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 This paper recommends a new Many-Objective Teaching-Learning-Based Optimizer (MaOTLBO) 
to handle the Many-Objective Optimal Power Flow (MaO-OPF) problem of modern complex 
power systems while meeting different operating constraints. A reference point-based mechanism 
is utilized in the basic version of Teacher Learning-Based Optimizer (TLBO) to formulate the 
MaOTLBO algorithm and directly applied to DTLZ test benchmark functions with 5, 7, 10-
objectives and IEEE-30 bus power system with six different objective functions, namely the 
minimization of the voltage magnitude deviation, total fuel cost, voltage stability indicator, total 
emission, active power loss, and reactive power loss. The results obtained from the MaOTLBO 
optimizer are compared with the well-known standard many-objective algorithms, such as the 
Multi-Objective Evolutionary Algorithm based on Decomposition with Dynamical Resource 
Allocation (MOEA/D-DRA) and Non-Dominated Sorting Genetic Algorithm-version-III (NSGA-
III) presented in the literature. The results show the ability of the proposed MaOTLBO to solve the 
MaO-OPF problem in terms of convergence, coverage, and well-Spread Pareto optimal solutions. 
The experimental outcomes indicate that the suggested MaOTLBO gives improved individual 
output and compromised solutions than MOEA/D-DRA and NSGA-III algorithms. 
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1. Introduction 

 
The electricity system's primary function is to provide cost-effective electrical energy to meet dynamic demand. Among the 
most relevant operating units and extensively discussed topics in the operation of electrical power systems and the current 
monitoring system is the Optimal Power Flow (OPF) problem, which has attracted many researchers in the last few years. 
One of the highest operational requirements of the electrical power and energy management system is the OPF problem. The 
OPF aims to minimize the cost function of the power system by retaining the various inequality and equality constraints. The 
load flow equations are equality constraints, whereas inequality constraints are independent and dependent variables. Except 
for slack-bus control, reactive power injection, transformer tap settings, and the generator bus voltages are the control 
parameters of the actual power generator. Slack bus capacity, line flows, generator reactive power and load bus voltages are 
the dependent variables. The main goal of the OPF, however, is to reduce the amount of fuel. Nonetheless, voltage unbalances 
are seen as a promising challenge for energy management activity due to the continued growth in power consumption and 
unparalleled distribution and load production capacity. Concurrently, ineffective reactive power sources in the electricity 
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network cause significant losses in transmission. In such cases, the voltage profile gap and loss of transmission may need to 
be considered as part of the objectives of the OPF problem.  

Numerous optimizers for addressing OPF problems have been published in the literature. Carpentier was the first researcher 
to formulate a non-linear problem approach for the OPF in 1962. Since then, many methodologies, along with linear 
programming, interior-point methods, Lagrangian relaxation, reduced gradient technique, and Newton-Raphson, have been 
established based on traditional methods (Capitanescu and Wehenkel, 2013; de Carvalho et al., 2008; Monoh et al., 1999; 
Santos and da Costa, 1995). Nevertheless, these conventional techniques fail to manage nonlinear fitness functions. The 
authors of (Momoh et al., 1999) reported that non-linear programming could resolve issues involving non-linear objectives 
and constraints. Even so, this strategy has several disadvantages, such as algorithmic complexity, huge execution time arising 
in enormous simulations, excessive statistical iterations, and unsafe convergence properties. The OPF is typically a high-
dimensional problem of non-smooth and nonlinear optimization. Due to consideration of valve-point loading of thermal 
generators, these characteristics become much more noticeable and predominant. Therefore, optimization strategies must be 
established to successfully overcome these disadvantages and difficulties. 

The Many-Objective Optimal Power Flow (MaO-OPF) is a many-objectives optimization problem in modern complex power 
systems with complicated internal linkages between several optimizing cost functions. Conventional programming methods 
such as Newton and interior-point methods, which are very convenient for solving one objective problem (Azizipanah-
Abarghooee et al., 2014; Ghasemi et al., 2014), would face challenges in solving MaO-OPF problems. The MaO-OPF 
challenge has Pareto optimum solutions rather than a single global optimal solution. Heuristic optimizers have progressed 
accurately and comprehensively in recent years thanks to their straightforward applications and flexibility. In recent years, 
numerous heuristic optimizers featuring specific strategies have been presented to address the MaO-OPF problem. The 
strategies are classified mainly into two sets. As per the preference data of policymakers or other relevant processes, one 
would be to turn multiple objectives throughout the MaO-OPF problem into just a single objective. The authors (Rosehart et 
al., 2003; Yalcinoz & Köksoy, 2007) merged multiple objectives with a weight factor into a single function, but this approach 
is subject to severely on weight range. The authors (X. Liu and Xu, 2010; Salgado & Rangel, 2012; Surender Reddy and 
Bijwe, 2019) optimized only one desired target and restricted the remaining ones to or below those thresholds, making 
establishing constraint limits difficult. The concepts like the 𝜀-constraint method (Davoodi et al., 2018; Lashkar Ara et al., 
2012) and fuzzy membership (He et al., 2015) were used to transform many-objective optimal power flow issues into single-
objective OPF problems. This optimization tool mainly includes several runs to obtain Pareto-optimal Solutions (PSs) for the 
MaO-OPF problem, which is very time-intensive. 

Multi-Objective Evolutionary Algorithms (MOEAs) could be grouped into indicator-based and Pareto-based techniques as 
per the selection processes. The former MOEAs types are standard Pareto-based methods, such as Non-dominated Sorting 
Genetic Algorithm-II (NSGA-II) (Deb et al., 2002), Strength Pareto Evolutionary Algorithm-Version II (SPEA-II) (Yuan et 
al., 2017), NSGA-III (Deb and Jain, 2014; Jain and Deb, 2014), and enhanced NSGA-III (Wang et al., 2018; Zhang et al., 
2019). At the same time, indicator-based MOEAs (Zitzler and Künzli, 2004) can manage many-objective optimization issues 
with techniques such as S-Metric Selection Evolutionary Multiobjective Optimization Algorithm (SMS-EMOA) (Beume et 
al., 2007), Hypervolume Estimation (HypE) algorithm (Bader and Zitzler, 2011), and Generational Distance-based Many-
Objective Evolutionary Algorithm (GD/MaOEA) (Y. Liu et al., 2019). The latter typically only gives greater attention to 
certain algorithm performance metrics. The Pareto front offered optimal solutions for all objectives with the best solution. 
Any new problems can be easily integrated into any MOEA/D-DRA (Zhang et al., 2020), such as those focused on Pareto, 
after converting the problem formulation. All such methods are only tested for benchmark problems and have not been proven 
successful in handling MaO-OPF. Therefore, the enhancement of algorithm performance is an essential avenue for 
improvement. Furthermore, when handling many-objective OPF problems, the traditional MOEA algorithm's efficiency 
depends profoundly on its parameter adjustment. To acquire outcomes closer to the real Pareto Front (PF) and to improve the 
variety of solutions and the convergence rate, subsequent modification effort of MOEAs is required.  

TLBO is a relatively novel algorithm that proves its performance in solving challenging design optimization problems (Rao 
et al., 2011). It is free from algorithmic-specific controlling parameters and has shown less computational complexity 
concerning other algorithms. The authors of (Gonzalez-Alvarez et al., 2012) investigated the TLBO for the multi-objective 
(typically three objectives) Motif Discovery problem and found its dominance with several other MOEAs. However, with 
many conflicting objectives (typically more than four), multi-objective optimization's complexity grows rapidly, making 
optimization problems quickly intractable. Such problems are challenging and typically referred to as many-objective 
optimization problems. Thus, in this investigation, the basic version of the Teacher Learning-Based Optimizer (TLBO) is 
converted to Many-Objective Teacher Learning-Based Optimizer (MaOTLBO) to handle the OPF problem using a reference 
point mechanism. The effectiveness of the proposed MaOTLBO is confirmed through standard test functions and finally 
applied to the MaO-OPF problem. The following are major contributions to the paper. 

• Development of a novel many-objective algorithm based on TLBO called MaOTLBO utilizing reference point 
mechanism. 

• Validation of MaOTLBO on seven many-objective numerical problems and standard IEEE-30 bus system with 
six objectives. 
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• Comparison analysis is made in terms of performance metrics called Generational Distance (GD), Hyper-
Volume (HV), and Spread (SP). 

The remainder of this work is structured as follows. The problem formulation of the MaO-OPF problem is discussed in section 
2 through the flowchart. The formulation procedure of the proposed MaOTLBO is discussed in Section 3, and its usage to 
solve the MaO-OPF problem is also discussed. Section 4 discusses the results of the suggested MaOTLBO while handling 
both benchmark functions and MaO-OPF problems for the IEEE 30-bus system. In Section 5, the concluding remarks are 
provided. 

2. Problem Formulation 
 

The many-objective OPF problem is one of the significant real-world many-objective optimization problems in modern 
complex power systems. The primary statement of the problem of many-objective analysis is explained as follows. min ሾ𝑓ଵሺ𝑥ሻ𝑓ଶሺ𝑥ሻ⋯𝑓ெሺ𝑥ሻሿ  

subject to  (1) ൜ℎ௝ሺ𝑥ሻ = 0, 𝑗 = 1,2,⋯ ,𝐻𝑔௜ሺ𝑥ሻ ⩾ 0, 𝑖 = 1,2,⋯ ,𝐺   

where 𝐺 and 𝐻 are the sums of inequality and equality limits, and 𝑀 is the total number of cost functions naturally higher 
than three. In MaO-OPF, the concern is configured (Zhang et al., 2020) as dividing the overall Reactive Power Loss (RPL), 
Active Power Loss (APL), Voltage Magnitude Deviation (VMD), Voltage Stability Indicator (VSI), Total Emission (TE), and 
the Total Fuel Cost (TFC) of an entire grid structure, considering six objective functions often listed in the literature as an 
instance shown in Fig. 1. In Fig. 1, all six objective functions, along with their equality constraints, such as real and reactive 
power constraints, and inequality constraints, such as transformer, generator, shunt VAR, and security constraints, are clearly 
defined.  

 

Fig. 1. Flowchart of OPF problem with objective function and constraints 
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3. Many-Objective Teacher Learning-Based Optimizer (MaOTLBO) 

This section of the paper briefly introduces the concepts of the original TLBO algorithm and presents the comprehensive 
procedure for formulating the proposed MaO-TLBO algorithm 

3.1. Teacher Learning-Based Optimizer (TLBO) 

The TLBO is a population-based algorithm reported by (Rao et al., 2011, 2012), which works on the influence of the teacher 
on the outcomes of the learners in a classroom. For the reader's convenience and to avoid the repetition of the same contents, 
the concept of the TLBO algorithm is presented using pseudocode and the flowchart. The pseudocode and flowchart of the 
TLBO with its detailed process are explained in Fig. 2 and Fig. 3. It is observed from the pseudocode and flowchart that the 
teacher phase updates the population in each generation by the teacher phase, and the learner phase of the TLBO is considered 
as the primary search process. The readers are encouraged to refer to the base paper for more detailed information. 

3.2. Implementation of Proposed Algorithm 
 

In this paper, the MaOTLBO algorithm is proposed based on the reference point mechanism introduced by Das and Dennis 
(Das and Dennis, 1998). The flowchart of the MaOTLBO algorithm with the step-by-step process is explained in Fig. 4. It is 
observed from the flowchart that the population is updated by the generating reference point (H), Normalization, Association, 
Niching, and TLBO algorithm in each generation as the key search process (Sandeep and Narsingrao, 2021). 

 

Fig. 2. Pseudocode of basic TLBO algorithm 

First, the systematic method of Das and Dennis (Das and Dennis, 1998) is used to obtain reference point (H), TLBO algorithm 
parameters, and the population size (N) to generate a random population (Pi) in solution space (S). The parent population is 
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denoted as Pt, which a set of generated reference points and Qt represents the offspring population is generated through the 
TLBO algorithm shown in Fig. 1 and Fig. 2 with the size 𝑁 . The grouping is signified as Rt = Pt ∪ Qt, consisting of 
2N members; after that, Normalize (Rt) and Associate each (Rt, H) with one reference point. It categorizes the members in Rt to 
formulate various non-dominated levels (F1, F2, …, Fl, Fn). As per the classification, to start with F1, it selects the best 
members from Rt to formulate the next population, Pt+1, as follows. Assume that |F1∪F2∪… Fl…∪Fn-1| < N and 
|F1∪F2∪…Fl…∪Fn| ≥ N.  

 

Fig. 3. Flowchart of basic TLBO algorithm 

Then, all non-dominated levels in F1, F2, …Fl.., and Fn-1 and a few non-dominated levels in Fn are accepted and substituted 
in Pt+1, even other non-dominated levels in Fn,  n>r, are excluded. If |F1∪F2∪ …Fl∪Fn| = N, then Pt+1 = F1∪F2∪ …Fl∪Fn is 
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designed, and further operations are stopped. If |F1∪F2∪ … ∪Fn| > N, then N - |F1∪F2∪ … ∪Fn-1| schedules are chosen in Fr to 
optimize the solution diversity of the rth front, which are included in Pt+1 such that |Pt+1| = N. The following are the stepwise 
progressions to form the (t+1)th individual from tth population, as shown in Fig. 4, and the flowchart of the MaOTLBO 
algorithm with the step-by-step process is explained in Fig. 5. 

 

                                                                                          

                                                    P(t+1) 

 

 

 

Fig. 4. Detailed process to make the (t+1)th population from tth population. 

3.3. Procedure for Many-objective Optimal Power Flow Problem Solution 
 

The method for handling the MaO-OPF (Bouchekara et al., 2016; Chaib et al., 2016; Jangir and Jangir, 2018; Tian et al., 
2017; Trivedi et al., 2018) stated in this study using MaOTLBO can be discussed as follows: non-dominated stages with a 
reference-point-based selection procedure MaOTLBO optimizer for the MaO-OPF problem and a flowchart with the step-by-
step procedure is shown in Fig. 6. 

3.4. Hybrid Constraints Handling Mechanism 
 

In general, the many-objective OPF problem is a composite-constrained optimization problem (Zhang et al., 2020). The 
structure utilizes both the penalty and repair function methods to overcome complex constraints. The objective function of 
the MaO-OPF issue is therefore expressed as follows. 

𝑥 = ቐ 𝑥୫୧୬, 𝑖𝑓 𝑥 ൏ 𝑥୫୧୬ 𝑥, 𝑖𝑓 𝑥୫୧୬ ൑ 𝑥 ൑ 𝑥୫ୟ୶ 𝑥୫ୟ୶, 𝑖𝑓 𝑥 ൐ 𝑥୫ୟ୶  
(2) 

𝑓௞௣ = 𝑓௞ ൅ ฬ𝛼෍  ே೛೜௜ୀଵ 𝑓𝑢𝑛௩௜௢ሺ𝑉௅௜ሻฬ ൅ ฬ𝛽෍  ே೒௜ୀଵ 𝑓𝑢𝑛௩௜௢൫𝑄௚௜൯ฬ ൅ ฬ𝛾෍  ேಽ௜ୀଵ 𝑓𝑢𝑛௩௜௢ሺ𝑆௅௜ሻฬ (3) 

where γ, β, and α are penalty coefficients, 𝑓𝑢𝑛௩௜௢ is a constraint violation function with elements x, and 𝑓௞ is a fitness function 
of the many-objective optimal power flow problem. 

3.5. Fuzzy Decision based Best Compromise Solution 
 

In order to find the optimum compromise solution over the compromise characteristics upon acquiring the Pareto-optimal 
solution, a fuzzy membership technique is used in this research (Zhang et al., 2020). The best outcome from the available 
Pareto-optimal solutions, which assign a level of fulfillment to each objective, can be found in fuzzy membership functions. 

F1

P(t)

F3

Q(t)

Rejected 

R(t)

Associate each 
solution with 
one reference 
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Calculate the no 
of associate 

solutions expect 
for the last front 
of each solution 
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next generation 

Apply TLBO algorithm to 
generate offspring 

individuals Qt 

Generate a set 
of reference 



P. Jangir et al. / International Journal of Industrial Engineering Computations 14 (2023) 299

Each problem of jth the solution is stated by a fuzzy membership function 𝜇 ௜, assumed the inaccurate landscape of the decision-
makers. Adopt that 𝜇 ௜௝ is a monotonous function, and it is represented as follows. 

 

 

Fig. 5. Flowchart of MaOTLBO algorithm 

𝜇 ௜௝ = ⎩⎪⎨
⎪⎧ 1,𝑓 ௝ ⩽ 𝑓୫୧୬௝𝑓୫ୟ୶௝ − 𝑓 ௝𝑓୫ୟ୶௝ − 𝑓୫୧୬௝ ,𝑓୫୧୬௝ ⩽ 𝑓 ௝ ⩽ 𝑓୫ୟ୶௝

0,𝑓 ௝ ⩾ 𝑓୫ୟ୶௝
 

 

(4) 

At each non-dominated solution, the normalized membership function can be formulated as follows: 

𝜇 ௜  = ∑  ே೚್ೕ௝ୀଵ 𝜇 ௜௝∑  ெ௜ୀଵ ∑  ே೚್ೕ௝ୀଵ 𝜇 ௜௝ 
(5) 

 
where M denotes non-dominated solution counts, 𝑁௢௕௝ denotes the number of the fitness function, and 𝑓୫ୟ୶௝  and 𝑓୫୧୬௝  are the 
maximum and minimum objective function values. The best-compromised solution is the one with a maximum value of 𝜇 ௜. 
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4. Simulation Results and Discussions 

Unlike NSGA-III (Zhang et al., 2019) and MOEA/D-DRA (Zhang et al., 2020) optimizers, the proposed MaOTLBO optimizer 
discovers the equally spaced PF and better convergence and coverage and recognizes that each non-inferior Pareto optimal 
solution meets all the constraints. Firstly, the effectiveness of the MaOTLBO optimizer is confirmed on the DTLZ test suite, 
and later, it is applied to the OPF problem on the IEEE-30 bus system. The validation is carried out through the MATLAB 
2016b software on all test data, and it is performed on a PC with an Intel(R) Core (TM) i3 @ 2.40 GHz with 6 GB RAM.  

 

Fig. 6. Flow chart for solving MaO-OPF problem using MaOTLBO algorithm 

4.1. Algorithm Parameters and Evaluation Metrics 
 

Across all design examples, including the DTLZ test suite and OPF problem with a defined population size of 100 and 50,000 
functional evaluations for all optimizers and the simulation of each optimizer is performed 30 times individually. The 
probability of crossover rate 𝑃𝑐 =  1 , the distribution index of simulated binary crossover 𝑑𝑖𝑠𝐶 =  20 , mutation rate 𝑝𝑟𝑜𝑀  =  1, and the distribution index of polynomial mutation 𝑑𝑖𝑠𝑀 =  20. Diverse performance metrics are utilized to 
contrast the MaOTLBO algorithm with other techniques, and it is given as follows (Kumar et al., 2022; Mirjalili et al., 2017; 
Premkumar et al., 2021; Robert et al., 2020). 

Spacing ሺSPሻ  ≜ ඩ 1𝑛 − 1෍൫𝑑 − 𝑑௜൯ଶ௡
௜ୀଵ  

 

(6) 
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Generational Distance ሺGDሻ  =  ඥ∑ 𝑑௜ଶ௡௢௜ୀଵ𝑛  
(7) 

Hyper VolumeሺHVሻ  = Λ൭ራሼ𝑠ᇱ ∣∣ 𝑠 ≺ 𝑠ᇱ ≺ 𝑠௡௔ௗ௜௥ ሽ௦∈௉ி ൱ 
(8) 

where n is the number of obtained PS, no is the number of True PS, 𝑑௜ is the Euclidean distance, 𝑑 is the mean of all 𝑑௜, n is 
the number of obtained PS, and 𝑑௜ = min௝ ൫|𝑓ଵ௜ሺ�⃗�ሻ − 𝑓ଵ௝(�⃗�)| + |𝑓ଶ௜(�⃗�) − 𝑓ଶ௝(�⃗�)൯ for all i,j=1,2,…,n. To check the effectiveness 
of algorithms in terms of quicker convergence (Metric GD), uniformity coverage (Metric SP), and combined convergence-
coverage called diversity maintenance (Metric HV) have been utilized. 

4.2. Results Obtained for DTLZ Test Suite 

First, it is important to observe the performance of the proposed MaOTLBO algorithm using the standardized test many-
objective optimization problems called DTLZ test suite with 5, 7, and 10 objective benchmark functions (Tian et al., 2017), 
to validate the efficiency of MaOTLBO in solving the many-objective optimization problems. The proposed MaOTLBO 
algorithm is compared with the well-known many-objective optimization algorithms called NSGA-III and the MOEA/D-DRA 
algorithms. All algorithms are used to solve the test functions during all 30 individual runs. The average and the standard 
deviations (STD) of GD, SP, and HV outcomes for all 9 benchmark functions are listed in Table 1. A bold letter in Table 1 
would be the cell that holds the best GD, SP, and HV values for the respective benchmark problems. The optimal Pareto front 
using the MaOTLBO algorithm on all DTLZ test suites is illustrated in Figure 7. These results also indicate that MaOTLBO 
can obtain a good distribution of solutions to most problems, and the distribution of MaOTLBO is well uniform in Figure 7, 
which poses a challenge to maintaining population diversity. It is noted from Table 1 that the proposed MaOTLBO delivers 
the better mean HV (Diversity Performance) >80%, GD (Convergence Performance) >75%, and SP (Coverage Performance) 
>68% for the DTLZ problems. Overall, it can be assumed that MaOTLBO is a good optimizer for convergence, coverage, 
and diversity maintenance for many-objective general-purpose optimization. Fortunately, as defined in the theory of no free 
lunch, it cannot be assured that an algorithm with a great result would be successful for the other one when addressing a 
specific issue. Thus, the analysis of applied meta-heuristics is often a problematic issue. The GD metric results are illustrated 
in Table 1, MaOTLBO found a least 48.15 value in the Friedman rank test value, followed by MOEA/D-DRA and NSGA-
III. Therefore, MaOTLBO has an improved convergence quality as per Friedman’s Rank Test (FRT) values at a 95% 
significance level. For the SP measure, according to Table 1, the Friedman rank test value specifies the top rank of 40.75 by 
MaOTLBO and, thus, at a 95% significance level, displays its improved coverage quality. Moreover, The HV metric results 
are illustrated in Table 1, from which Friedman assigned the rank of 55.25, 22.22, and 25.92 to the MaOTLBO, NSGA-III, 
and MOEA/D-DRA techniques, respectively. Hence at FRT 95% significance level, MaOTLBO performs better than others 
by indicating its optimal solution density in the closeness of the true PF. 
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Fig. 7. Obtained Pareto front on DTLZ1-DTLZ9 10-objective problems using MaOTLBO algorithm 

As seen in Fig. 7, the Pareto front is obtained by the MaOTLBO algorithm for 10 objective cases. As seen in Fig. 7, the 
proposed MaOTLBO converges to a large number of optimal solutions with good diversity maintenance for all selected DTLZ 
test functions. 

Table 1  
GD, SP, and HV indicators comparison based on DTLZ1-DTLZ9 5, 7, 10-objectives test benchmarks  

Problem M D 
GD SP HV 

MaOTLBO NSGA-III MOEA/D-DRA MaOTLBO NSGA-
III 

MOEA/D-
DRA MaOTLBO NSGA-III MOEA/D-

DRA 

DTLZ1 

5 9 1.5111e-1 (1.31e-1)  1.3388e-1 (3.32e-2)  4.7443e+0 (1.64e+0) 4.0008e-1 
(3.39e-1)  

3.5385e-1 
(1.20e-1)  

1.2741e+1 
(6.32e+0) 

3.0051e-1 
(5.21e-1)  

5.7835e-3 
(1.00e-2)  

1.1391e-1 
(1.97e-1) 

7 11 6.8088e-2 (1.45e-2)  4.1172e-1 (2.32e-1)  3.6338e+0 (2.59e-1) 2.4925e-1 
(3.87e-2)  

2.5758e+0 
(2.23e+0)  

1.1082e+1 
(2.05e+0) 

1.9612e-1 
(1.42e-1)  

0.0000e+0 
(0.00e+0)  

1.2746e-1 
(2.21e-1) 

10 14 4.2904e-1 (6.40e-1)  1.6354e-1 (1.12e-1)  3.3145e+0 (1.32e+0) 4.7087e+0 
(7.68e+0)  

6.8481e-1 
(4.89e-1)  

9.0437e+0 
(2.21e+0) 

4.8566e-1 
(4.55e-1)  

1.1687e-1 
(1.78e-1)  

3.5774e-1 
(3.50e-1) 

DTLZ2 

5 14 5.3118e-3 (2.44e-4)  5.4006e-3 (1.82e-4)  5.8612e-2 (1.79e-3) 1.5727e-1 
(3.11e-3)  

1.5545e-1 
(1.63e-3)  

3.3890e-1 
(6.79e-2) 

7.6299e-1 
(2.34e-3)  

7.5758e-1 
(4.47e-3)  

3.1394e-1 
(5.13e-3) 

7 16 1.0326e-2 (3.32e-4)  1.0906e-2 (7.17e-5)  5.8811e-2 (1.19e-2) 2.0828e-1 
(4.35e-3)  

2.3673e-1 
(1.77e-2)  

4.3960e-1 
(1.48e-1) 

8.6369e-1 
(1.17e-3)  

8.2585e-1 
(6.23e-3)  

2.7774e-1 
(5.02e-2) 

10 19 5.9071e-3 (6.60e-4)  1.4429e-2 (2.96e-3)  5.4717e-2 (1.43e-2) 1.4863e-1 
(1.30e-2)  

3.0585e-1 
(8.10e-2)  

4.3462e-1 
(8.83e-2) 

9.3180e-1 
(1.63e-3)  

8.7087e-1 
(5.10e-2)  

2.5546e-1 
(6.14e-2) 

DTLZ3 

5 14 3.1821e+0 (1.19e+0)  6.0672e+0 (1.92e+0)  3.0323e+1 (5.49e+0) 1.0759e+1 
(1.15e+1)  

2.9590e+1 
(8.55e+0)  

7.4138e+1 
(3.19e+1) 

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

7 16 3.9764e+0 (9.41e-1)  1.0796e+1 (3.52e+0)  2.4946e+1 (2.03e+0) 1.7650e+1 
(1.24e+1)  

5.0785e+1 
(6.95e+0)  

5.4759e+1 
(1.38e+1) 

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

10 19 1.0585e+0 (1.50e-1)  1.9933e+1 (1.63e+0)  2.6011e+1 (4.20e+0) 2.3129e+0 
(3.77e-1)  

8.9048e+1 
(1.98e+1)  

5.9987e+1 
(1.02e+1) 

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

DTLZ4 

5 14 5.0975e-3 (9.37e-5)  4.5490e-3 (2.56e-4)  1.7279e-2 (1.29e-2) 1.8827e-1 
(6.02e-2)  

1.3545e-1 
(1.07e-2)  

9.9694e-2 
(1.12e-1) 

7.4191e-1 
(4.46e-2)  

6.2664e-1 
(3.46e-2)  

3.6363e-1 
(2.29e-1) 

7 16 8.5609e-3 (4.94e-4)  9.9715e-3 (4.33e-4)  1.4112e-2 (8.89e-3) 2.4235e-1 
(3.03e-2)  

2.5044e-1 
(1.57e-2)  

1.7093e-1 
(1.27e-1) 

8.4798e-1 
(1.67e-2)  

8.0933e-1 
(6.48e-2)  

3.8943e-1 
(1.63e-1) 

10 19 1.0506e-2 (2.13e-3)  1.0743e-2 (2.20e-3)  5.7306e-3 (1.88e-3) 3.9286e-1 
(1.54e-1)  

3.2276e-1 
(9.32e-2)  

2.1246e-1 
(1.01e-1) 

8.8146e-1 
(5.52e-2)  

8.8990e-1 
(3.92e-2)  

4.8927e-1 
(9.05e-2) 

DTLZ5 

5 14 1.7010e-1 (1.42e-2)  8.8598e-2 (1.17e-2)  1.7100e-1 (1.32e-2) 3.4981e-1 
(8.44e-2)  

1.9153e-1 
(3.76e-2)  

1.7758e-1 
(6.93e-2) 

9.5994e-2 
(5.22e-3)  

8.3354e-2 
(1.42e-2)  

1.1786e-1 
(1.50e-3) 

7 16 2.5486e-1 (1.37e-1)  8.4231e-2 (2.54e-3)  2.7301e-1 (5.47e-2) 6.2404e-1 
(3.50e-1)  

2.2926e-1 
(2.01e-2)  

2.3771e-1 
(5.27e-2) 

8.2163e-2 
(8.43e-3)  

6.1815e-2 
(1.10e-2)  

1.0193e-1 
(9.42e-4) 

10 19 9.0633e-2 (1.56e-1)  1.1639e-1 (1.58e-2)  2.4292e-1 (6.70e-2) 2.6057e-1 
(3.33e-1)  

3.3703e-1 
(1.85e-2)  

6.5166e-1 
(1.70e-1) 

9.2330e-2 
(1.41e-3)  

5.0154e-2 
(1.62e-2)  

9.5555e-2 
(4.12e-4) 

DTLZ6 

5 14 3.3917e-1 (4.67e-2)  4.1005e-1 (1.06e-1)  4.9260e-1 (1.53e-2) 7.0418e-1 
(2.53e-1)  

7.4076e-1 
(3.01e-1)  

2.4292e-1 
(1.47e-1) 

6.9392e-2 
(5.90e-2)  

0.0000e+0 
(0.00e+0)  

1.2198e-1 
(6.08e-4) 

7 16 4.1434e-1 (7.65e-2)  5.9443e-1 (6.67e-2)  4.9377e-1 (1.56e-2) 8.4721e-1 
(2.10e-1)  

1.3190e+0 
(2.47e-1)  

1.1396e+0 
(9.04e-2) 

3.1705e-2 
(5.00e-2)  

0.0000e+0 
(0.00e+0)  

1.0439e-1 
(2.34e-4) 

10 19 5.3701e-1 (1.80e-1)  7.2785e-1 (1.63e-1)  4.2000e-1 (5.05e-2) 1.6662e+0 
(4.05e-1)  

2.1224e+0 
(6.79e-1)  

1.0946e+0 
(4.81e-1) 

6.0742e-2 
(5.26e-2)  

0.0000e+0 
(0.00e+0)  

9.6820e-2 
(1.65e-3) 

DTLZ7 

5 24 5.1141e-2 (1.10e-2)  3.6010e-2 (1.61e-2)  1.2248e+0 (1.92e-1) 3.9023e-1 
(4.14e-2)  

3.3618e-1 
(2.20e-2)  

8.3257e-1 
(1.28e-1) 

1.5666e-1 
(1.25e-2)  

1.6723e-1 
(2.35e-2)  

2.0843e-4 
(8.16e-5) 

7 26 2.3548e-1 (3.86e-2)  1.9048e-1 (3.42e-2)  2.0133e+0 (5.68e-1) 5.1189e-1 
(7.02e-2)  

5.3388e-1 
(3.94e-2)  

1.1729e+0 
(1.28e-1) 

6.9526e-2 
(2.95e-2)  

3.9663e-2 
(2.04e-2)  

2.7290e-5 
(1.97e-5) 

10 29 3.1149e-1 (2.66e-1)  5.1313e-1 (2.53e-1)  2.0238e+0 (4.53e-1) 6.2972e-1 
(1.38e-1)  

6.6240e-1 
(8.15e-2)  

1.7811e+0 
(5.19e-1) 

2.7263e-2 
(2.53e-2)  

5.6387e-2 
(5.05e-2)  

3.4134e-6 
(5.91e-6) 

DTLZ8 

5 50 2.1147e-2 (2.03e-3)  1.7405e-2 (1.65e-3)  1.1439e-1 (5.26e-2) 4.3304e-2 
(7.83e-3)  

5.3639e-2 
(6.69e-3)  

1.3635e-1 
(1.35e-2) 

3.0711e-1 
(1.83e-2)  

3.6172e-1 
(2.42e-2)  

2.1567e-1 
(3.32e-2) 

7 70 1.7237e-2 (9.34e-4)  1.8095e-2 (1.76e-3)  1.0964e-1 (7.66e-3) 2.5425e-2 
(4.78e-3)  

5.8551e-2 
(3.24e-3)  

3.0704e-1 
(1.02e-2) 

1.8918e-1 
(9.16e-3)  

2.1878e-1 
(2.13e-2)  

4.1128e-2 
(5.62e-3) 

10 100 1.8500e-2 (2.11e-3)  3.0374e-2 (1.98e-3)  1.2185e-1 (6.10e-3) 2.6361e-2 
(6.00e-3)  

1.0392e-1 
(1.08e-2)  

2.8158e-1 
(4.76e-2) 

8.0686e-2 
(6.04e-3)  

8.8540e-2 
(1.56e-2)  

2.1441e-3 
(1.27e-3) 

DTLZ9 

5 50 1.3270e+0 (1.89e-1)  1.0462e+0 (2.60e-2)  1.0383e+0 (1.20e-2) 3.3969e-1 
(6.80e-3)  

6.0328e-1 
(9.04e-2)  

1.5512e+0 
(2.46e-1) 

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

7 70 1.4699e+0 (1.80e-1)  1.3161e+0 (2.21e-2)  1.3053e+0 (6.78e-2) 3.5312e-1 
(5.52e-2)  

8.2920e-1 
(1.34e-1)  

2.4392e+0 
(1.59e-1) 

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

10 100 2.4971e+0 (1.00e-1)  2.1831e+0 (4.36e-2)  1.8884e+0 (4.26e-2) 3.2983e-1 
(1.22e-1)  

1.0605e+0 
(5.55e-2)  

3.7997e+0 
(3.95e-1) 

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

Average Friedman Rank 
test value 48.15 70.38 81.50 40.75 82.04 77.8 55.25 22.22 25.92 
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4.2.1. Algorithmic Complexity 
  
This section addresses the computational complexity of three optimizers in terms of the average running time of 30 
independent trials. Table 2 summarizes the average CPU time to implement the trial. It clearly shows that due to the reference 
point strategy in the MaOTLBO algorithm, the CPU time of the MOEA/D-DRA and NSGA-III algorithms are higher than 
the suggested MaOTLBO algorithm, which means that the proposed MaOTLBO algorithm is less complicated than the 
MOEA/D-DRA and NSGA-III algorithms. 
 
Table 2 
CPU/RUN time comparison based on DTLZ1-DTLZ9 5, 7, 10-objectives test benchmarks 

Problem M D 
RT (Minutes) 

MaOTLBO NSGA-III MOEA/D-DRA 

DTLZ1 
5 9 4.7296e-1 (1.50e-2) 8.7804e-1 (3.13e-1) 2.4932e+0 (1.50e-1) 
7 11 4.9314e-1 (1.32e-2) 7.4806e-1 (3.28e-2) 2.4491e+0 (4.40e-2) 

10 14 5.2553e-1 (2.68e-2) 1.0907e+0 (2.93e-2) 2.4192e+0 (9.12e-3) 

DTLZ2 
5 14 5.1360e-1 (1.04e-2) 6.9933e-1 (3.52e-2) 2.3663e+0 (6.54e-3) 
7 16 5.2749e-1 (3.21e-3) 7.2468e-1 (1.84e-2) 2.4014e+0 (1.96e-2) 

10 19 5.7693e-1 (1.18e-2) 9.5408e-1 (1.43e-1) 2.3908e+0 (1.08e-2) 

DTLZ3 
5 14 5.0084e-1 (9.87e-3) 7.0065e-1 (7.82e-3) 2.4338e+0 (1.55e-2) 
7 16 5.3065e-1 (1.69e-2) 7.6244e-1 (4.43e-2) 2.4777e+0 (1.14e-2) 

10 19 5.9451e-1 (4.96e-2) 1.1463e+0 (1.03e-1) 2.4507e+0 (9.28e-3) 

DTLZ4 
5 14 5.1780e-1 (9.19e-3) 1.0433e+0 (7.85e-2) 2.4292e+0 (4.65e-3) 
7 16 5.2968e-1 (2.61e-3) 8.2475e-1 (1.71e-1) 2.4578e+0 (1.50e-2) 

10 19 5.9166e-1 (2.16e-2) 1.0718e+0 (2.41e-1) 2.4544e+0 (2.16e-2) 

DTLZ5 
5 14 3.9972e-1 (4.88e-3) 9.8758e-1 (1.95e-2) 2.4719e+0 (1.34e-2) 
7 16 4.2943e-1 (3.07e-2) 1.0549e+0 (1.09e-2) 2.5010e+0 (2.00e-2) 

10 19 4.6936e-1 (2.16e-2) 1.2188e+0 (2.22e-3) 2.4843e+0 (2.15e-3) 

DTLZ6 
5 14 4.7261e-1 (1.35e-2) 7.1473e-1 (1.05e-2) 2.5047e+0 (1.25e-2) 
7 16 5.0919e-1 (1.17e-3) 8.1703e-1 (1.14e-1) 2.5398e+0 (1.05e-2) 

10 19 5.2672e-1 (1.58e-2) 1.1744e+0 (4.73e-2) 2.5291e+0 (7.13e-3) 

DTLZ7 
5 24 4.6978e-1 (5.43e-2) 1.0163e+0 (1.70e-2) 2.4048e+0 (3.51e-2) 
7 26 4.3798e-1 (1.49e-3) 1.0092e+0 (1.15e-2) 2.4226e+0 (2.95e-3) 

10 29 5.0459e-1 (2.64e-3) 1.1973e+0 (2.95e-2) 2.4020e+0 (4.99e-3) 

DTLZ8 
5 50 5.4945e-1 (3.01e-2) 9.4922e-1 (8.15e-3) 3.0080e+0 (1.75e-2) 
7 70 5.9160e-1 (5.77e-3) 1.0822e+0 (2.29e-2) 3.2497e+0 (1.03e-2) 

10 100 7.3873e-1 (1.67e-2) 1.3636e+0 (1.68e-2) 3.5579e+0 (1.34e-2) 

DTLZ9 
5 50 5.6509e-1 (8.67e-3) 9.6312e-1 (4.28e-2) 2.7862e+0 (1.59e-2) 
7 70 6.1995e-1 (4.36e-3) 1.1960e+0 (1.29e-2) 2.9677e+0 (1.20e-2) 

10 100 7.8097e-1 (1.10e-2) 1.5602e+0 (1.56e-2) 3.1476e+0 (9.43e-3) 

4.3. MaO-OPF Problem on IEEE-30 Bus System 

On the IEEE 30-bus network, six objective cases are executed. Reference (Davoodi et al., 2018) offers the framework and 
information, including the operational range of dependent variables. The techniques, such as MaOTLBO, MOEA/D-DRA, 
and NSGA-III, optimizes all six objective functions, including TFC, TE, APL, RPL, VMD, and VSI in the IEEE-30 bus 
system. The normalized PFs obtained by all algorithms are shown in Fig. 8. Table 3 lists the Compromise Solutions (CS) 
control solutions. Table 3 lists the best values of all objective functions concerning individual objectives. It is not hard to find 
the CS solution, results of the proposed MaOTLBO optimizer with 914.74 $/h, 0.209 $/h, 3.96 MW, 2.09 MW, 0.250 P.U., 
and 0.140 P.U. dominates the CS solutions attained by the NSGA-III and MOEA/D-DRA approach. In 30 independent runs, 
the number of optimal solutions does not violate any device constraints, and it can be visualized in Fig. 8. Fig. 8 also shows 
the functionality that the optimizers, such as MOEA/D-DRA and NSGA-III, ensure that all solutions achieve the system 
constraints, whereas the MaOTLBO PF optimizer achieves a higher standard. In addition, in other case results, Table 3 offers 
comparative findings. This suggests that the MOEA/D-DRA and NSGA-III optimizers are dominated by the CS solution of 
the proposed MaOTLBO optimizer. Moreover, the MOEA/D-DRA algorithm is not superior to other optimizers seen in Table 
3. Subsequently, the proposed MaOTLBO algorithm has 66.6 % great promise on CS and 83.33 % on other solutions. The 
GD metric results are illustrated in Table 4, MaOTLBO found a least 158.0 value in the Friedman rank test value, followed 
by MOEA/D-DRA and NSGA-III. Therefore, MaOTLBO has an improved convergence quality as per FRT at a 95% 
significance level. For the SP measure, according to Table 4, the Friedman rank test value specifies the top rank of 148.0 by 
MaOTLBO and, therefore, at a 95% significance level, displays its improved coverage quality. Moreover, The HV metric 
results are illustrated in Table 4, from which Friedman assigned the rank of 345.0, 284.0, and 172.0 to the MaOTLBO, NSGA-
III, and MOEA/D-DRA techniques, respectively. Henceforth at FRT 95% significance level, MaOTLBO outperforms others 
by signifying its best solution density in the closeness of the true PF. Figure 9 provides a thorough illustration of the suggested 
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MaOTLBO technique's quantitative superiority over competitors in the shape of all examined performance metric 
convergence graphs. 

   

Fig. 8. Obtained Pareto front with normalization on MaO-OPF 6-objective problem using MaOTLBO, NSGA-III, and 
MOEA/D-DRA algorithms 

Table 3  
The control variables and objective functions of CS solutions for the IEEE-30 bus test system 

Variables 
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PG2 (MW) 60.43601 56.65992 60.4193366 Functions Total Fuel Cost (TFC) Voltage Magnitude Dev. (VMD) 

PG5 (MW) 47.58379 40.80347 47.2180073 TFC 800.6738 820.89 817.2053721 841.8438 841.5732 849.6248878 

PG8 (MW) 34.97247 35 34.9612129 TE 0.359806 0.304158 0.325013495 0.279707 0.284201 0.238684013 

PG11 (MW) 29.91455 24.24042 29.7861883 APL 8.893769 6.914709 7.757423551 6.884539 6.40032 5.264474635 

PG13 (MW) 35.81712 40 35.8171555 RPL 18.45555 11.27402 13.58934173 17.38888 9.765217 6.863769447 

VG1 (p.u.) 1.041916 1.038859 1.04205224 VMD 0.838965 0.567971 0.319408549 0.17195 0.178242 0.205976875 

VG2 (p.u.) 1.031611 1.030801 1.03132543 VSI 0.13906 0.13908 0.140072937 0.150194 0.144502 0.143835511 
VG5 (p.u.) 1.007442 1.034171 1.00584232 Functions Total Emission (TE) Voltage Stability Index (VSI) 
VG8 (p.u.) 1.013441 1.002086 1.01313574 TFC 941.8844 937.6949 945.329345 822.3537 856.7966 856.7965768 

VG11 (p.u.) 1.020745 1.054201 1.02058281 TE 0.205166 0.206933 0.205568737 0.271481 0.228175 0.228175461 

VG13 (p.u.) 1.026657 1.027241 1.02597004 APL 3.924866 3.707104 3.418388194 6.418627 4.92595 4.92594989 

QC10 (p.u.) 4.809894 2.484137 4.80963167 RPL 7.17109 0.404287 -0.491170429 12.95678 4.425922 4.425921581 

QC12 (p.u.) 3.150379 3.294389 3.47840278 VMD 0.387014 0.274065 0.597594437 0.737127 0.803028 0.803027573 

QC15 (p.u.) 0.805178 2.712811 1.17569263 VSI 0.155239 0.150991 0.139092296 0.138131 0.13699 0.136989903 

QC17 (p.u.) 3.901862 1.090576 3.90725093 Functions Active Power Loss (APL)   

QC20 (p.u.) 4.996929 3.183535 4.9558703 TFC 964.823 932.9007 946.208433 

 

QC21 (p.u.) 4.486818 5 4.83495557 TE 0.20768 0.208417 0.205906752 

QC23 (p.u.) 2.185575 3.075992 2.1810672 APL 3.178643 3.477864 3.403469891 

QC24 (p.u.) 4.200848 0.175253 4.20036123 RPL -2.3356 -0.63849 -0.777808832 

QC29 (p.u.) 0.825134 4.718168 0.82502687 VMD 0.836485 0.636616 0.548665147 

T11 (p.u.) 1.007435 0.968016 1.00754796 VSI 0.140888 0.144887 0.144280934 

T12 (p.u.) 0.98493 0.941558 0.98509194 Functions Reactive Power Loss (RPL)  

T15 (p.u.) 0.998801 1.004147 0.99910298 TFC 964.823 932.9007 930.1614881 

 

T36 (p.u.) 0.916084 0.963897 0.91607704 TE 0.20768 0.208417 0.206759783 

TFC ($/h) 914.7458 886.3372 912.951913 APL 3.178643 3.477864 3.515600257 

TE ($/h) 0.209845 0.218696 0.21018585 RPL -2.3356 -0.63849 -0.97875683 

APL (MW) 3.962355 4.940211 3.98946254 VMD 0.836485 0.636616 0.711549733 

RPL (MW) 2.091679 5.001994 2.17628383 VSI 0.140888 0.144887 0.145993613 

VMD (P.U.) 0.250385 0.246042 0.24872065   
VSI (P.U.) 0.140282 0.145996 0.1403291 
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Fig. 9. GD and HV versus the number of function evaluations curve using MaOTLBO, NSGA-III, and MOEA/D-DRA 
optimizers 

Table 4  
The GD, SP, Friedman rank test, and HV comparison based on the MaO-OPF problem using MaOTLBO, NSGA-III, and 
MOEA/D-DRA optimizers 𝑮𝑫 (𝑪𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆) 𝑴𝒆𝒕𝒓𝒊𝒄 𝑷𝒓𝒐𝒃𝒍𝒆𝒎  𝑫 NSGA-III MOEA/D-DRA MaOTLBO 

MaO-OPF 2 25 6.1147e-4 (5.19e-4)  1.4260e-3 (1.65e-4)  4.3464e-4 (2.53e-5) 
Friedman Rank test value 158.0 184.0 112.0 𝑺𝑷 (𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆) 𝑴𝒆𝒕𝒓𝒊𝒄 
MaO-OPF 2 25 1.1227e-2 (1.99e-3)  6.5756e-3 (4.97e-4)  6.2299e-3 (6.39e-4) 
Friedman Rank test value 225.3 174.0 148.0 𝑯𝑽 (𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚) 𝑴𝒆𝒕𝒓𝒊𝒄 
MaO-OPF 2 25 7.1273e-1 (5.17e-3)  7.0280e-1 (1.69e-3)  7.1527e-1 (2.87e-4) 
Friedman Rank test value 284.0 172.0 345.0 

When used in conjunction with a compatible algorithm, a proper constraint handling method can push the search procedure 
towards a feasible global solution by using the data in the infeasible solutions. The most popular constraint-handling technique 
is hybrid, which adds a penalty to the objective function value of an unrealistic solution for breaching the constraints. Despite 
its straightforwardness and ease of application, the effectiveness of the sum of constraint violations using NSGA-III, 
MOEA/D-DRA, and MaOTLBO for application cases is shown in Figure 10. According to Figure 10, MaOTLBO obtained 
the best results in a few function evaluations compared to NSGA-III and MOEA/D-DRA algorithms because MaOTLBO 
includes historical data from previous iterations in the generation of offspring and parameterless optimizer. 

5. Conclusion 
 

This paper has developed a new MaOTLBO algorithm based on the reference point strategy to deal with the DTLZ benchmark 
with 5, 7, and 10 objectives and MaO-OPF problems with many objectives and strict constraints. All six objective functions 
are carried out on electric power systems to optimize the TFC, TE, APL, RPL, VMD, and VSI. Various findings from the 
simulation indicate that the MaOTLBO algorithm is more favorable to finding superior PFs with uniform spread and 
compromise solutions with zero constraint violation than MOEA/D-DRA and NSGA-III algorithms. In high-dimensional 
optimization problems, the benefits of the proposed MaOTLBO algorithm are evaluated by considering the DTLZ test suite 
with 5, 7, and 10 objectives and IEEE-30 test systems. The performance metrics, such as GD (Convergence Metric), SP 
(Coverage Metric), HV (Diversity Maintenance), and statistical significance Friedman Rank test for 30 independent runs also 
confirm that for large-scale electrical systems and DTLZ benchmark with 5, 7, 10 objectives, the MaOTLBO optimizer is 
capable of obtaining optimal PFs with promising diversity, and superior convergence and coverage. Thus, it is noticed that 
the proposed MaOTLBO algorithm can solve a highly constrained many-objective OPF problem. In the future, the proposed 
MaOTLBO algorithm can also be directly applied to larger power systems, such as the IEEE-57 bus and IEEE-118 bus 
systems.  
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Fig. 10. Sum of constraints violations versus the number of function evaluations curve using MaOTLBO, NSGA-III, and 
MOEA/D-DRA optimizers 

What makes the MaOTLBO optimizer the most effective? Here's a quick rundown of the factors at play. The MaOTLBO 
includes historical data from previous iterations in the generation of offspring and a parameterless optimizer. Because the 
individuals chosen in this model are chosen at random or in a predetermined manner rather than the optimal individuals in the 
population, the individuals chosen may be bad or good. The fast convergence speed reduces the algorithm's convergence 
speed and prevents it from falling into a local optimum. Furthermore, the algorithm's diversity is increased by selecting the 
population randomly, resulting in a Higher HV value. The higher the HV value, the better the diversity and convergence are. 
The algorithms MaOTLBO proposed in this paper are significantly better than the original NSGA-III and MOEA/D-DRA 
regarding diversity and convergence. Moreover, as the suggested methodology is the first of its kind, its further application in 
real-world problems is interesting. 
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