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 Timely and cost-effective supply of spare parts is the main purpose of spare parts inventory 
management and substitution is an effective way to fulfill demand on time. However, direct 
substitution of spare parts is not suitable for the high-tech industries due to the ever-changing nature 
of the product structures. Hence, parts should be transformed to be used as substitutes. This paper 
provides a novel spare parts inventory control model for the high-tech industries. In the proposed 
model, part transformation-based substitution is considered and the near-optimal values of spare 
part inventory levels (s, S) that minimize total cost are determined by using a simulated annealing-
based simulation optimization approach. Computational analyses are performed for a hypothetical 
inventory system by considering transformation and no-transformation cases. The results reveal 
that transformation is very useful for the companies who endure long production lead times and 
high penalty costs associated with backorders. 
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1. Introduction 

 
Due to globalization and recent advances in technology, high-tech industries have become an important part of the global 
economy. Producing innovative and high quality products is a vital issue in those industries, therefore companies put the 
research and development activities at the core of the company. However, in today’s business world, customer satisfaction is 
the major determinant of business success and leading the technology alone is not enough for competitiveness. In high-tech 
industries, after sales service is one of the most important factors that influence customer satisfaction and it plays an important 
role in customer’s brand preferences (Shokouhyar et al., 2020; Mo et al., 2020).  
  
After sales service can be defined as any service provided after a customer has purchased a product and it includes warranty 
service, installation, repair, upgrading, maintenance etc. After sales service becomes the key component of the differentiation 
and long term success for the companies who manufacture and market complex products. It is obvious that good after sales 
service contributes to brand loyalty, customer satisfaction, repeat purchases and business growth in the long run. On the other 
hand, providing high quality after sales service highly depends on the response time to customers and inventory control 
policies of the spare parts. Therefore, timely and cost effective supply of spare parts is a vital issue in after sales service and 
it requires an efficient management of spare parts inventories (Boone et al., 2008). 
  
In spare parts inventory management, companies encounter the problem of achieving high service level and low inventory 
cost simultaneously (Hu et al., 2018). On the other hand, spare parts inventory management is a complex and difficult task 
due to the large number and variety of parts, erratic demand patterns, risk of stock obsolescence, expensiveness of the parts 
and demanding nature of customers (Cohen et al., 2006; Murthy et al., 2004; Boylan & Syntetos, 2010). Especially, in high-
tech industries products quickly become obsolete and supplying spare parts of these products becomes harder for the 
companies. Moreover, companies have some strict warranty policies on supplying spare parts and they are under pressure to 
supply those parts in a short time with desired quality (Gallego et al., 2006). 
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Numerous studies have been conducted for determining optimal inventory control policies for spare parts. In most of those 
studies, researchers considered the (s, S) inventory model and its variations (i.e. s-1, S; s, nQ) and they aimed to find the re-
order (s) and the order-up-to (S) levels that minimize total cost (Ilgin & Tunali, 2007; Kutanoglu & Mahajan, 2009; Guajardo 
et al., 2015; Do Rego & de Mesquita, 2015; van Jaarsveld et al., 2015; Khademi & Eksioglu, 2018; Tang et al., 2018; 
Rodrigues & Yoneyama, 2020; Panagiotidou, 2020) or maximize fill rate (Aronis et al., 2004; Porras & Dekker, 2008; 
Rodrigues & Yoneyama, 2020). In cost calculation, holding, ordering and shortage costs are commonly considered and 
mathematical programming techniques (Kutanoglu & Mahajan, 2009; van Jaarsveld et al., 2015; Khademi & Eksioglu, 2018; 
Tang et al., 2018; Panagiotidou, 2020), heuristic methods (Guajardo et al., 2015; Aronis et al., 2004) and simulation modelling 
(Ilgin & Tunali, 2007; Do Rego & de Mesquita, 2015; Porras & Dekker, 2008; Rodrigues & Yoneyama, 2020) are used as 
solution methodologies. The reader may also refer to Do Rego & de Mesquita (2011), Driessen et al. (2015) and Hu et al. 
(2018) for a detailed review of spare parts inventory management studies.  

  
From another point of view, product substitution is a well-known strategy that is commonly used in inventory management 
and it is carried out in the form of providing an alternative product when the preferred one is unavailable (Shin et al., 2015; 
Benkherouf et al., 2017). It provides flexibility to companies in demand fulfillment and also very useful in reducing lost sales 
and customer dissatisfaction. Product substitution is commonly used in the retail industry where the products are consumed 
rapidly; pharmaceutical markets and in industries in which products are perishable or tend to be obsolete (Eksler et al., 2019).  

  
In high-tech industries, direct (one-on-one) substitution of products or spare parts is not possible due to short product life 
cycles. In those industries, substitution is performed only after some transformation operations (Das Roy & Sana, 2022). For 
instance, mainboards used in computers, cell phones or televisions can be substituted after changing some of the components 
on the boards or loading appropriate software. In those transformation processes, time requiring changes (i.e. physical, 
technical) are made on the substitute product and these changes cause an additional cost (i.e. material, labour). One of the 
challenging points of transformation-based substitution is the number of substitutable products. In two-product substitution 
problems, there are two grades of products and the lower grade product is usually substituted for the higher grade one. It 
means there is only one alternative for the substitution and this situation does not require any investigation for the selection 
of the substitute product. However, when there are more than two substitutable products, the problem becomes more 
complicated. In this case, substitute product selection rules should be identified in order to manage inventories effectively. 
Further, time and cost associated with the transformation process cause a trade-off between producing the out of stock products 
and transforming the on hand ones.  

  
On the other hand, it is obvious that frequent innovations cause overproduction which leads to the waste of natural resources 
and the growth of e-waste (Nagpal & Chanda, 2022; Pal & Sana, 2022). Today, air pollution, water pollution and climate 
change are the major environmental problems and adopting green practices has become one of the core responsibilities of the 
companies (Taleizadeh et al., 2020; Sana, 2020). In this context, transformation-based substitution which helps to reduce 
inventory waste by using idle inventories is an efficient way to achieve sustainability in high-tech industries. Implementing 
this approach will prevent obsolete parts from becoming e-waste which is extremely harmful to the environment and will also 
bring economic benefits to companies.  
  
Considering the aforementioned facts, we propose a novel spare parts inventory control model for the companies in high-tech 
industries. In the proposed model, part transformation-based substitution is considered in demand fulfillment and near-optimal 
values of spare part inventory levels (s, S) are determined by a using simulated annealing (SA) based simulation optimization 
approach. The objective function is defined as minimization of the total cost which includes holding cost, transformation cost, 
production cost, and backorder cost. In order to verify the proposed model, a hypothetical inventory system is handled and 
computational analyses are performed for transformation and no-transformation cases. 

  
The rest of the paper is organized as follows. Related literature is summarized in Section 2. Characteristics of the problem 
and the proposed spare parts inventory control model are explained in Section 3. Section 4 focuses on the simulation 
optimization based solution approach that is used to determine the (s, S) inventory levels. Section 5 is devoted to the 
computational experiments. Finally, conclusions and future research directions are presented in Section 6. 

 
2. Related Literature 
 
Product substitution has been extensively studied in the operations management literature and numerous studies have been 
carried out on pricing, inventory management, product assortment planning in this field (Shin et al., 2015). Product 
substitution can be implemented in three main ways (Tang & Yin, 2007). (i) When the preferred product is not in inventory 
or on the shelf, the customer demand can be fulfilled by another product that is similar to the preferred one. This is called 
inventory-based substitution. (ii) Customers can sometimes choose a more affordable alternative with similar features to the 
preferred product even if the product that they preferred is already in inventory. This is called price-based substitution. (iii) 
Customers may choose a more beneficial product from the product assortment of the seller. This is called assortment-based 
substitution.  
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In this study, we have examined the problem of inventory management involving inventory-based substitution and we have 
investigated the studies closely related to this area in our literature survey. In this regard, we have summarized the investigated 
papers in Table 1 by considering inventory system and substitution characteristics, performance measures and solution 
methodologies. The reader may refer to Shin et al. (2015) and Lang (2009) for a detailed review of studies on applying 
substitution in demand management and also refer to Kök and Fisher (2007), Tan and Karabati (2013) and Shin et al. (2015) 
for the characteristics of the substitution practices. 

  
As it is presented in Table 1, in most of the studies, substitutable products are limited to two products and inventory decisions 
are made based on cost minimization or profit maximization. As mentioned earlier, in two-product substitution problems there 
is only one alternative for the substitution and this makes the problem solving process easier. However, especially in supplier-
driven substitution problems, the problem becomes more complicated when there are more than two substitutable products. 
In this case, the seller needs to define some rules for the selection of the substitute product. For instance, Gurnani and Drezner 
(2000) considered the product grades while making substitution decisions. They assumed that the lower grade (cheaper) 
products can be substituted for the higher grade ones after transformation processes. Eksler et al. (2019) computed the 
dependency factor for each pair of products by using association rule mining and made substitution decisions based on the 
dependencies between the products. On the other hand, Khademi and Eksioglu (2018) chose the substitute spare parts based 
on the part's reliability. They assumed that the expensiveness of the part is positively correlated with the reliability of the part. 
In our study, we have performed analyses for the cases in which substitution decisions are made based on the unit 
transformation time and cost between the spare parts. 
  
From another point of view, substitution cost is evaluated in different ways by the researchers. For instance, Drezner et al. 
(1995) defined the substitution cost as the price difference between two products. Tan and Karabati (2013), Benkherouf et al. 
(2017) and Mishra (2017) evaluated the substitution cost as the cost of customer dissatisfaction caused by the inability of the 
customer to purchase his/her primary choice. Similar to our study, Gurnani and Drezner (2020), Tore et al. (2013) and Durga 
and Chandrasekaran (2020) handled the substitution cost as the cost of transforming the substitute product to the preferred 
one. In our study, substitution is performed for the spare parts of a finished product and since the customers do not see or 
experience the spare parts physically there won’t be any customer dissatisfaction caused by the substitution. In other words, 
customers only care about the functionality of the main product and customer dissatisfaction will not occur as long as the 
spare parts make the product in operating condition. For this reason, we defined the substitution cost as the total material and 
labour cost arise in transforming spare parts into each other. 
  
When we evaluate the studies under concern, we have also observed that production lead time is assumed to be zero in most 
of the studies. In this case, an important time-based activity in inventory management is ignored and when we consider the 
real life cases, this assumption makes the problem unrealistic. Therefore, we handled stochastic production lead time in our 
study. Furthermore, most of the researchers handled the single period (Nagpal & Chanda, 2022; Chen et al., 2015; Parlar, 
1985; Pasternack & Drezner, 1991) or multi-period inventory problem with substitution where the demand and lead time are 
usually deterministic and the inventory review is periodic. They used mathematical programming approaches, calculus or 
heuristic methods as solution methodology. However, spare parts inventory systems are dynamic systems and involve 
stochastic factors such as demand arrival and lead time (Ilgin & Tunali, 2007; Rodrigues & Yoneyama, 2020). In this regard, 
applying simulation modelling techniques in spare parts inventory management studies allows modelling those systems under 
more realistic conditions.  
  
In the light of the aforementioned facts, it can be concluded that multiple substitutable products, uncertainties associated with 
demand and lead time, transformation process and associated time and cost make the inventory-based product substitution 
problems more complicated. Therefore, most of the studies in the literature have dealt with two-product substitution problems, 
assumed that demand and lead time are deterministic and have not considered transformation time and cost together. To the 
best of our knowledge, our study appears to be the first to characterize the stochastic spare parts inventory system with multiple 
parts and transformation-based substitution. We proposed a novel inventory control model for this system and aimed to find 
the near-optimal values of spare part inventory levels (s, S) that minimize total cost. We used a SA-based simulation 
optimization approach as solution methodology and performed computational analyses for the transformation and no-
transformation cases. Our proposed model differentiates itself from its counterparts by considering multiple substitutable 
parts, transformation time and cost, stochastic demand and lead time, dynamic substitute part selection and continuous 
inventory review simultaneously. 
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Table 1  
Characteristics of the studies related to this paper 

Reference Substitutable  
products 

Substitution  
characteristics 

Substitute item 
selection rule Demand Inventory 

review 
Lead 
time  

Objective 
function 

Substitution 
cost 

Substitution 
time 

Decision 
variable(s) 

Solution 
methodology 

McGillivray & Silver (1978) 2 CD, 2W, PT, 1A, D NA ST PR DT Min C NA NA S EOQ 
Parlar (1985) N CD, 2W, PT, MA, D excess amount of 

substitute items 
and unsatisfied 
demand of the 
particular item 

ST PR NA Max P NA NA Q H 

Pasternack & Drezner (1991) 2 SD, 2W, FL, 1A, D NA ST PR NA Max P NA NA Q CAL 
Drezner et al. (1995) 2 SD, 1W, PT+FL, 1A, D NA DT PR NA Min C √ NA Q EOQ 
Gurnani & Drezner (2000) N SD, 1W, FL, MA, D product grade DT PR Z Max P √ NA Q, SQ MP 

Xu et al. (2011) 2 SD+CD, 2W, PT+FL, 
1A, D NA ST PR Z Max R NA NA Q SDP 

Tore et al. (2013) 2 SD, 2W, PT, 1A, T NA ST CT ST Min C √ √ SQ, PQ MDP 
Tan & Karabati (2013) N CD, 2W, FL, 1A, D customers' choice 

probabilities 
ST PR Z Max P √ NA S GA 

Zhou & Sun (2013) 2 SD+CD, 1W, PT, 1A, D NA ST PR Z Max P NA NA Q SDP 
Salameh et al. (2014) 2 CD, 2W, PT, 1A, D NA DT PR Z Min C NA NA Q CAL 
Krommyda et al. (2015) 2 CD, 2W, PT, 1A, D NA DT PR Z Max P NA NA Q CAL 
Chen et al. (2015) 2 SD, 1W, FL, 1A, D NA ST PR NA Max P NA NA Q CAL 
Benkherouf et al. (2017) 2 SD, 1W, PT+FL, 1A, D NA ST CT Z Min C √ NA t MINLP 
Mishra (2017) 2 CD, 2W, PT, 1A, D NA DT PR Z Min C √ NA Q CP 
Khademi & Eksioglu (2018) N SD, 2W, FL, MA, D part reliability ST PR DT Min C NA NA s, S SDP 
Eksler et al. (2019) N SD, 2W, FL, MA, D product 

dependencies 
DT PR DT Max P NA NA s EOQ 

Mishra & Mishra (2020) 2 CD, 2W, PT, 1A, D NA DT PR Z Min C √ NA Q CAL 
Durga & Chandrasekaran 
(2020) 2 CD, 1W, PT, 1A, TS NA DT PR Z Min C √ NA Q CAL 

van der Walt & Bean (2022) N CD, 1W, FL, 1A, D customers' choice 
probabilities 

ST PR Z Max PSL 
Min W 

NA NA Q MOMIP 

Nagpal & Chanda (2022) 2 CD, 1W, FL, 1A, D NA ST PR Z Min C NA NA Q EOQ 
This study N SD, 1W+2W, FL, MA, T unit 

transformation 
time and cost 

ST CT ST Min C √ √ s, S SO 

Acronyms: 
N: multiple, NA: not available, √: available 
SD: supplier-driven, CD: customer-driven, 1W: one-way, 2W: two-way, PT: partial, FL: full, 1A: single-attempt, MA: multi-attempt, D: direct, TS: semi-transformation, T: transformation-based 
ST: stochastic, DT: deterministic, PR: periodic, CT: continuous, Z: zero 
C: cost, P: profit, R: revenue, PSL: passenger satisfaction level, W: waste, s: re-order level, S: order up-to level, Q: order quantity, SQ: substitution quantity, PQ: production quantity, t: replenishment time 
EOQ: economic order quantity, H: heuristic, CAL: calculus, MP: mathematical programming, SDP: stochastic dynamic programming, MDP: markov decision process, GA: genetic algorithm, MINLP: mixed integer non-
linear programming, CP: constraint programming, SO: simulation optimization,  MOMIP: multi-objective mixed integer programming



H. Güçdemir and G. Taşoğlu / International Journal of Industrial Engineering Computations 15 (2024) 311

 
3. Problem Statement and the Proposed Inventory Control Model  
 
In this study, the spare parts inventory system of a realistic hypothetical company that operates in the high-tech industry is 
considered. The company makes strong commitments to providing spare parts after the sales and aims to fulfill demand in a 
cost and time effective way. In the spare parts inventory system under concern, orders are placed by two types of customers 
(domestic and international customers). The company keeps its average response time to domestic customers below 7 days 
(168 hr) and the international customers below 20 days (480 hr) to ensure the quality of the after sales service. 
  
Electronic card is a spare part group that has a high demand rate, critical importance for the main product to operate and high 
tendency of obsolescence. In addition, if those parts cannot be supplied within a certain period of time then the company faces 
high penalties. Therefore, timely and cost-effective supply of the parts in this group is vital for the company. On the other 
hand, this spare part group involves several main groups which are configured based on the product versions. The electronic 
cards in a main group can be transformed into each other according to their technical specifications. Combinations that are 
generated based on the technical specifications form sub-groups and the transformation is performed between these sub-
groups manually by the operator(s) when the inventory level of a sub-group is lower than its demand. 
  
The aim of this study is to determine the near-optimal s, S inventory levels for each sub-group that minimize total cost. The 
notation used in the formulations is presented in Table 2 and the problem is mathematically expressed through the equations 
(1) – (4). Underlying assumptions of the problem are: (i) backorders are allowed with a certain cost; (ii) production capacity 
is negligible; (iii) storage area is sufficient; (iv) orders cannot be partially delivered; (v) orders cannot be cancelled, (vi) 
ordering cost is negligible and (vii) transformation processes do not cause any future technical problems. 
 

2
1 1 1, 1 1 1 1

min 
ioN N N L N N

i i i ki lij i lij lij i i
i i k k i l i j i

c m u r y b v g f p h
= = = ≠ = = = =

+ + +      
(1) 

subject to   
         i i ilb s ub i N≤ ≤ ∀ ∈  (2) 

      i i iLB S UB i N≤ ≤ ∀ ∈  (3) 
,  integer          i is S i N∀ ∈  (4) 

 
The objective function (1) minimizes the total cost. Constraints (2) ensure that the re-order level of sub-group i must take 
values between predefined lower and upper bounds. Similarly, constraint set (3) ensures that order up-to level of sub-group i 
must take values between predefined lower and upper bounds. Constraints (4) imply that all decision variables must be 
integers.  
 
Table 2  
Notation 

Set of indices  
i, k =1,..,N set of sub-groups 
j =1,..,J set of orders 
l =1,..,L set of customers  
Parameters  
N number of sub-groups 
ci unit production cost of a part belonging to sub-group i 
rki unit cost of transforming a part from sub-group k to sub-group i 
utki unit time of transforming a part from sub-group k to sub-group i 
f1 penalty coefficient        0 < f1 < 1 
bi backorder cost per unit time for a part belonging to sub-group i  
pi price of a part belonging to sub-group i 
vlij quantity of j th order belonging to sub-group i placed by customer l 
f2 interest rate 
R replication length 
lbi lower bound for si 
ubi upper bound for si 
LBi lower bound for Si 
UBi upper bound for Si 
Decision variables  
si re-order level of sub-group i 
Si order-up-to level of sub-group i 
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Table 2  
Notation (Conitinued) 

Intermediate variables 
mi total production quantity of sub-group i 
ui total amount of parts transformed from sub-group i to other sub-groups  
oi total number of completed orders belonging to sub-group i 
glij tardiness of the j th order belonging to sub-group i placed by customer l 
ctlij completion time of the j th order belonging to sub-group i placed by customer l 
dtlij due-date of the j th order belonging to sub-group i placed by customer l 
alij arrival time of the j th order belonging to sub-group i placed by customer l 

ylij binary variable 
0   if   
1        otherwise

lij lijct dt<



  

hi average inventory level of sub-group i during time period [0, R] 
Ii(t) inventory level of sub-group i at time t       t R∈   

 
In our problem, total cost consists of the total production cost, backorder cost, holding cost and transformation cost as it is 
expressed by Eq. (1). In this cost formulation, production cost is obtained by multiplying the unit production costs and the 
total production quantities of the sub-groups. Transformation cost is computed by multiplying the total mumber of parts 
transformed from one sub-group to another and the corresponding unit transformation costs.  
 
While calculating the backorder cost, in the first step backorder cost per unit item per unit of time is computed for each sub-
group by using Eq. (5). In this calculation, the price of the parts belonging to the sub-group and the penalty coefficient for 
tardiness are taken into account. Afterwards, tardiness is computed for each order by using Eq. (6). The due-date given in this 
equation is computed by using Eq. (7). Finally, unit backorder cost, tardiness and the order quantity are multiplied for each 
tardy order. Thus, a penalty is applied to the company by considering both the total monetary value and the tardiness of the 
order.  
 

1                i ib p f i N= ∀ ∈  (5) 
       , ,lij lij lijg ct dt l L i N j J= − ∀ ∈ ∀ ∈ ∀ ∈     (6) 

if     1      168 hr
       , ,

otherwise      + 480 hr
lij

lij
lij

l a
dt l L i N j J

a
= += ∀ ∈ ∀ ∈ ∀ ∈


 

(7) 

Holding cost is computed by considering the average inventory levels of the sub-groups, unit prices of the parts and the interest 
rate. Average inventory level is formulated as a continuous function of time as given by the Eq. (8) and it is computed based 
on the inventory held during the execution of the system.  
 

0

( )          
R

i ih I t dt i N= ∀ ∈  
(8) 

In our proposed inventory control model, three main processes namely transformation, inventory replenishment and order 
completion are run simultaneously as it is depicted in Fig. 1. Variables used in the simulation models are presented in Table 
3. In transformation process, substitute sub-groups are investigated for the demand that cannot be fulfilled by its own 
inventory and the transformation operations between the sub-groups are realized. Inventory replenishment process is triggered 
in every inventory movement and the production orders are placed for the sub-groups, if necessary, based on the (s, S) policies. 
Finally, in order completion process, performance measures are computed for each completed order and the overall values of 
these measures are updated. 
 
Table 3  
Temporary variables used in the simulation models 

Variable name Definition 
M sufficiently large number (1000) 
cn counter 
z counter 
opori amount of current production order belonging to sub-group i 
pori amount of production order to be placed for sub-group i 
invi inventory level of sub-group i 
reqlij unfulfilled quantity of j th order belonging to sub-group i placed by customer l 
treqi total amount of unfulfilled demand belonging to sub-group i 
orderq queue of the orders waiting to be fulfilled 
duki dummy variable for the unit time of transforming a part from sub-group k to sub-group i 
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Table 3  
Temporary variables used in the simulation models (Continued) 

dmki dummy variable for the unit cost of transforming a part from sub-group k to sub-group i 
mint minimum unit transformation time 
minc minimum unit transformation cost 
tunits total amount of transformed parts 
tpcost total production cost 
trcost total transformation cost 
tbcost total backorder cost 
thcost total holding cost 
tcor total amount of demand fulfilled 
trate percentage of demand fulfilled by transformation 
totalcost total cost 

 

 

Fig. 1. Flow of the simulation model 
 

In the simulation model of the spare parts inventory system under concern, orders for the sub-groups are placed by two types 
of customers. Then, the due-date is assigned to each order based on the agreement. In the next step, inventory level of the 
regarding sub-group is reviewed. If the on hand inventory is sufficient to fulfill the order, then the required amount of 
inventory is used to fulfill the order, inventory level of the sub-group is updated, order is prepared for shipment and the order 
completion process is triggered respectively. 
 
On the other hand, if the inventory level of the sub-group is not sufficient, then on hand inventory is completely used to fulfill 
a certain amount of the entire order and the quantity remaining unfulfilled is computed. Then, the transformation process is 
triggered and sub-groups that can be transformed into the ordered sub-group are investigated as it is shown in Fig. 2. In this 
process, transformation operations are performed based on the earliest due-date rule and the substitute sub-groups are selected 
based on two types of selection policies: 
 

• Model (I): minimum unit transformation time 

• Model (II): minimum unit transformation cost 
 
 
 
 
 



  

 

314

 
 
 
 
 

Transformation

(I)       ,
(II)      ,

ki ki

ki ki

du ut k i N
dm r k i N

= ∀ ∈
= ∀ ∈

z = 1
(I) mint = M

(II) minc = M

z ≤ N

(I)  duzi < mint
(II) dmzi < minc

invz > 0

yes

(I) mint = duzi
(II) minc = dmzi
k = z

z = z+1

yes

(I) mint == M
(II) minc == M

invk ≥ reqlij

no

no

Enter orderq 

invk = invk - reqlij
treqi = treqi - reqlij
tunits = tunits + reqlij
trcost = trcost + (rki * reqlij)

yes

yes

reqlij = reqlij - invk
treqi = treqi - invk
tunits = tunits + invk
trcost = trcost + (rki * invk)
invk = 0

no

Perform transformation 
operations

(I) duki = M
(II) dmki = M

Perform transformation 
operations

inventory replenishment 
for the k-th sub-group 

Order completion

End of the 
process

(I) duzi = M
(II) dmzi = M

no

(I)  duzi == M
(II) dmzi == M

yes

no

yes

no

 

Fig. 2. Flow of the transformation process 
 
 
 
 
After specifying the substitute sub-group, the inventory level of this sub-group is reviewed. If the inventory level is zero, then 
the model searches for the next sub-group that has the smallest transformation time or cost. On the contrary, if the inventory 
level is sufficient to fulfill the remaining quantity then the required amount of inventory is used for the transformation, 
inventory level of the substitute sub-group is updated, transformation cost is computed and the order completion process is 
triggered respectively. Furthermore, if the inventory level of the substitute sub-group is lower than the remaining quantity and 
different from zero, in this case, on hand inventory is used for the transformation, the remaining quantity of the order is 
updated and the transformation cost is computed. Afterwards, the next sub-group that has the smallest transformation time or 
cost is investigated. Transformation is performed recursively until the entire order is fulfilled. However, if there is no other 
alternative left for the transformation and the order is still not completely fulfilled, the order enters the queue and waits until 
the produced parts are put on the shelf. During this waiting time, whenever an inventory replenishment has occurred for a 
particular sub-group, orders waiting in the queue are fulfilled based on the earliest due-date rule and the transformation 
possibilities for the orders that belong to other sub-groups are investigated again (see Fig. 3). 
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Inventory 
replenishment

invi + opori - treqi ≤ si
End of the 

process

pori = Si – (invi + opori - treqi)
opori = opori + pori

no

yes

Production

invi = invi + pori
opori = opori - pori
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Fig. 3. Flow of the inventory replenishment process 

 
Finally, each completed order enters the order completion process as shown in Fig. 4 and the tardiness of the orders are 
evaluated. Backorder cost is computed for the orders whose completion times are greater than their due-dates. In addition, 
performance measures such as total amount of demand fulfilled and the total amount of demand fulfilled by transformation 
are re-evaluated. Moreover, at the end of the replication, total cost is calculated. 
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Fig. 4. Flow of the order completion process 

 
4. Methodology 
 
Spare parts inventory control problem under concern involves stochastic issues such as order arrival, order quantity and 
production lead time and also the transformation process makes the problem more complicated when compared with the 
classical spare parts inventory control problem. Since our problem is difficult to solve through the analytical approaches, we 
use simulation modelling due to its ability to model and assess the behavior of complex systems over time.  
  
On the other hand, when the search space of a problem is small, the value of the decision variables that optimize the objective 
function can be determined by evaluating all combinations of these variables or designing experiments. However, if the 
problem’s search space is large, evaluating all of the combinations of decision variables is almost impossible and the 
simulation model needs to be integrated with an optimization method in order to obtain near-optimal solutions in a reasonable 
time (Tekin & Sabuncuoğlu, 2004). 
  
In this concern, we used simulation-optimization in order to find the near-optimal values of the spare part inventory levels (s, 
S) that minimize total cost. Discrete-event simulation models of both transformation and no-transformation cases are 
developed in Arena 14.0 and then these models are integrated with SA coded in Matlab R2021a. In the simulation optimization 
process, SA generates a candidate inventory policy regarding the inventory levels of sub-groups at each step. Then the 
simulation model is run for this candidate policy and the output (total cost) obtained from the simulation model is evaluated 
by the SA. This process continues until the termination criterion is met and finally, near-optimal (s, S) inventory levels are 
determined.  
  
4.1 Simulated Annealing Algorithm 
  
SA is a single-solution-based search algorithm that imitates the annealing process of materials. The annealing process involves 
heating a material to a specific temperature and then cooling it slowly to increase the toughness of the material. SA is a 
stochastic method and the key feature of this algorithm is that it accepts worse solutions with a probability to escape local 
optima (Henderson et al., 2003). The main parameters of SA are the initial temperature (T0), final temperature (Tmin), cooling 
rate (α), and number of iterations at each temperature (R).  
  
SA has been widely applied to combinatorial optimization problems and the most common advantages stated are: ease of 
implementation, less memory requirement, shorter running time and providing reasonably good solutions (Radu & Vintan, 
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2013). A comprehensive review of SA in optimization problems can be found in the studies of Suman and Kumar (2006) and 
Siddique and Adeli (2016). The steps of the algorithm can be summarized as follows: 
 

Algorithm 1 Pseudo code of the SA algorithm 
1. Set r = 0, T = T0 
2. Generate a random feasible solution S, compute the objective function value F(S), set best solution S* = S and F(S*) = 
F(S) 
3. If  T > Tmin then go to step 4; else  go to step 8 
4. Set r = r + 1  
5. Generate a random feasible solution S’ in the neighborhood of S and compute F(S’)  
6. Let Δ= F(S’) - F(S) 
6.1. If  Δ ≤ 0 → set S = S’, S* = S’ and F(S*) = F(S’) 
6.2. If  Δ > 0 → generate a random number x ∈ [0,1]  
6.2.1. If  x ≤ exp (− Δ / T) → set S = S’  
7. If  r ≥ R → set T = α*T, r = 0 and go to step 3; else  go to step 4 
8. Display S* and F(S*) 

 
4.2 Solution Representation 
 
To represent the solution of our problem, we used an array of length 2m where m is the total number of sub-groups. In this 
representation, the first m elements correspond to re-order levels and the remaining m ones correspond to order-up-to levels 
of the sub-groups. 
 
4.3 Initial Solution Generation and Neighborhood Search 
 
The initial solution is generated randomly by considering the constraints identified in Section 3 by the Eqs (2-4). Then, the 
neighborhood search is realized as depicted in Fig. 5 by using a temperature level-based step function. This function is used 
to compute the amount of change to be made on the current solution at jth temperature level by considering the value of this 
function at (j-1)th temperature level. With the help of this function, amount of the change decreases as the temperature 
decreases and the neighbor solutions at lower temperatures are fine-tuned. Value of this function is calculated using Eq. (9) 
and Eq. (10) where φ is the constant multiplier between (0, 1) and j represents the temperature level which equals 1 for T0, 2 
for (α* T0) and so on. For instance, if T0=1000, Tmin=1, α=0.95 and step(1)=1, then the step function has 135 temperature 
levels as illustrated in Fig. 6.  
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After computing the value of the step function at jth temperature level, the type of change (addition or subtraction) to be made 
is determined randomly for each element i in the solution representation. Then the neighbor solution is generated by using 
equation (11). In this equation, range(i) represents the difference between the upper and lower bounds defined for element i 
in the solution representation. For each generated solution boundary constraints are checked and when the value of an element 
exceeds its predefined lower and upper bounds, it is rounded to its nearest bound as shown in Fig. 5. 
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Fig. 5. Neighbor solution generation process 

 
 

Fig. 6. Value of step function over temperature levels 
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4.4 Termination 
 
The termination conditions of SA can be reaching a final temperature, reaching a threshold value of the objective function, 
reaching the maximum number of iterations etc. In our study, SA starts with an initial temperature, and temperature is decreased 
according to a cooling schedule in each step. Then, the algorithm terminates when the temperature reaches a predetermined 
final temperature. 
 
5. Computational Analysis 
 
In this section, computational analyses are performed in order to evaluate the efficiency of the proposed inventory control 
model under different conditions. To this aim, we handled the hypothetical inventory system of an electronic card group and 
we have focused on the effect of f1 on transformation and no-transformation cases with respect to total cost. As emphasized 
before, if spare part demands cannot be fulfilled within a certain period of time companies face severe penalties. Therefore, 
backorder cost is an important issue in spare parts inventory management and the parameters that are used in its calculation 
should be analyzed. 
 
In the inventory system under concern, the electronic card group consists of four sub-groups and the orders for these sub-
groups are placed by two types of customers. Orders arrive from domestic and international customers with equal probabilities 
(50% for each customer type). Sub-group type of an incoming order can be 1, 2, 3 or 4 with the probability of 25%. Time 
between the order arrivals is exponentially distributed with a mean of 3 hours. Quantity of an order shows a normal distribution 
and it varies depending on the customer type and sub-group as it is shown in Table 4. It should be noted here that negative 
values of order quantity are checked and not allowed in our simulation models.  
 
Table 4  
Demand distribution 

 i 
l 1 2 3 4 
1 norm(8,1) norm(10,2) norm(5,1) norm(7,2) 
2 norm(6,1) norm(6,2) norm(4,1) norm(9,1) 

 
Input data that include initial inventory levels, unit production costs and unit prices related to sub-groups can be seen in Table 
5. Further, unit transformation times and costs between sub-groups are summarized in Table 6. 
 
Table 5  
Input data of sub-groups 
i invi

0 ci ($) pi ($) 
1 90 30 40 
2 50 40 50 
3 100 50 60 
4 60 35 45 

 
Table 6  
Unit transformation time and cost 
  utki (hr) rki ($) 

k i=1 i=2 i=3 i=4 i=1 i=2 i=3 i=4 
1 M 0.500 0.333 0.666 M 10 15 20 
2 0.666 M 1.000 M 20 M 25 M 
3 M 0.333 M 0.500 M 15 M 25 
4 1.166 M 0.666 M 35 M 30 M 

 
Procurement of components constitutes the major part of the production lead time. Therefore, production lead time is 
evaluated independently from both order quantity and type of the sub-group. The production lead time is 360 hours with 20% 
probability, 480 hours with 20% probability and 600 hours with 60% probability.  
  
As stated before, our study aims to find near-optimal (s, S) inventory levels for each sub-group that minimize total cost. Three 
simulation models regarding the transformation and no-transformation cases are developed by using Arena. Model (I) and (II) 
are the models in which transformations are performed based on the rules specified in Section 3 and the Model (III) represents 
the case with no-transformation.  
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We performed experimental analysis for varying values of f1 in order to investigate the effect of penalty coefficient on 
transformation and no-transformation cases with respect to total cost.  In our analysis, f2 is assumed to be 10%. Lower and 
upper bounds for s and S values are defined for each sub-group as [50, 150] and [151, 500] respectively. In this way, we 
guarantee that the order up-to level of a sub-group must be greater than its re-order level. Simulation models run 10 replications 
for 8 months (5760 hr) and the simulation optimization is run three times for each value of f1. In addition, T0, α, R, Tmin and 
step(1) are determined as 10000, 0.99, 10, 1 and 1 respectively. In neighborhood search, we chose φ as 0.04 and λ as 0.8, since 
higher values of φ cause dramatic changes between two consecutive values of the step function.  
 
After the optimization process, near-optimal si and Si values are obtained as presented in Table 7 and an example Arena output 
of the sub-groups’ inventory replenishment processes is illustrated in Fig. 7. When we interpret the results given in Table 7, 
we can conclude that sub-groups 1 and 4 have higher production volumes than sub-groups 2 and 3 in Model (I). As sub-group 
1 is the most transformable one among the other sub-groups, parts belonging to this sub-group are used to fulfill both their 
own demand and the demand of other sub-groups. Therefore, there is a high need for producing the parts belonging to this 
sub-group. On the other hand, since transforming parts from other sub-groups to sub-group 4 requires longer time, the model 
prefers to produce parts from sub-group 4 in higher volumes to avoid transformation. From another point of view, sub-group 
3 has more transformation alternatives and transforming parts from other sub-groups to sub-group 2 requires less time. 
Therefore, the model mostly prefers to fulfill demand of these sub-groups through transformation and this situation causes the 
parts belonging to these sub-groups to be produced in lower volumes. 
 
Table 7  
Near-optimal inventory levels of sub-groups under different f1 

f1  
      Model (I)          Model (II)        Model (III) 

i Si si  Si si  Si si  

0.1 

1 500 150 500 150 500 150 
2 151 150 151 150 500 50 
3 435 90 151 150 500 123 
4 500 67 319 150 151 150 

0.3 

1 486 150 500 150 459 150 
2 500 150 151 150 500 150 
3 151 82 500 88 151 150 
4 468 88 500 150 224 150 

0.5 

1 500 68 500 150 500 150 
2 490 50 151 150 500 150 
3 216 150 475 88 500 145 
4 442 150 500 150 151 150 

0.7 

1 500 73 500 150 500 150 
2 166 150 151 150 500 131 
3 500 137 481 88 469 143 
4 337 54 500 89 154 150 

0.9 

1 487 137 500 150 238 150 
2 151 150 151 144 500 137 
3 500 90 500 90 500 150 
4 416 78 388 150 151 150 

 
When the si and Si values obtained for Model (II) are evaluated, it can be concluded that sub-group 3 has higher and sub-group 
2 has lower production volume. Since the cost of transforming parts into sub-group 2 is relatively low, the model prefers to 
fulfill demand for this sub-group through transformation rather than producing parts of this sub-group in higher volumes. On 
the other hand, although the number of sub-groups that can be transformed into sub-group 3 is higher, producing parts 
belonging to this sub-group in higher volumes is more advantageous due to the higher unit transformation costs. In addition, 
the results corresponding to the near-optimal si and Si values are summarized in Table 8 and Fig. 8. As shown in Table 8, 
transformation gives superior results than the no-transformation case in terms of total cost for all values of f1. On the other 
hand, Model (II) that makes the transformation decisions based on the minimum unit transformation cost provides better 
results than Model (I) for lower values of f1 with respect to total cost. However, Model (I) becomes more advantageous for 
the higher values of f1 because any increase in tardiness will lead to higher backorder cost. When we examine the change in 
total cost over varying values of f1, we can observe that, at lower values of f1, for instance 0.1, the difference between the 
Model (I) and Model (III) is about 11% and the difference between Model (II) and Model (III) is 14%. When f1 is 0.9, the 
difference between Model (I) and Model (III) reaches 84% and the difference between Model (II) and Model (III) is obtained 
as 65%. As an interpretation of these results, we can conclude that transformation provides much better results in case the 
penalty cost associated with backorders is higher. 
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           a) inventory replenishment of sub-group 1 

 
           b) inventory replenishment of sub-group 2 

 
           c) inventory replenishment of sub-group 3 

 
           d) inventory replenishment of sub-group 4 

 
Fig. 7. Inventory replenishment of sub-groups (Model (I), f1=0.5) 

 
Table 8  
Results of near-optimal inventory levels for different values of f1 

   Model  
(I) 

Model  
(II) 

Model  
(III) 

f1 = 0.1 

tcor 13192 13296 13140 
tunits 4768.5 3040.9 0 
trate 0.36 0.23 0 
trcost 98160 60602 0 
tpcost 500870 494760 536870 
tbcost 72960 104690 208920 
thcost 1840.3 1686.2 5366.4 
totalcost 673830.3 661738.2 751156.4 

f1 = 0.3 

tcor 13068 13344 13116 
tunits 4422.6 4185.5 0 
trate 0.34 0.31 0 
trcost 89138.5 85929 0 
tpcost 491600 507310 535550 
tbcost 343060 281570 651440 
thcost 2105.7 2236.7 5311.3 
totalcost 925904.2 877045.7 1192301 

f1 = 0.5 

tcor 13065 13224 13328 
tunits 4638.1 4071.4 0 
trate 0.36 0.31 0 
trcost 95527.5 82819 0 
tpcost 502680 505570 548390 
tbcost 516790 477760 1122500 
thcost 2161.9 2258.4 5713.1 
totalcost 1117159 1068407 1676603 

 
 



  

 

322

Table 8  
Results of near-optimal inventory levels for different values of f1 

   Model  
(I) 

Model  
(II) 

Model  
(III) 

f1 = 0.7 

tcor 13119 13291 13139 
tunits 5247.8 4534.4 0 
trate 0.4 0.34 0 
trcost 109362 92306 0 
tpcost 509890 506790 538820 
tbcost 750100 675380 1454500 
thcost 1682.8 2043.4 5500.5 
totalcost 1371035 1276519 1998821 

f1 = 0.9 

tcor 13224 13356 13166 
tunits 4725.2 4359.3 0 
trate 0.36 0.33 0 
trcost 95311.5 84616.5 0 
tpcost 506310 505642 539090 
tbcost 712560 883452 1883400 
thcost 1943.6 2103.8 5705.4 
totalcost 1316125 1475814 2428195 

 
 
Further, as it is illustrated in Fig. 8, Model (I) and Model (II) are very effective in decreasing both backorder cost and holding 
cost. By the help of transformation, companies can meet the demand of an out of stock part by transforming other parts already 
in inventory instead of waiting long production lead times. In this way, companies can rapidly meet demand and the cost 
associated with the backorders decreases. In addition, transformation increases the inventory turn-over rate by using on hand 
inventory to meet both primary demand and the demand of the other parts. Thus, parts do not wait idle in stock until a demand 
for their own sub-group is received. On the other hand, when we evaluate the results with respect to the production cost, it is 
clearly seen that the production costs are lower in both Model (I) and Model (II). The main reason is that, in case of 
transformation, the model prefers meeting demand by transforming other parts rather than producing in high volumes and 
storing them. In this way, both production and holding costs are decreased. 
 

 
a) total cost 

 
b) backorder cost 

 
c) holding cost 

 
d) production cost 

Fig. 8. Change of cost components over f1 
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When we examine the results in terms of transformation, in our hypothetical inventory system, the transformation rate varies 
between 20% and 40% in Models (I) and (II). In addition, as presented in Table 9, both Model (I) and Model (II) parts from 
sub-groups 3 and 4 are the less preferred parts for the transformation operations. The reason for this situation can be explained 
by the unit transformation times and costs given in Table 6. In Table 6, we can clearly see that transforming a part belonging 
to sub-group 4 into another type of part takes a longer time than other sub-groups. Further, the cost of transforming a part 
from sub-groups 3 and 4 into other sub-groups is much higher in comparison with other sub-groups. 
 
Table 9  
Total amount of parts used in transformation 
 i = 1 i = 2 i = 3 i = 4 total 

f1 
Model 

(I) 
Model 

(II) 
Model 

(I) 
Model 

(II) 
Model 

(I) 
Model 

(II) 
Model 

(I) 
Model 

(II) 
Model 

(I) 
Model 

(II) 
0.1 1036.3 785.4 1439.6 952.5 1097.1 690.7 1195.5 612.3 4768.5 3040.9 
0.3 1424.7 1161.9 1020.7 1423.6 1358 683.2 619.2 916.8 4422.6 4185.5 
0.5 1579.2 1169.9 1212.8 1388.4 1085.2 671.4 760.9 841.7 4638.1 4071.4 
0.7 1196.3 1238.3 1299.6 1436.6 945.1 694 1806.8 1165.5 5247.8 4534.4 
0.9 859.2 980.5 1574.6 1572.8 950 657.4 1341.4 1148.6 4725.2 4359.3 

 

6. Conclusions and Future Research Directions 
 
In today’s markets, creating value for customers and increasing loyalty are vital for companies for their survival. Hence, after 
sales service management is becoming increasingly important for many industries. With a successful after sales service 
management, companies can achieve strategic goals such as customer loyalty, high service levels, revenue maximization, cost 
minimization etc. 
  
As discussed earlier, after sales service performance highly depends on the management efficiency of spare parts inventories. 
Providing necessary spare parts timely and in a cost effective way will improve the service performance of the company. Part 
transformation, which can be considered as a special case of substitution, allows companies to rapidly meet demand and it 
gives the opportunity of reducing holding, backorder and production costs. However, the cost and time associated with the 
transformation process and the inventory sharing capability of this process differentiates it from the classical product 
substitution practices and more advanced methods are needed to find effective inventory control policies.  
  
In this concern, a spare parts inventory control model that uses the transformation-based substitution in demand fulfillment is 
proposed in this study. It is aimed to find the near-optimal values of spare part inventory levels (s, S) that minimize total cost. 
To this aim, a SA based simulation optimization approach is used and the computational analyses are performed on a 
hypothetical inventory system. 
  
In our computational analysis, transformation and no-transformation cases are compared for varying values of penalty 
coefficient. When we evaluate the obtained results, we can conclude that the transformation is an efficient way to meet demand 
rapidly and it is more beneficial for the companies who endure long production lead times and high penalty costs associated 
with backorders. In addition, for higher values of the tardiness penalty, selecting substitute items based on unit transformation 
time rather than cost yields better results.  
  
These results provide some valuable insights for managers. First, using the proposed model, inventory managers can decide 
under what conditions they will use transformation-based substitution and how they should select the substitute part. Second, 
the proposed approach contributes to sustainable manufacturing which is an important issue for the environment. As we know, 
high-tech products have short product life cycles and spare parts of obsolete products are rapidly becoming e-waste. E-waste 
is a growing problem in the world and it poses serious threats to the environment. Our proposed model supports sustainable 
manufacturing and reduces e-waste by using idle inventories. 
  
On the other hand, the proposed model has some limitations. First, our model assumes that all transformed parts meet the 
quality requirements. However, transformation operations can sometimes cause quality problems. Including a quality control 
process in the simulation model for the transformed parts may overcome this limitation. Second, the intermittent and lumpy 
nature of spare parts demand is ignored in our model. Our model considers the maturity phase of the product life cycle in 
which spare parts demands are stable. However, spare parts demands are not stable at the initial phase or end-of-life phase. In 
future, using different probability distributions across product life cycle phases may extend the proposed model. In addition, 
investigation of the effect of different sequencing rules used to prioritize the orders waiting for transformation and different 
criteria used to select the substitute sub-group for transformation can be very interesting future research topics. 
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