles. Lin and Lei (2009) formulated and analyzed a strategic 
design model for three-echelon distribution systems in which the routing problem is considered in 
two levels. In their analysis the clients are divided into two categories: big clients and normal clients, 
where the big ones have larger demands. To solve such a problem, they developed a hybrid genetic 
algorithm embedded with a routing heuristic and showed that their algorithm efficiently finds near-
optimal solutions. Schwardt and Fischer (2009) addressed the single-depot location-routing problem 
and proposed a neural network approach based on a self-organizing map to solve the resulted 
problem. They compared their results with some well-known heuristics and reported that the self-
organizing map approach competes well with them.  Hassan-Pour et al. (2009) presented a novel bi-
objective mathematical programming model for a stochastic location-routing problem (SLRP) in 
which the first objective is to minimize costs associated with establishing the facilities as well as the 
transportation cost, and the second objective maximizes the probability of delivery to customers. In 
their proposed model, new aspects of a LRP such as stochastic availability of facilities and routes are 
considered. The proposed model is solved in two stages: (i) solving the facility location problem 
(FLP) by a mathematical algorithm and (ii) solving the multi-objective multi-depot vehicle routing 
problem (MO-MDVRP) by a simulated annealing (SA) algorithm hybridized by genetic operators, 
namely mutation and crossover. Yu et al. (2010) proposed an efficient simulated annealing (SA) 
based heuristic to solve the LRP. They tested their SA heuristic on three sets of well-known 
benchmark instances and compared the results with other heuristics in the literature. Their proposed 
solution algorithm provides best known solutions for most of the benchmark instances in the three 
above mentioned problem sets but the time required to reach such solutions is significantly larger 
than that of the similar solution algorithms. Duhamel et al. (2010) considered the capacitated 
location-routing problem and proposed solution method based on greedy randomized adaptive search 
procedure (GRASP), hybridized with an evolutionary local search (ELS). The proposed framework is 
benchmarked on classical LRP instances and numerical experiments indicate that the approach 
outperforms most of the previously published methods and provides numerous new best solutions. 

3. The mathematical programming formulation 
 

This section presents an integer programming formulations for the capacitated location-routing 
problem (CLRP). In this model which was proposed by Prins et al. (2007), the assumption of single-
sourcing holds. In other words, it is assumed that the customers acquire their needed demand from a 
single supplier. CLRP imposes constraints on both the vehicle capacities and the depot capacities. 
The following notations are used to represent the mathematical programming formulation. 
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Sets and parameters: 

Set of customers indexed by j J 

Set of candidate depot sites indexed by i I 

Set of vehicles indexed by k K 

Set of all points; V J I= ∪  V 

Set of arcs (i,j) connecting every pair of nodes ,i j V∈    E 

Demand of customer j qj 

Fixed cost of opening a depot at candidate site i Oi 

Fixed cost of employing a vehicle at candidate site i  Fi 

Capacity of depot to be located at candidate site i Pi 

Cost of traveling associated with arc ( , )i j E∈  cij 

Capacity of vehicles; here it is assumed that all vehicles are homogeneous Q 

Decision variables: 

if we open a depot at candidate site i 

if not 

1
0
⎧
⎨
⎩

 

Zi = 

if demands at customer j are served by the depot at candidate site i 

if not 

1
0
⎧
⎨
⎩

 

Yij = 

if vehicle k goes directly from node i to node j  

if not 

1
0
⎧
⎨
⎩

 

Xij = 

 

The mathematical programming formulation for the capacitated location-routing problem (CLRP) is 
as follows, 

∑ ∑ ∑ ∑ ∑ ∑∑
∈ ∈ ∈ ∈ ∈ ∈∈

++
Ii Jj Kk Vi Vj Kk

ijkijijki
Ii

ii XcXFZOmin
 

(1) 

subject to   

 1ijk
i V k K

X
∈ ∈

=∑∑
 

j J∀ ∈  (2) 

 j ijk
i V j J

q X Q
∈ ∈

≤∑∑
 

k K∀ ∈  (3) 

j ij i i
j J

q Y P Z
∈

≤∑
 i I∀ ∈  (4) 
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1ijk
i S j S

X S
∈ ∈

≤ −∑∑
 

;  S J k K∀ ⊆ ∀ ∈  (5) 

0ijk jik
j V j V

X X
∈ ∈

− =∑ ∑
 

;  j V k K∀ ∈ ∀ ∈  (6) 

1ijk
i I j J

X
∈ ∈

≤∑∑
 

k K∀ ∈  (7) 

1imk jhk ij
m V h V

X X Y
∈ ∈

+ ≤ +∑ ∑
 

;  ;  i I j J k K∀ ∈ ∀ ∈ ∀ ∈  (8) 

{ }0,1iZ ∈  i I∀ ∈  (9) 

{ }0,1ijY ∈  ;i I j J∀ ∈ ∀ ∈  (10) 

{ }0,1ijkX ∈  ; ;i V j V k K∀ ∈ ∀ ∈ ∀ ∈  (11) 

The three terms in the objective function (1) represent the sum of the fixed depot location cost and 
routing costs including the fixed costs of employing vehicles and the travel costs, respectively. 
Constraints (2) ensure that each customer belongs to one and exactly one route, and that each 
customer has only one predecessor in the route. Inequalities (3) and (4) impose constraints on the 
capacity of the routes and depots, respectively. Constraints (5) are the standard sub-tour elimination 
constraints which indicate that for any subset S of the set of customers J and for any route k, the 
number of arcs belonging to route k that connect the members of S, must not exceed the cardinality of 
S minus one. Constraints (6) and (7) guarantee the continuity of each route, and that each route 
terminates at the depot where the route starts. Constraints (8) ensure that a customer must be allocated 
to a depot if there is a route connecting them. Finally, (9), (10), and (11) are integrality constraints.  

4. Variable neighborhood descent heuristic for the CLRP 

Variable neighborhood descent (VND) is the deterministic version of the variable neighborhood 
search (VNS) meta-heuristic proposed by Mladenovic and Hansen (1997). The basic idea of VND (or 
VNS, in general) is to successively explore a set of predefined neighborhood structures to provide a 
better solution. It systematically explores a set of neighborhoods to get different local optima and to 
escape from local optima. VND exploits the following two important facts: 1) using various 
neighborhoods in local search may generate different local optima, and 2) the global optimum is a 
local optimum for a given neighborhood (Talbi 2009). In the following sections we first discuss the 
solution representation method employed in this study and then describe the proposed solution 
procedure which is composed of two phases: the initial solution generation phase and solution 
improvement phase.  

4.1 Solution Representation 

In this research we propose a new method to represent the solutions to the LRP. The new 
representation uses two dimensional arrays (matrices), in which each row represents a route. The first 
entry of each row shows the depot from which the corresponding route originates. The next entries at 
each row show the sequence according to which the customers must be visited. Fig. 1 shows a 
solution to a typical LRP instance with 20 customers and 6 candidate sites for depot locations. As it is 
depicted, in this solution three depots of 22, 23 and 25, out of six, are open. The deliveries are made 
though five established routes: two routes are originated from depot 22, two routes from depot 23, 
and one route from depot 25. The corresponding matrix representation is also depicted in Fig. 1.  
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Fig. 1. A solution for a typical LRP and its corresponding matrix representation 

As we can observe, the matrix representation comprises five rows where each row is associated with 
an established route. Consider the last route originated from depot 25 of the matrix representation. 
The customers 10, 9, 17, and 2 are covered by this route and they are visited in the same order as 
shown in the last row of the matrix. 
 

4.2 Phase I: Initial solution generation 

The quality of the initial solution plays an important role in the quality of the final solutions obtained 
by the VND based heuristic. In this study we propose a two-stage algorithm to generate relatively 
high quality initial solutions. In the first stage, the open depots are located and customers are 
allocated to them (location-allocation), while in the second stage, the delivery routes are established 
using the Clarke and Wright’s savings algorithm (Clarke & Wright, 1964), which is one of the most 
known heuristics for the vehicle routing problem in the literature (see appendix for detailed 
description of Clarke and Wright’s savings algorithm). Steps of the proposed algorithm for generating 
the initial solution are shown in Fig. 2. 

Initialization. For every candidate depot site j, define the set Sj to be the 
set of all customers to whom the site j is the nearest depot site; for 
every j∈J. 

Location-Allocation. Open the depot j if Sj≠ ∅ , and allocate all the 
customers in the Sj to the depot j; for every j∈J. 

Routing. For every open depot, use the Clark-Wright algorithm to 
solve the corresponding vehicle routing problem. 

Fig. 2. Initial solution generation 

4.3 Phase II: Improvement of the initial solution 

Once the initial solution is generated, we can improve its quality using the VND algorithm. As 
mentioned earlier in this section, VND uses successive neighborhoods in descent to a local optimum. 
The outline of the VND algorithm can be simply described as follows. First, one needs to define a set 
of neighborhood structures Nl (l = 1, . . . , lmax). Let N1 be the first neighborhood structure to be used 
and x be the initial solution. At each stage of the search procedure, if it is not possible to find an 



M. S. Jabal-Ameli et al. / International Journal of Industrial Engineering Computations 2 (2011) 
 

147

improvement of the solution x in its current neighborhood Nl(x), the neighborhood structure is 
changed from Nl to Nl+1. On the other hand, if an improvement of the current solution x is found, the 
algorithm restarts the search with the first neighborhood structure N1(x). This strategy will be 
effective if the different neighborhood structures used are complementary in the sense that a local 
optimum for a neighborhood structure Ni will not be a local optimum in the neighborhood structure 
Nj. The entire scheme of the VND algorithm is shown in Fig. 3. 
 
 

Initialization. Select the set of neighborhood structures Nl, for l = 1, . . . 
, lmax, used in the descent and find an initial solution x (or apply the 
rules to a given x); 

 Repeat the following sequence until no improvement is obtained: 

(1) Set l ← 1;  

(2) Repeat the following steps until l = lmax: 

(a) Exploration of neighborhood. Find the best neighbor x' of x 
(x' ∈  Nl(x)); 

(b) Move or not. If the solution x' thus obtained is better than x, 
set 

x ← x' and l ← 1; otherwise, set l ← l + 1; 

Fig. 3. Steps of the VND algorithm 

4.3.1 Defined neighborhoods 

The efficiency of any meta-heuristic algorithm which uses neighborhood structures to search the 
solution space severely depends on how the neighborhood structures used in the algorithm are 
defined. The number of neighborhood structure and the order according to which these structures are 
used in the local search procedure affect both the quality of the solutions and the amount of time 
needed to reach such solutions. We propose the following seven neighborhood structures in our study 
to search the solution space in the VND algorithm. The first four neighborhood structures affect the 
location-allocation related part to the solutions while the last three neighborhood structures address 
the routing related part of the solutions. 

Neighborhood structure 1 (Opening a closed depot). This move randomly selects a closed depot, if 
there is any, and opens it. Then some customers from other open depots are allocated to the newly 
opened depot according to their proximity.  Fig. 4 illustrates this move applied to a typical solution in 
the matrix representation format. 

Neighborhood structure 2 (Closing an open depot). This move randomly selects an open depot and 
closes it. Then the customers allocated to the newly closed depot are re-allocated to other open depots 
according to their proximity. Fig. 5 illustrates this move. 

Neighborhood structure 3 (Customer reallocation move). In this move one customer from a randomly 
selected route is chosen and reallocated to another randomly selected route. Fig. 6 illustrates the 
customer reallocation move. 

Neighborhood structure 4 (Customer exchange move). In this move two customers from two 
different randomly selected routes are chosen and their positions are exchanged in the corresponding 
routes. Fig. 7 illustrates the customer exchange move.  
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33 1 17 13 29 32           

  

33 1 13 29 32             
33 3 4 6 9 10 25 14       33 3 4 6 9 10 25 14       
34 26 16 12 2             34 26 16 12             
34 30 27 19               34 30 27 19               
34 28 5 8 7 15 22 24 18     34 28 5 8 7 15 22 18     
37 20 23 11 31 21           37 20 23 11 21           
                      35 2 17 31 24             

Fig. 4. Neighborhood 1: Opening a closed depot 

  

33 1 17 13 29 32           

  

34 26 16 12 2 3 4         
33 3 4 6 9 10 25 14       34 30 27 19 6 9 1 17 13     
34 26 16 12 2             34 28 5 8 7 15 22 24 18 29   
34 30 27 19               37 20 23 11 31 21 10 25 14 32   
34 28 5 8 7 15 22 24 18                           
37 20 23 11 31 21                                 
                                            

Fig. 5. Neighborhood 2: Closing an open depot 

 

33 1 17 13 29 32           

  

33 1 17 13 29 32           
33 3 4 6 9 10 25 14       33 3 4 6 9 10 25 14       
34 26 16 12 2             34 26 16 12             
34 30 27 19               34 30 27 19               
34 28 5 8 7 15 22 24 18     34 28 5 8 7 15 22 24 18     
37 20 23 11 31 21           37 20 23 11 31 21 2         
                                            

Fig. 6. Neighborhood 3: Customer reallocation move 

 

33 1 17 13 29 32           

  

33 1 17 13 29 32           
33 3 4 6 9 10 25 14       33 3 4 6 5 10 25 14       
34 26 16 12 2             34 26 16 12 2             
34 30 27 19               34 30 27 19               
34 28 5 8 7 15 22 24 18     34 28 9 8 7 15 22 24 18     
37 20 23 11 31 21           37 20 23 11 31 21           
                                            

Fig. 7. Neighborhood 4: Customer exchange move 

 

Neighborhood structure 5 (2-opt move). 2-opt move which is commonly employed to solve the 
vehicle routing related problems selects a route and performs 2-opt move on it as depicted in Fig. 8. 
In terms of matrix representation, we can describe this move as follows. A sub-sequence of customers 
is selected and the order of the customers is reversed in that sub-sequence. Fig. 9 illustrates the 2-opt 
move in the matrix representation format. 
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Neighborhood structure 6 (3-opt move). This move is commonly used in vehicle routing related 
problems by selecting a route and performs 3-opt move on it as illustrated in Fig. 10. In terms of 
matrix representation, we can describe this move as follows. Sub-sequence of customers is selected 
and they are shifted backward in the sequence of customers associated with that route. Fig. 11 
illustrates the 3-opt move in the matrix representation format. 

Neighborhood structure 7 (Route split move). In this move, one route (master route) is randomly 
selected and it is divided into two sub-routes. These newly generated sub-routes are both assigned to 
the same depot as the master route. Fig. 12 demonstrates the details of the step. 

 

Fig. 8. Neighborhood 5: 2-opt move 

 

33 1 17 13 29 32           

  

33 1 17 13 29 32           
33 3 4 6 9 10 25 14       33 3 4 6 9 10 25 14       
34 26 16 12 2             34 26 16 12 2             
34 30 27 19               34 30 27 19               
34 28 5 8 7 15 22 24 18     34 28 5 24 22 15 7 8 18     
37 20 23 11 31 21           37 20 23 11 31 21           
                                            

Fig. 9. Graphical illustration of 2-opt move (from left to right) 

 

Fig. 10. Graphical illustration of 3-opt move 

33 1 17 13 29 32           

  

33 1 17 13 29 32           
33 3 4 6 9 10 25 14       33 3 4 6 9 10 25 14       
34 26 16 12 2             34 26 16 12 2             
34 30 27 19               34 30 27 19               
34 28 5 8 7 15 22 24 18     34 28 7 15 22 24 5 8 18     
37 20 23 11 31 21           37 20 23 11 31 21           
                                            

Fig. 11. Neighborhood 6: 3-opt move (from left to right) 
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33 1 17 13 29 32           

  

33 1 17 13 29 32           
33 3 4 6 9 10 25 14       33 3 4 6 9 10 25 14       
34 26 16 12 2             34 26 16 12 2             
34 30 27 19               34 30 27 19               
34 28 5 8 7 15 22 24 18     34 28 5 8 7 15           
37 20 23 11 31 21           34 22 24 18               
                      37 20 23 11 31 21           

Fig. 12. Neighborhood 7: Route split move 

 
5. Computational study 
In this section, we evaluate the performance of VND based heuristic to solve the CLRP. The 
proposed solution algorithm is coded in MATLAB R2007b and it was run on a PC with an Intel Core 
2 Duo CPU (2.0 GHz) and 2 GB memory. In order to verify the proposed approach, two well-known 
LRP benchmark problem sets are selected and results obtained by applying the VND on these 
problem sets are compared to the best known solutions provided by some efficient LRP heuristics 
available in the literature.  

5.1. The benchmark problem sets  

In this research, we have evaluated the performance of the proposed solution procedure using two 
important benchmark problem sets on the literature. The first set of benchmark problems, designed by 
Tuzun and Burke, comprises 36 instances in which the routes are assumed to be capacitated but the 
depots are assumed to be uncapacitated. This problem set was used by the authors to evaluate the 
efficiency of their tabu search heuristic (Tuzun & Burke, 1999). The numbers of clients in their 
benchmark instances are set to be 100, 150 or 200. The number of depots is either 10 or 20. The 
vehicle capacity is set to be 150 for all instances, and the customer demands are assumed to be 
uniformly distributed in the interval of [1, 20]. In this data set, the distances and the travel costs are 
not rounded. The second set of benchmark problems consists of 19 instances gathered by Barreto 
(2004). These instances are either gathered from the literature or they are obtained by adding 
candidate sites for depot locations to existing classical VRP instances. All routes in this problem set 
are capacitated, and except for a few instances, the depots are also capacitated. The fixed costs 
associated with employing vehicles are set to be zero in this problem set and the traveling costs are 
not rounded (Yu et al. 2010). 

5.2. Parameter setting 

Unlike many other meta-heuristics, the VND and other extensions of the VNS are simple and require 
few, and sometimes no parameters in their design. Therefore, VND provides very good solutions 
often in simpler ways than other meta-heuristic methods (Hansen & Mladenovic, 2003). In addition, 
VND gives some insight for such a performance, which, in turn, can lead to more efficient and 
sophisticated implementations. In our algorithm, there are only two parameters, which are the unit 
penalty costs associated with the violation of depot and vehicle capacities (Pdepot , Pvehicle). These 
parameters have nothing to do with the VND and they must be used in any solution algorithm 
regardless of their types. In this study, we have set this penalty costs to be 400 for both depot and 
vehicle capacity. Note that the penalty costs are set to zero in cases where the depots or vehicles are 
assumed to be uncapacitated. 

5.3. Evaluation of the results 

In summary, we solved 55 LRP benchmark instances taken from two well-known LRP benchmark 
problem sets existing in the literature to test the performance of the proposed VND heuristic. In order 
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to evaluate the efficiency of our heuristic, we have compared the results obtained by VND algorithm 
by those obtained by the three similar works in the literature, simulated annealing (SA) based 
heuristic, proposed by Yu et al. (2010), granular randomized adaptive search procedure (GRASP) 
based heuristic developed by Prins et al. (2006), and Lagrangian relaxation granular tabu search 
(LRGTS) heuristic by Prins et al. (2007). Note that, the three above-mentioned heuristics are among 
the most efficient LRP heuristics in the literature (Yu et al., 2010). The results of implementation of 
VND on the instances of the first and the second problem sets are reported in Tables 1 and 2, 
respectively. 

 
Table 1  
Computational results for the first problem set 

GRASP LRGTS SA VND    
%Gap OFV %Gap OFV %Gap OFV OFV n m ID 
3.61 1525 5.97 1491 6.97 1477 1580 100 10 T1 
1.90 1527 5.71 1472 5.78 1471 1556 100 20 T2 
2.60 1424 3.47 1412 3.69 1409 1461 100 10 T3 
5.26 1482 8.11 1443 8.94 1432 1560 100 20 T4 
3.50 1200 4.55 1188 5.52 1177 1242 100 10 T5 
1.16 1124 1.88 1116 2.43 1110 1137 100 20 T6 
1.97 814 2.09 813 4.80 792 830 100 10 T7 
-0.67 748 0.00 743 1.50 732 743 100 20 T8 
7.07 1273 7.49 1268 10.10 1238 1363 100 10 T9 
5.26 1273 6.69 1256 7.46 1247 1340 100 20 T10 
1.54 912 1.42 913 2.66 902 926 100 10 T11 
4.20 1023 3.90 1026 4.10 1024 1066 100 20 T12 
2.64 2007 5.86 1946 5.42 1954 2060 150 10 T13 
3.34 1889 4.05 1876 2.79 1899 1952 150 20 T14 
2.65 2034 3.83 2011 1.51 2057 2088 150 10 T15 
3.18 1856 5.22 1820 6.33 1801 1915 150 20 T16 
5.64 1508 9.94 1449 9.64 1453 1593 150 10 T17 
1.58 1457 -0.87 1493 1.65 1456 1480 150 20 T18 
-0.56 1240 1.82 1211 2.24 1206 1233 150 10 T19 
0.85 941 1.28 937 1.50 935 949 150 20 T20 
4.78 1737 5.26 1729 5.81 1720 1820 150 10 T21 
4.42 1426 4.49 1425 5.16 1416 1489 150 20 T22 
3.10 1224 3.78 1216 3.70 1217 1262 150 10 T23 
0.00 1231 5.94 1162 6.21 1159 1231 150 20 T24 
0.71 2384 4.53 2297 3.31 2324 2401 200 10 T25 
-0.70 2288 2.90 2208 0.62 2258 2272 200 20 T26 
1.14 2273 1.68 2261 1.73 2260 2299 200 10 T27 
2.73 2345 6.59 2260 3.52 2327 2409 200 20 T28 
1.26 2137 2.03 2121 2.41 2113 2164 200 10 T29 
-0.50 1807 3.45 1738 4.35 1723 1798 200 20 T30 
3.61 1497 4.16 1489 5.58 1469 1551 200 10 T31 
2.19 1096 2.66 1091 2.85 1089 1120 200 20 T32 
3.62 2045 6.80 1984 6.27 1994 2119 200 10 T33 
-3.68 2091 1.41 1986 4.24 1932 2014 200 20 T34 
5.20 1789 5.32 1787 5.79 1779 1882 200 10 T35 
0.64 1409 1.21 1401 1.58 1396 1418 200 20 T36 
2.37  4.02  4.39    Average 
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In Tables 1 and 2, the first column represents the problem identification code developed and used by 
Yu et al. (2010). The second and the third columns denote the number of candidate sites for depot 
locations and the number of customers, respectively. The next column contains the objective function 
values obtained by VND heuristic for each problem instance. Columns five and six represent the 
objective function values provided by SA algorithm and the relative gap (in percentage) between the 
objective function values of the SA heuristic and those of the VND heuristic, respectively. The same 
comparative results for the LRGTS heuristic are reported in columns 7 and 8. Columns 9 and 10 
include the objective function values and the relative gap for the GRASP heuristic. According to the 
results reported in Tables 1 and 2, the VND algorithm provides high quality solutions with the 
objective function values not more than 5% (in average) of the objective values of the solutions 
obtained by the other mentioned heuristics (SA, LRGTS, and GRASP).  

Table 2  
Computational results for the second problem set 

        GRASP        LRGTS          SA VND    
%Gap OFV %Gap OFV %Gap OFV OFV n m ID 
6.12 425 6.12 425 6.11 425 451 21 5 B1 
1.03 585 0.68 587 1.02 585 591 22 5 B2 
-0.58 515 0.00 512 0.00 512 512 29 5 B3 
1.92 572 -0.68 587 3.73 562 583 32 5 B4 
3.57 504 3.37 505 3.57 504 522 32 5 B5 
6.96 460 3.14 477 6.72 461 492 36 5 B6 
0.33 599 2.56 586 6.18 566 601 50 5 B7 
4.18 862 3.94 864 5.89 848 898 75 10 B8 
6.50 862 8.90 843 9.54 838 918 100 10 B9 
– – – – 0.00 204 204 12 2 B10 
– – – – 2.78 1113 1144 55 15 B11 
– – – – 2.58 1623 1665 85 7 B12 
– – – – 6.88 563493 602315 318 4 B13 
– – – – 8.00 684164 738915 318 4 B14 
0.20 3062 0.10 3065 0.19 3062 3068 27 5 B15 
5.48 5965 8.31 5809 10.21 5709 6292 134 8 B16 
7.28 357 3.79 369 7.58 356 383 88 8 B17 
6.81 44625 7.38 44386 5.65 45109 47662 150 10 B18 
– – – – 8.17 12435 13451 117 14 B19 
3.82  3.66  4.98    Average 

6. Conclusion 
In this paper, we have developed a variable neighborhood descent based heuristic to solve the 
capacitated location-routing problem, which is a practical problem arising in logistics and supply 
chain management. The proposed solution algorithm consists of two phases where the first phase 
generates an initial solution and the second phase improves the quality of the initial solution 
generated in the first phase. The proposed solution procedure has been tested on two sets of 
benchmark problem instances and the results have been compared with those of the three efficient 
heuristics in the literature. Numerical results indicate that the proposed method of this paper is highly 
competitive with other solution schemes existing in the literature and provides solutions with 
relatively good quality. An interesting line for future research is to hybridize the VND algorithm with 
other meta-heuristic algorithms like simulated annealing or tabu search, so that a more efficient 
solution procedure be developed. Another promising area for further research is the application of 
VND algorithm to other combinatorial optimization problems.   
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Appendix 

 Clarke and Wright’s savings algorithm (Larson and Odoni, 1981) 

Consider a depot D and n demand points. Suppose that initially the solution to the VRP consists of 
using n vehicles and dispatching one vehicle to each one of the n demand points. The total tour length 
of this solution is, obviously

1
2 ( , )n

i
d D i

=∑ . Consider a single vehicle to serve two points, say i and j, 
on a single trip, the total distance traveled is reduced by the following,  

[ ] ),(),(),(),(),(),(),(2),(2),( jDdjidiDdjDdjidiDdjDdiDdjis −+=++−+=  

The quantity s(i, j) is known as the "savings" resulted from combining points i and j into a single tour. 
The larger s(i, j) is, the more desirable it becomes to combine i and j in a single tour. However, i and j 
cannot be combined the resulted tour violates one or more of the constraints of the VRP. The 
algorithm can now be described as follows.  

STEP1 Calculate the savings s(i, j) = d(D, i) + d(D, j) - d(i, j) for every pair (i, j) of demand points 

STEP2 Rank the savings s(i, j) and list them in descending order of magnitude called savings list,  
process the savings list beginning with the top most entry in the list (the largest s(i, j)) 

STEP3 For the savings s(i, j) under consideration, include link (i, j) in a route if no route 
constraints are violated through the inclusion of (i, j) in a route, and if one of the following 
cases hold 

 a. neither i nor j has already been assigned to a route, in which case a new route is initiated 
including both i and j.   

b. exactly one of the two points (i or j) has already been included in an existing route and 
that point is not interior to that route (a point is interior to a route if it is not adjacent to 
the depot D in the order of traversal of points), in which case the link (i, j) is added to 
that same route.   

c. both i and j have already been included in two different existing routes and neither point 
is interior to its route, in which case the two routes are merged. 

STEP4 If the savings list s(i, j) has not been exhausted, return to Step 3, process the next entry in 
the list; otherwise, stop; the solution to the VRP consists of the routes created during 
Step 3. (Any points that have not been assigned to a route during Step 3 must each be 
served by a vehicle route that begins at the depot D visits the unassigned point and 
returns to D.) 
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