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 Metaheuristic algorithms are easy, flexible and nature-inspired algorithms used to optimize 
functions. To make metaheuristic algorithms better, multiple algorithms are combined and 
hybridized. In this context, a hybrid algorithm (HSSAOA) was developed by adapting the 
exploration phase of the arithmetic optimization algorithm (AOA) to the position update part of the 
salp swarm algorithm (SSA) of the leader salps/salps. And also, there have also been a few new 
additions to the SSA. The proposed HSSAOA was tested in three different groups using 22 
benchmark functions and compared with 7 well-known algorithms. HSSAOA optimized the best 
results in a total of 16 benchmark functions in each group. In addition, a statistically significant 
difference was obtained compared to other algorithms. 
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1. Introduction 

 
Optimization is the process of bringing the problem or problems in the sciences or social sciences closest to the desired 
result..When optimizing problems, constraints and certain limits can be introduced. The result obtained in the optimization 
process is not always the lowest result. According to the type of problem, the best case may be the highest result (Tarik et al.,  
2016; Wright, 2022; Yang & Deb, 2015). In order to reach the best approach to the solution in optimization problems, 
algorithms are used in which operations are performed step by step. These algorithms are of two types, deterministic and 
stochastic algorithms. (Yang, 2010a; Britannica, 2022). When deterministic algorithms are used in the solution of problems, 
exact and same values are obtained as a solution. The process is short. However, there is a high probability of getting stuck in 
the local optimum. When the same problem is solved using a stochastic algorithm, different solutions are obtained each time. 
Even if it takes longer to reach the best solution in stochastic algorithms than deterministic algorithms, using randomness in 
the search process ensures that the local optimum is not caught and a better global solution is obtained. (Brownlee, 2021; 
Friedrich, 2022; Kochenderfer & Wheeler, 2019; Sergeyev et al.,  2017; Yang, 2010a). Stochastic algorithms have many 
subcategories, and metaheuristic algorithms are at the top of these categories. Metaheuristic algorithms are simple, easy, 
adaptable to all kinds of problems, and non-derivative. Metaheuristic algorithms have been developed by researchers in 
categories such as physics, biology, swarm, evolutionary-based (Mirjalili et al., 2014; Sharma & Tripathi, 2022). Examples 
of today's popular metaheuristic algorithms are Arithmetic optimization algorithm (AOA), salp swarm algorithm (SSA), 
particle swarm optimization algorithm (PSO), genetic algorithm (GA), firefly algorithm (FFA), cuckoo search algorithm (CS) 
and jaya algorithm (JAYA) can be given (Abualigah et al.,  2021; Dede et al.,  2020; Holland, 1992; Kennedy & Eberhart, 
2007; Mirjalili et al.,  2017; Rao, 2016; Yang & Deb, 2009; Yang, 2010b). 
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A hybrid algorithm is a type of algorithm created using a cooperative or integrative structure, which is one of the hybrid 
algorithm types of two or more algorithms. Algorithms included in the hybrid algorithm in a cooperative structure try to 
optimize the problem by working in parallel or sequentially. In the integrative structure, the structure is created by adding or 
editing the part or code of one algorithm to the structure of the other algorithm. The integrative algorithm created in the new 
situation is expected to optimize the problem in the best way (Talbi, 2002; Ting et al.,  2015; Yılmaz et al.,  2022a). 
Researchers can develop hybrid algorithms using one or more of the above models.  
 
Some of the reasons why researchers developed hybrid algorithms are as follows: 
 
Exploration and exploitation stages are of great importance in metaheuristic algorithms. Exploration is the stage in which 
solutions are determined so that the problem can reach the global optimum in the search space. Exploitation, on the other 
hand, is the process of choosing the best solution from the discovery. The process done in the exploitation stage is also more 
limited due to the discovery stage, that is, it is also expressed as the stage of reaching the local optimum. In principle, the 
exploration-exploitation pair should work in harmony in metaheuristic algorithms. Otherwise, this situation affects the 
performance of the algorithm. Therefore, it is necessary to reconsider the exploration and exploitation stages of the algorithm 
(Alba & Dorronsoro, 2005; Akyol, 2021; Črepinšek et al., 2013). For example, an algorithm that is weak in terms of 
exploration can become more efficient by using the exploration phase of a different algorithm, that is, by hybridizing it.  
 
According to the No Free Lunch (NFL) theorem, not all problems can be solved by adhering to just one algorithm. While an 
algorithm may reach the closest results to the solution in some problems, it may not achieve the desired result in others. The 
method of the algorithm developed to solve a problem may lead to the opposite (undesirable) results in solving the other 
problem (Wolpert & Macready, 1997). However, using two or more algorithms as cooperative or integrative hybrids can 
contribute to better optimization of more problems. 
 
Some of the current hybrid metaheuristic algorithm researches in the literature are as follows: 
 
Şenel et al. (2019) implemented a new hybrid algorithm by placing the exploitation part of the PSO in the exploration phase 
of the grey wolf optimizer (GWO). The developed hybrid algorithm has been tested on benchmark functions, process 
flowsheeting problem, parameter estimation for frequency modulated sound waves and leather nesting problem. They found 
that the hybrid algorithm was successful compared to the algorithms they compared. Baş (2021) performed the hybrid process 
using the tree seed algorithm (TSA) in order for AOA to achieve more successful results. It used TSA's seed production 
method in the random walking phase of AOA and led to the generation of new candidate solutions. The performance of the 
hybrid algorithm has been compared first with AOA and then with well-known heuristic algorithms. 13 constrained 
optimization problems were used in the comparison process. The researcher stated that the hybrid algorithm was successful 
compared to other algorithms and obtained a statistically significant difference. Ramesh & Manavalan (2021) developed a 
hybrid algorithm (SSOAGOA) using SSA and grasshopper optimization algorithm (GOA). The developed algorithm was 
used as a feature selection method to determine the necessary properties to diagnose prostate cancer. SSA hybridized with 
PSO, GA, GOA, ant colony algorithm (ACO) and whale optimization algorithm (WOA) were used to compare the results. 
The properties of the features obtained from the hybrid algorithm were sent to the machine learning classifiers. According to 
the experimental results obtained from the classification algorithms, it has been determined by the researchers that feature 
selection with SSOAGOA is more successful than other hybrid algorithms. Wang et al. (2021), created a new hybrid algorithm 
using aquila optimizer (AO) and harris hawks optimizer (HHO). The hybrid algorithm used in solving 23 benchmarking 
problems and 4 industrial engineering design problems was compared with 5 algorithms. As a result, the researchers 
determined that the hybrid algorithm is more successful than other algorithms. Yılmaz et al. (2022b) trained the learning 
processes of multilayer perceptrons with a hybrid algorithm they prepared using multiverse optimization algorithm (MVO) 
and simulated annealing algorithm (SA). They used 12 data sets in their experimental studies. The researchers compared the 
experimental analysis results with the results obtained from the multilayer perceptron trained with 12 algorithms. As a result, 
they determined that the hybrid algorithm achieved superior and successful results compared to other algorithms. 
 
Purpose of this study is to develop a new hybrid algorithm (HSSAOA) with high performance and accuracy, minimized error 
rate, and statistically proven success by using SSA and AOA. With HSSAOA, which is an integrative hybrid algorithm type, 
the exploration phase of AOA is adapted to a part of SSA. It is thought that HSSAOA, which is tested in optimizing benchmark 
functions, will be a more successful hybrid algorithm than SSA, AOA and other popular metaheuristic algorithms used in the 
study. 
 
The contents of the article are explained in 5 sections and these contents are as follows:  
 
In Section 1 (Introduction), information about optimization, algorithm, deterministic and stochastic algorithm, metaheuristic 
algorithm, hybrid algorithm and its types, current researches in the literature with hybrid algorithm and purpose of the study 
were explained.   
 
In Section 2 (Overview), the SSA and AOA used in the development of the HSSAOA were described. 
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In Section 3 (Proposed Hybrid Algorithm) HSSAOA, which consists of hybridizing SSA and AOA, was mentioned. The flow 
diagram of the developed hybrid algorithm and its equations adapted according to the new situation were given.   
 
In Section 4 (Experimental Results), information was given about which algorithms were used in comparison, benchmark 
(unimodal and multimodal) functions used in comparison analysis, number of search agents/iterations/independent runs and 
parameters of algorithms. Then, comparison results of algorithms, logarithmic convergence curves and statistical results were 
included.  
 
In Section 5 (Conclusions and Future Studies), the success of the developed HSSAOA was discussed. In addition, information 
was given about the suggestions that will guide researchers who want to deal with HSSAOA in the future. 
 
2. Overview 
 
2.1. SSA 
 
SSA was developed by Mirjalili et al. (2017), taking into account the lifestyle and food supply system of salp live’s. Salps are 
transparent, like a jelly-fish and lead their lives in chains at deeps in the seas and oceans. There are leader and follower salps 
in the structure of each salp swarm. The leader is responsible for finding the food. The follower salps follow the leader salp 
and supply their own food. The leader salp updates its position each time it approaches the food. The follower salps update 
their position depending on the leader. In SSA, during the exploration process, it is tried to find the positions where the food 
is in the search space, while in the exploitation process, the existing positions are compared with the neighboring positions to 
determine the best position to reach the food from these (Bairathi & Gopalani, 2019; Faris et al., 2020; Mirjalili et al.,  2017).  
 
Mirjalili et al. (2017) explained the mathematical expressions of the salp swarm algorithm as follows;  
 
The positions of the salps are held in an 𝑆𝑎𝑙𝑝𝑃 matrix of size 𝑁x𝑑 (search agent x search space). First, the positions of the 
salps are randomly assigned in the 𝑙𝑏 − 𝑢𝑏 (lower bound-upper bound) range determined at the beginning. Eq. (1) contains 
the mathematical expression in which the leader's position is updated.  
 𝑆𝑎𝑙𝑝𝑃௝ଵ = ቐ𝐹𝑜𝑜𝑑𝑃௝ + 𝑐ଵ x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x 𝑐ଶ + 𝑙𝑏௝ቁ𝐹𝑜𝑜𝑑𝑃௝ − 𝑐ଵx ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x 𝑐ଶ + 𝑙𝑏௝ቁ ቑ                                     𝑐ଷ ≥ 0,5                                   𝑐ଷ < 0,5  (1)

 
According to this equation, 𝑆𝑎𝑙𝑝𝑃௝ଵ is the leading salp position, 𝐹𝑜𝑜𝑑𝑃௝ is the information of the food position in the  𝑗௧௛ 
dimension, 𝑙𝑏௝ is the lower bound of the 𝑗௧௛ dimension, 𝑢𝑏௝ is the upper bound of the 𝑗௧௛ dimension and 𝑐ଶ-𝑐ଷ are a random 
number between 0 and 1. In the first article about SSA, the 𝑐ଷ value is 0. In this case, a part of the equation cannot be used. 
Therefore, in a study in which Mirjalili is among them, the value of 𝑐ଷ is given as 0.5 and it is included in the equation in this 
way (Faris et al., 2020; Mirjalili et al., 2017). The 𝑐ଵ parameter is one of the main values for Eq.(1). It equilibrates the 
exploration and exploitation phase, which is calculated as in Eq.(2)  
 𝑐ଵ = 2𝑒ିቀర೔೟ೝಾ೔೟ೝቁమ (2)
According to this equation, the term 𝑒 represents the euler number, 𝑖𝑡𝑟 equals the current iteration value and 𝑀𝑖𝑡𝑟 equals the 
maximum iteration value. In Eq.(3), there is a position update of the follower salps. According to this equation, 𝑆𝑎𝑙𝑝𝑃௝௜ represents the follower salp  and  𝑆𝑎𝑙𝑝𝑃௝௜ିଵ represents the previous follower salp. 
 𝑆𝑎𝑙𝑝𝑃௝௜ = (𝑆𝑎𝑙𝑝𝑃௝௜ + 𝑆𝑎𝑙𝑝𝑃௝௜ିଵ)/2  (3)
 
In the literature, there are SSA studies using multiple leader salp instead of a single leader salp. The use of multiple leader 
salp structure increased the randomness in the algorithm and positively affected the algorithm. However, this situation had a 
negative effect by increasing the instability of the algorithm. Some researchers have proposed an algorithm structure in which 
the leader (N/2) and follower (N/2) salps are accepted as half and half in order to benefit from the positive aspect of this 
situation and to be less affected by the negative aspects (Wang et al.,  2018; Zhang et al.,  2019). In addition, this situation is 
also seen in the codes of the researchers who developed the SSA (Faris et al.,  2016a; Mirjalili, 2018). Fig.1 shows the flowchart 
of the SSA prepared according to multiple leader salp. In this study, multiple leader salp structures were used for SSA and 
HSSAOA. 
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Fig. 1 Flowchart of SSA -based on multiple leader salps- (Faris et al.,  2016a; Mirjalili, 2018; Wang et al.,  2018; Zhang et al.,  2019) 
 

2.2. AOA 
 
Developed by Abualigah et al. (2021), AOA is a population-based, structurally simple metaheuristic algorithm that updates 
its solutions through mathematical operators in the exploration and exploitation stages. In the exploration phase, using 
multiplication and division based equations, it searches for solutions in the search space of the problem by means of search 
agents without falling into the local optimum trap. In the exploitation phase, it provides to improve the solutions obtained in 
the exploration phase with addition and subtraction based equations. 
 
Abualigah et al. (2021) explained the algorithmic steps of AOA as follows: 
 
Initially, an 𝑥 matrix of size 𝑁x𝑑 (search agent x search space) is created in which the candidate solutions are held. Random 
values are assigned to this 𝑥 matrix within the specified range 𝑙𝑏 − 𝑢𝑏 (lower bound - upper bound). Values are assigned to 
the parameters required for the algorithm. The Math Optimizer Accelerated (𝑀𝑂𝐴) function in Eq. (4) is used for the selection 
of the exploration or exploitation search phase of the algorithm. The value calculated from the 𝑀𝑂𝐴 function is a value that 
increases incrementally from 0.2 to 0.9 during the iteration. 
 𝑀𝑂𝐴 (𝑖𝑡𝑟) = 𝑚𝑖𝑛 + 𝑖𝑡𝑟 x (𝑚𝑎𝑥 −𝑚𝑖𝑛)/𝑀𝑖𝑡𝑟 (4)
 
In this equation 𝑀𝑂𝐴(𝑖𝑡𝑟) represents the value of the current iteration of the 𝑀𝑂𝐴 function, 𝑖𝑡𝑟 equals the current iteration 
value, 𝑀𝑖𝑡𝑟 equals the maximum iteration value, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 values represent the minimum and maximum values that the 𝑀𝑂𝐴 function can take. The result obtained from this function should be calculated before the algorithm starts the processing 
process. The result is compared with a random value (𝑟ଵ) from 0-1 range.  
 
If 𝑟ଵ is greater than the 𝑀𝑂𝐴 function result, the exploration phase works. In the exploration phase, solutions are calculated 
using Eq. (5).  
 𝑥௝௜(𝑖𝑡𝑟 + 1) = ቐ𝐷 = 𝑏𝑒𝑠𝑡൫𝑥௝൯ / (𝑀𝑂𝑃 + 𝜖) x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x µ + 𝑙𝑏௝ቁ𝑀 = 𝑏𝑒𝑠𝑡൫𝑥௝൯ x 𝑀𝑂𝑃 x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x µ + 𝑙𝑏௝ቁ                         𝑟ଶ ൐ 0,5𝑟ଶ ≤ 0,5ቑ (5)

 
According to this equation, 𝑥௝௜(𝑖𝑡𝑟 + 1) is the value of the next solution of the 𝑗௧௛ position of the 𝑖௧௛ solution, 𝑏𝑒𝑠𝑡൫𝑥௝൯ is the 
best solution of 𝑥 in the 𝑗௧௛ position, 𝑙𝑏௝ and 𝑢𝑏௝ are the lower and upper bounds at the 𝑗௧௛ position, 𝜖 parameter is a small integer 
value, parameter 𝑟ଶ is a random number between 0-1 and parameter μ is a constant value used to control the search process. If 𝑟ଶ 
is greater than 0.5, division arithmetic operator based equation (𝐷) is used, otherwise multiplication based arithmetic operator 
based equation (𝑀) is used. The Math Optimizer (𝑀𝑂𝑃) value is calculated as in Eq. (6). 
 𝑀𝑂𝑃 = 1 − (𝑖𝑡𝑟ଵ/∝/𝑀𝑖𝑡𝑟ଵ/∝) (6)
 
According to this equation, 𝑖𝑡𝑟 equals the current iteration value, 𝑀𝑖𝑡𝑟 equals the maximum iteration value and ∝ represents 
an important and sensitive value. 
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If 𝑟ଵ  is less than or equal to the 𝑀𝑂𝐴 function result, the exploitation phase runs. In the exploitation phase, solutions are 
calculated using Eq. (7).  
 𝑥௝௜(𝑖𝑡𝑟 + 1) = ቐ𝑆 = 𝑏𝑒𝑠𝑡൫𝑥௝൯ −  𝑀𝑂𝑃 x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x µ + 𝑙𝑏௝ቁ                  𝑟ଷ ൐ 0,5𝐴 = 𝑏𝑒𝑠𝑡൫𝑥௝൯ + 𝑀𝑂𝑃 x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x µ + 𝑙𝑏௝ቁ                    𝑟ଷ ≤ 0,5            ቑ (7)

 
According to this equation, The 𝑟ଷ parameter is a random number between 0 and 1. If 𝑟ଷ is greater than 0.5, substraction 
arithmetic operator based equation (𝑆) is used, otherwise addition based arithmetic operator based equation (𝐴) is used. Other 
parameters ( 𝑥௝௜(𝑖𝑡𝑟 + 1), 𝑏𝑒𝑠𝑡൫𝑥௝൯, 𝑀𝑂𝑃, 𝑢𝑏௝, 𝑙𝑏௝ and µ ) are used as in Eq. (5). Fig.2 shows the flowchart of the AOA. 
 

 
 

Fig. 2. Flowchart of AOA (Abualigah et al., 2021) 
 
3. Proposed Hybrid Algorithm (HSSAOA) 
 
In this developed algorithm, some changes have been made in the update method of the leader salps/salps. The division and 
multiplication arithmetic operator-based equations in the exploration phase of AOA have been adapted to replace the equations 
required for the leader update of the SSA. The 𝑀𝑂𝐴 function, the 𝑚𝑎𝑥 and 𝑚𝑖𝑛 parameters of the 𝑀𝑂𝐴 function, and the ∝ 
and 𝜇 parameters are used in the hybrid algorithm as they are used in the AOA. As in SSA and AOA, 𝑖𝑡𝑟 and 𝑀𝑖𝑡𝑟 values are 
iteration and maximum iteration values, respectively. The way the algorithm works is as follows: 
 
First of all, the positions of the salps are randomly assigned as in the SSA. Initial parameters of SSA and AOA are defined. 
In order to compare the values obtained in the later stages of the algorithm, the (best) food position and accordingly the fitness 
value are calculated from the randomly assigned positions. Position update of leader salp/salps is as in Eq. (8). 
 𝑆𝑎𝑙𝑝𝑃௝௜ = ൞𝐷 = 𝐹𝑜𝑜𝑑𝑃௝ / ൬(𝑀𝑂𝑃௡௘௪/𝑐ଵ௡௘௪) x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x µ + 𝑙𝑏௝ቁ൰ 𝑀 = 𝐹𝑜𝑜𝑑𝑃௝ x ൬(𝑀𝑂𝑃௡௘௪/𝑐ଵ௡௘௪) x ቀ൫𝑢𝑏௝ − 𝑙𝑏௝൯ x µ + 𝑙𝑏௝ቁ൰                       𝑐ଶ < 𝑀𝑂𝐴𝑐ଶ ≥ 𝑀𝑂𝐴ൢ (8)
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According to this equation, 𝑆𝑎𝑙𝑝𝑃௝௜   represents the position of the leader salps (if the leader is one, "1" is used instead of 𝑖), 𝐹𝑜𝑜𝑑𝑃௝ 
represents the information of the food position in the  𝑗௧௛  dimension, 𝑙𝑏௝  represents the lower bound of the 𝑗௧௛  dimension, 𝑢𝑏௝  represents the upper bound of 𝑗௧௛ dimension and 𝑐ଶ represents a random number between 0 and 1. The use of 𝜇 parameter is the 
same as used in AOA. 𝑐ଵ௡௘௪ is an updated version of 𝑐ଵ in SSA and 𝑀𝑂𝑃௡௘௪ is an updated version of 𝑀𝑂𝑃 in AOA. The equation 
for 𝑐ଵ௡௘௪ is in Eq. (9) and the equation for 𝑀𝑂𝑃௡௘௪ is in Eq. (10).  
 𝑐ଵ௡௘௪ = 2𝑒ିቀర(೔೟ೝషభ)ಾ೔೟ೝ ቁమ (9)
 𝑀𝑂𝑃௡௘௪ = 1 − ൭(𝑖𝑡𝑟 − 1)భ∝𝑀𝑖𝑡𝑟భ∝ ൱ (10)

 

When the new equations are examined, iteration value (𝑖𝑡𝑟) has been updated as 𝑖𝑡𝑟 − 1, provided that it starts from 1. According 
to Eq. (8), if 𝑐ଶ is less than the value obtained from the 𝑀𝑂𝐴 function, the division arithmetic operator-based equation (𝐷) is used. 
If 𝑐ଶ is greater than and equal to the value obtained from the 𝑀𝑂𝐴 function, the multiplication arithmetic operator-based equation 
(𝑀) is used. The 𝑀𝑂𝐴 function is calculated according to Eq. (4). Position update of follower salps is as used in SSA (Eq. (3)). Fig. 
3 shows the flowchart of the HSSAOA prepared according to the multiple leader salp used in the study. 
 

 
 

Fig. 3. Flowchart of HSSAOA 
 
4. Experimental Results 
 
In order to determine the success of HSSAOA, it should be run by the number of determined search agents, the number of iterations 
and the number of independent tries and the results should be compared with other popular metaheuristic algorithms. In order for 
the results to be confirmed as successful, it should be determined that there is a statistically significant difference. In this study, 
HSSAOA and other popular metaheuristic algorithms (AOA, SSA, PSO, GA, FFA, CS and JAYA) were compared using a total of 
22 benchmark functions, 12 unimodal and 10 multimodal. Each algorithm was analyzed separately using the number of 30, 50 and 
100 search agents. The number of iteration used in the analysis was 100. Each algorithm was run 30 times independently for the 
number of search agents and iterations, and the averages and standard deviations of the results were calculated. In addition, the 
fitness values obtained by some optimized benchmark functions during the iteration are shown in the logarithmic convergence curve. 
In order to better understand the results of the mean and standard deviation of the benchmark function in the tables (Table3, 
Table 5 and Table 7), the results were normalized between 0 and 1 (Mirjalili et al.,  2017). In addition, the wilcoxon rank sum 
test, which is one of the non-parametric statistical tests, was applied to prove the statistical success of the successful algorithm 
compared to other algorithms (making a statistically significant difference). The algorithm that was successful as a result of 
each function was compared with other algorithms. In order for an algorithm to be statistically successful, that is, to express 
a statistically significant difference, it is required that the statistical result obtained ( 𝑝 ) be less than 5E-02 (Derrac et al.,  
2011; Mirjalili et al.,  2017). For the analysis of the algorithms, the EvoloPy framework, written in Python, which analyzes 
metaheuristic algorithms in areas such as optimization, clustering and artificial neural network, was used. AOA, which is not 
included in the EvoloPy framework, and the developed hybrid algorithm were adapted to this framework (Faris et al.,  2016a; 
Faris et al.,  2016b; Khurma et al.,  2020; Qaddoura et al.,  2020). In algorithms, there may be parameters calculated randomly 
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or with equations, as well as parameters with constant values. The values of the parameters (∝ and 𝜇) with constant values  in 
the AOA and HSSAOA, the values  written in the code of the AOA was used (Abualigah, 2022). Constant values parameters 
of other algorithms are the same as in the EvoloPy framework (Faris et al.,  2016a). Parameters with constant values according 
to the algorithms and their values are given in Table 1. 
 
 

Table 1 
Parameters, explanations and values of HSSAOA and other algorithms 
Algorithm Parameter Explanation Value 
HSSAOA The same as AOA 

AOA ∝ Important and sensitive parameter affecting the MOP function 5 𝜇 Parameter controlling the search process 0.499 
SSA No constant parameters 

PSO 

𝑉𝑚𝑎𝑥 Maximum particle velocity 6 𝑉𝑚𝑖𝑛 Minimum particle velocity − 𝑉𝑚𝑎𝑥 𝑤𝑀𝑎𝑥 Maximum value of inertia weight 0.9 𝑤𝑀𝑖𝑛 Minimum value of inertia weight 0.2 𝑐ଵ 1st acceleration coefficient 2 𝑐ଶ 2 nd acceleration coefficient 2 

CS 𝛽 Scale factor 1.5 𝑃௔ Discovery probability 0.25 

FFA 

𝛽௠௜௡ Minimum parameter of attractiveness 0.2 𝛾 Coefficent of absorption 1 ∝ Parameter of randomization 0.5 𝛽଴ Initial attractiveness parameter 1 

GA 
𝑘𝑒𝑒𝑝 Elitism rate 2 𝑐௣ Possibility of crossover 1 𝑚௣ Possibility of mutation 0.01 

JAYA No constant parameters 
 

The name and equation of the benchmark functions used in this study, modal type, lower bound (𝑙𝑏), upper bound (𝑢𝑏), 
dimension (𝑑𝑖𝑚) and default minimum fitness values (𝑓𝑚𝑖𝑛) are given in Table 2 (Fletcher & Powell, 1963; Gavana, 2013; 
Hussain et al.,  2017; Jamil & Yang, 2013; Naik et al.,  2016). 
 
Table 2 
Benchmark functions used in the study 
Function Name Equation 𝒍𝒃 𝒖𝒃 𝒅𝒊𝒎 𝒇𝒎𝒊𝒏 

Schwefel 1.2U 𝐹ଵ(𝑥) = ෍ቌ෍𝑥௝௜
௝ୀଵ ቍଶௗ

௜ୀଵ  -100 100 20 0 

Schwefel 2.20U 𝐹ଶ(𝑥) = ෍|𝑥௜|ௗ
௜ୀଵ  -100 100 20 0 

Schwefel 2.21U 𝐹ଷ(𝑥) = 𝑚𝑎𝑥|𝑥௜|.     1 ≤ 𝑖 ≤ 𝑑 -100 100 20 0 

Schwefel  2.22U 𝐹ସ(𝑥) = ෍|𝑥௜| + ෑ|𝑥௜|ௗ
௜ୀଵ

ௗ
௜ୀଵ  -100 100 20 0 

Schwefel 2.23U 𝐹ହ(𝑥) = ෍𝑥௜ ଵ଴ௗ
௜ୀଵ  -10 10 20 0 

StepU 𝐹଺(𝑥) = ෍(⌊|𝑥௜|⌋)ௗ
௜ୀଵ  -100 100 20 0 

Step 2U 𝐹଻(𝑥) = ෍(⌊𝑥௜ + 0,5⌋)ଶௗ
௜ୀଵ  -100 100 20 0 

MatyasU 𝐹 = 0,26(𝑥ଵ ଶ + 𝑥ଶ ଶ) − 0,48𝑥ଵ𝑥ଶ -10 10 2 0 

Wayburn Seader 1U 𝐹ଽ(𝑥) = (𝑥ଵ ଺ + 𝑥ଶ ସ − 17)ଶ + (2𝑥ଵ + 𝑥ଶ − 4)ଶ -5 5 2 0 

Sum SquaresU 𝐹ଵ଴(𝑥) = ෍𝑖𝑥௜ ଶௗ
௜ୀଵ  -10 10 20 0 

Sphere ModelU 𝐹ଵଵ(𝑥) = ෍𝑥௜ ଶௗ
௜ୀଵ  -5.12 5.12 20 0 

BrentU 𝐹ଵଶ(𝑥) = (𝑥ଵ + 10)ଶ + (𝑥ଶ + 10)ଶ + 𝑒ି(௫మା௬మ) -20 0 2 0 
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Table 2 
Benchmark functions used in the study (Continued) 
Function Name Equation 𝒍𝒃 𝒖𝒃 𝒅𝒊𝒎 𝒇𝒎𝒊𝒏 

RastriginM 𝐹ଵଷ = 10𝑑 + ෍ሾ𝑥௜ ଶ − 10cos (2𝜋𝑥௜)ሿௗ
௜ୀଵ  -5.12 5.12 20 0 

AckleyM 𝐹ଵସ(𝑥) = −20𝑒𝑥𝑝⎝⎛−0,2ඩ1𝑑෍𝑥௜ ଶௗ
௜ୀଵ ⎠⎞ − 𝑒𝑥𝑝 ൭1𝑑෍ cos(2𝜋𝑥௜)ௗ

௜ୀଵ ൱ + 20 + 𝑒𝑥𝑝(1) -32 32 20 0 

GriewankM 𝐹ଵହ(𝑥) = ෍ 𝑥௜ ଶ4000ௗ
௜ୀଵ −ෑ𝑐𝑜𝑠 ൬𝑥௜√𝑖൰ௗ

௜ୀଵ + 1 -600 600 20 0 

PathologicalM 𝐹ଵ଺(𝑥) = ෍൭0,5 + 𝑠𝑖𝑛ଶඥ100𝑥௜ ଶ + 𝑥௜ାଵ ଶ − 0,51 + 0,001(𝑥௜ ଶ − 2𝑥௜𝑥௜ାଵ + 𝑥௜ାଵ ଶ )ଶ൱ௗିଵ
௜ୀଵ  -100 100 20 0 

Price 4M 𝐹ଵ଻(𝑥) = (2𝑥ଵ ଷ𝑥ଶ − 𝑥ଶ ଷ)ଶ + (6𝑥ଵ − 𝑥ଶ ଶ + 𝑥ଶ)ଶ -500 500 2 0 

Helical ValleyM 

𝑥ଵ ≥ 0 ⇒ 𝜃 = ୟ୰ୡ୲ୟ୬ቀೣమೣభቁଶగ           𝑥ଵ < 0 ⇒ 𝜃 = ୟ୰ୡ୲ୟ୬ቀೣమೣభቁାగଶగ         
 𝐹ଵ଼(𝑥) = 100 ൥(𝑥ଷ − 10𝜃)ଶ + ቆට𝑥ଵ ଶ + 𝑥ଶ ଶ − 1ቇଶ൩ + 𝑥ଷ ଶ 

-10 10 3 0 

CsendesM 𝐹ଵଽ(𝑥) = ෍𝑥௜ ଺(2 +ௗ
௜ୀଵ 𝑠𝑖𝑛 1𝑥௜) -1 1 20 0 

Alpine 1M 𝐹ଶ଴(𝑥) = ෍|𝑥௜𝑠𝑖𝑛(𝑥௜ + 0,1𝑥௜)|ௗ
௜ୀଵ  -10 10 20 0 

AmgmM 𝐹ଶଵ(𝑥) = ൦1𝑛෍|𝑥௜| − ൭ෑ|𝑥௜|௡
௜ୀଵ ൱భ೙௡

௜ୀଵ ൪ଶ 0 10 20 0 

SalomonM 𝐹ଶଶ(𝑥) = 1 − 𝑐𝑜𝑠⎝⎛2𝜋ඩ෍𝑥௜ ଶௗ
௜ୀଵ ⎠⎞ + 0,1ඩ෍𝑥௜ ଶௗ

௜ୀଵ  -100 100 20 0 

U:Unimodal   M: Multimodal     
 

The results of the algorithms analyzed with different search agents, the same iteration and the number of independent runs 
were grouped and named. Named Group 1 for 30 search agents/100 iterations/30 independent runs, Group 2 for 50 search 
agents/100 iterations/30 independent runs, and Group 3 for 100 search agents/100 iterations/30 independent runs. Table 3 
contains the average and standard deviation results of the optimized benchmark functions according to Group 1. 
 
 

Table 3 
Normalized (0-1) average (Ave.) and standard deviation (Std.) results of optimized benchmark functions according to Group 1 𝑭𝒙 

HSSAOA SSA AOA PSO GA FFA CS JAYA 
Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. 𝐹ଵ   0.00E+00 0.00E+00 1.76E-01 2.97E-01 3.35E-07 6.89E-07 1.19E-02 1.37E-02 1.00E+00 7.48E-01 3.65E-01 5.11E-01 5.78E-01 4.78E-01 8.50E-01 1.00E+00 𝐹ଶ   0.00E+00 0.00E+00 2.83E-01 5.82E-01 2.13E-04 8.16E-04 8.18E-03 2.03E-02 1.00E+00 1.00E+00 8.77E-02 5.15E-01 6.97E-01 5.72E-01 8.42E-02 2.08E-01 𝐹ଷ   0.00E+00 0.00E+00 3.00E-01 6.02E-01 5.20E-04 2.27E-03 3.96E-02 1.31E-01 1.00E+00 1.00E+00 2.07E-01 8.58E-01 6.45E-01 6.31E-01 6.47E-01 8.81E-01 𝐹ସ   0.00E+00 0.00E+00 4.76E-08 6.46E-08 1.93E-19 3.38E-20 1.93E-16 4.78E-17 1.00E+00 1.00E+00 6.81E-09 1.02E-08 4.22E-03 2.81E-03 4.51E-06 5.60E-06 𝐹ହ   0.00E+00 0.00E+00 4.66E-06 7.25E-06 4.73E-38 1.62E-37 3.75E-07 5.61E-07 1.00E+00 1.00E+00 3.31E-08 8.29E-08 4.65E-03 4.12E-03 7.03E-04 9.06E-04 𝐹଺   0.00E+00 0.00E+00 2.56E-01 6.25E-01 2.36E-04 8.48E-04 8.52E-03 1.62E-02 1.00E+00 1.00E+00 6.66E-02 4.47E-01 7.36E-01 5.29E-01 9.33E-02 2.06E-01 𝐹଻   7.23E-04 0.00E+00 2.44E-02 4.18E-02 6.10E-04 3.64E-05 0.00E+00 8.19E-05 1.00E+00 1.00E+00 3.93E-04 3.12E-03 3.97E-01 3.45E-01 1.96E-02 5.58E-02 𝐹    2.89E-299 0.00E+00 9.17E-12 5.37E-12 0.00E+00 0.00E+00 1.36E-09 2.13E-09 1.00E+00 1.00E+00 4.10E-07 1.91E-07 5.28E-06 3.62E-06 2.37E-02 4.14E-02 𝐹ଽ   1.86E-01 1.62E-01 1.48E-04 3.73E-04 1.00E+00 1.00E+00 0.00E+00 0.00E+00 4.62E-03 4.94E-03 3.93E-06 1.06E-05 4.31E-05 4.67E-05 2.11E-04 4.18E-04 𝐹ଵ଴ 0.00E+00 0.00E+00 5.10E-02 8.51E-02 1.41E-09 5.38E-09 1.07E-02 1.04E-01 1.00E+00 1.00E+00 3.19E-02 8.22E-02 3.43E-01 2.73E-01 1.60E-02 4.53E-02 𝐹ଵଵ 0.00E+00 0.00E+00 3.43E-02 7.09E-02 1.37E-09 1.05E-08 2.13E-02 6.81E-02 1.00E+00 1.00E+00 5.08E-03 1.56E-02 3.74E-01 3.77E-01 2.10E-02 6.38E-02 𝐹ଵଶ 1.27E-01 1.32E-01 3.52E-13 2.77E-13 1.00E+00 1.00E+00 0.00E+00 0.00E+00 2.57E-03 2.53E-03 3.29E-09 2.55E-09 1.49E-08 1.45E-08 1.22E-02 7.41E-03 𝐹ଵଷ 0.00E+00 0.00E+00 3.14E-01 6.17E-01 1.35E-08 7.87E-08 7.81E-01 1.00E+00 8.05E-01 6.78E-01 4.95E-01 9.11E-01 1.00E+00 4.57E-01 8.66E-01 9.90E-01 𝐹ଵସ 0.00E+00 0.00E+00 3.90E-01 1.00E+00 1.93E-04 1.96E-03 1.13E-01 3.37E-01 1.00E+00 7.43E-01 1.29E-01 5.16E-01 9.09E-01 7.09E-01 3.47E-01 9.76E-01 𝐹ଵହ 0.00E+00 0.00E+00 4.42E-02 5.45E-02 1.81E-01 1.00E+00 1.64E-01 1.35E-01 1.00E+00 8.83E-01 3.75E-03 1.42E-02 3.68E-01 3.37E-01 3.86E-02 4.54E-02 𝐹ଵ଺ 0.00E+00 0.00E+00 8.18E-01 3.95E-01 2.84E-02 1.57E-01 8.88E-01 4.69E-01 7.88E-01 3.34E-01 9.36E-01 5.79E-01 1.00E+00 2.60E-01 6.50E-01 1.00E+00 𝐹ଵ଻ 0.00E+00 0.00E+00 1.32E-10 9.77E-11 7.06E-11 6.12E-11 1.21E-08 1.96E-08 1.00E+00 1.00E+00 6.87E-10 1.09E-09 5.66E-08 3.93E-08 6.54E-04 1.04E-03 𝐹ଵ଼ 1.00E+00 1.00E+00 2.23E-02 3.54E-02 8.80E-01 6.94E-01 0.00E+00 0.00E+00 1.28E-01 1.13E-01 1.02E-02 1.89E-02 3.25E-03 2.25E-03 1.11E-02 1.65E-02 𝐹ଵଽ 0.00E+00 0.00E+00 4.80E-04 1.15E-03 1.63E-25 1.12E-24 1.98E-02 4.55E-02 1.00E+00 1.00E+00 9.58E-03 1.49E-02 7.42E-02 7.79E-02 6.05E-03 1.32E-02 𝐹ଶ଴ 9.62E-150 1.39E-149 1.92E-02 2.16E-02 0.00E+00 0.00E+00 5.32E-05 8.72E-05 1.00E+00 3.32E-01 2.44E-03 1.12E-03 7.29E-02 2.48E-02 6.04E-01 1.00E+00 𝐹ଶଵ 0.00E+00 2.19E-33 1.71E-03 8.33E-04 4.33E-28 0.00E+00 3.04E-04 4.10E-04 6.25E-01 1.26E-01 1.00E+00 1.00E+00 2.30E-01 4.98E-02 2.17E-03 5.37E-04 𝐹ଶଶ   0.00E+00 0.00E+00 4.44E-01 7.05E-01 5.89E-03 2.87E-02 6.64E-02 7.47E-02 1.00E+00 1.00E+00 3.18E-01 7.81E-01 8.26E-01 7.17E-01 3.75E-01 6.65E-01 
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According to the results in Table 3, the hybrid algorithm was successful in a total of 16 benchmark functions. 8 of them were 
unimodal benchmark functions and the other 8 were multimodal benchmark functions. In the benchmark functions that 
HSSAOA was successful, the second successful algorithm was AOA with 15 benchmark functions. In benchmark functions 
where HSSAOA could not reach the best results, AOA (in 2 benchmark functions) and PSO (in 4 benchmark functions) 
achieved the best results. Other algorithms did not achieve the best results in any benchmark function. Table 4 shows the 
wilcoxon rank sum test results ( 𝑝 values ) of the analysis performed according to Group 1. 
 
Table 4 
According to Group 1, wilcoxon rank sum test 𝑝 values (N/A = not applicable) 𝑭𝒙   HSSAOA SSA AOA PSO GA FFA CS JAYA 𝐹ଵ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଷ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ସ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ହ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹଺   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹଻   5.77E-11 2.87E-11 2.87E-11 N/A 2.87E-11 9.19E-06 2.87E-11 2.87E-11 𝐹    2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଽ   2.87E-11 8.34E-04 2.87E-11 N/A 2.87E-11 8.49E-10 2.87E-11 2.98E-06 𝐹ଵ଴ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଵ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଶ 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଷ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵସ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵହ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଺ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଻ N/A 1.07E-06 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଼ 2.87E-11 6.98E-05 3.26E-03 N/A 2.87E-11 2.56E-03 6.24E-09 1.63E-04 𝐹ଵଽ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶ଴ 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଵ N/A 2.87E-11 5.32E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଶ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 
 
When Table 4 is examined, according to Table 3, HSSAOA, AOA and PSO algorithms have created a statistically significant 
difference compared to other algorithms with which they were statistically compared in benchmark functions they were 
successful. Table 5 contains the average and standard deviation results of the optimized benchmark functions according to 
Group 2. 
 
Table 5 
Normalized (0-1) average (Ave.) and standard deviation (Std.) results of optimized benchmark functions according to Group 2 𝑭𝒙 

HSSAOA SSA AOA PSO GA FFA CS JAYA 
Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. 𝐹ଵ   0.00E+00 0.00E+00 1.04E-01 1.25E-01 2.34E-07 6.30E-07 6.61E-03 6.37E-03 9.89E-01 6.16E-01 4.06E-01 4.76E-01 7.67E-01 3.82E-01 1.00E+00 1.00E+00 𝐹ଶ   0.00E+00 0.00E+00 2.16E-01 5.14E-01 1.93E-04 1.06E-03 5.12E-03 1.27E-02 1.00E+00 1.00E+00 5.06E-02 3.87E-01 8.73E-01 6.64E-01 7.45E-02 1.43E-01 𝐹ଷ   0.00E+00 0.00E+00 2.01E-01 4.28E-01 3.61E-04 1.68E-03 2.74E-02 4.62E-02 1.00E+00 8.55E-01 1.98E-01 1.00E+00 8.26E-01 7.15E-01 6.13E-01 9.26E-01 𝐹ସ   0.00E+00 0.00E+00 1.51E-09 1.09E-09 9.32E-18 2.19E-18 4.33E-15 1.57E-15 1.00E+00 1.00E+00 1.38E-03 1.87E-03 3.11E-01 2.03E-01 3.88E-12 4.78E-12 𝐹ହ   0.00E+00 0.00E+00 1.68E-07 2.38E-07 1.18E-41 1.06E-41 4.59E-08 9.69E-08 1.00E+00 1.00E+00 2.86E-09 6.57E-09 4.59E-02 2.67E-02 5.32E-04 7.98E-04 𝐹଺   0.00E+00 0.00E+00 2.01E-01 5.43E-01 1.83E-04 9.84E-04 5.01E-03 9.59E-03 1.00E+00 1.00E+00 5.50E-02 2.98E-01 9.13E-01 6.35E-01 7.75E-02 1.84E-01 𝐹଻   8.88E-04 2.77E-05 7.02E-03 1.82E-02 7.42E-04 1.10E-04 1.98E-05 2.64E-05 1.00E+00 1.00E+00 0.00E+00 0.00E+00 6.23E-01 6.00E-01 1.07E-02 2.19E-02 𝐹    1.74E-304 0.00E+00 1.01E-11 9.72E-12 0.00E+00 0.00E+00 1.79E-10 5.36E-10 1.00E+00 1.00E+00 1.06E-06 1.02E-06 7.46E-06 7.14E-06 3.57E-02 2.00E-01 𝐹ଽ   4.59E-01 2.94E-01 7.78E-04 2.00E-03 1.00E+00 1.00E+00 0.00E+00 0.00E+00 1.93E-02 1.35E-02 3.25E-08 2.52E-08 5.11E-05 3.88E-05 1.24E-02 4.41E-02 𝐹ଵ଴ 0.00E+00 0.00E+00 1.87E-02 4.84E-02 5.87E-10 4.24E-09 1.83E-03 4.71E-03 1.00E+00 1.00E+00 1.54E-02 5.01E-02 4.78E-01 4.33E-01 1.40E-02 4.15E-02 𝐹ଵଵ 0.00E+00 0.00E+00 5.87E-03 1.19E-02 2.02E-10 1.36E-09 1.41E-02 3.46E-02 1.00E+00 1.00E+00 2.73E-03 1.26E-02 6.29E-01 4.65E-01 1.24E-02 3.35E-02 𝐹ଵଶ 1.21E-01 1.97E-01 3.19E-13 2.97E-13 1.00E+00 1.00E+00 0.00E+00 0.00E+00 3.30E-03 3.48E-03 5.63E-09 5.99E-09 1.65E-08 2.13E-08 1.49E-02 1.29E-02 𝐹ଵଷ 0.00E+00 0.00E+00 2.19E-01 3.86E-01 1.00E-07 2.58E-06 7.47E-01 1.00E+00 7.44E-01 6.63E-01 4.78E-01 7.32E-01 1.00E+00 4.54E-01 9.53E-01 9.13E-01 𝐹ଵସ 0.00E+00 0.00E+00 2.29E-01 5.03E-01 1.10E-04 1.13E-03 6.27E-02 3.76E-01 9.88E-01 8.81E-01 8.47E-02 3.79E-01 1.00E+00 6.32E-01 3.47E-01 1.00E+00 𝐹ଵହ 0.00E+00 0.00E+00 3.17E-02 3.14E-02 9.89E-02 5.74E-01 1.57E-01 1.67E-01 1.00E+00 1.00E+00 2.49E-03 6.63E-03 6.70E-01 7.77E-01 4.27E-02 5.95E-02 𝐹ଵ଺ 0.00E+00 0.00E+00 7.78E-01 8.32E-01 1.28E-02 8.45E-02 8.51E-01 5.91E-01 7.49E-01 4.42E-01 9.73E-01 4.86E-01 1.00E+00 1.81E-01 6.46E-01 1.00E+00 𝐹ଵ଻ 0.00E+00 0.00E+00 6.26E-12 3.35E-12 7.83E-11 9.88E-11 1.55E-13 8.07E-14 1.00E+00 1.00E+00 2.57E-12 1.22E-12 2.23E-09 1.14E-09 5.98E-05 7.63E-05 𝐹ଵ଼ 1.00E+00 1.00E+00 1.15E-02 2.01E-02 3.34E-01 5.03E-01 0.00E+00 0.00E+00 8.54E-02 3.79E-02 4.92E-03 9.18E-03 2.14E-03 1.14E-03 1.25E-02 2.20E-02 𝐹ଵଽ 0.00E+00 0.00E+00 5.70E-05 1.55E-04 2.84E-28 1.89E-27 3.15E-03 6.48E-03 1.00E+00 1.00E+00 4.18E-03 6.09E-03 1.88E-01 1.72E-01 5.23E-03 1.31E-02 𝐹ଶ଴ 2.61E-151 5.35E-151 3.57E-02 1.41E-01 0.00E+00 0.00E+00 3.87E-06 1.01E-05 1.00E+00 1.00E+00 5.97E-03 9.35E-03 6.17E-02 6.15E-02 2.76E-02 3.58E-02 𝐹ଶଵ 0.00E+00 2.72E-34 1.25E-04 7.53E-05 7.63E-28 0.00E+00 3.60E-03 5.51E-03 1.00E+00 2.70E-01 4.92E-01 1.00E+00 3.83E-01 8.05E-02 9.61E-04 3.74E-04 𝐹ଶଶ   0.00E+00 0.00E+00 3.13E-01 3.35E-01 4.30E-03 2.40E-02 5.64E-02 5.50E-02 1.00E+00 1.00E+00 2.37E-01 6.28E-01 9.44E-01 7.42E-01 3.29E-01 6.44E-01 
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When Table 5 is examined, HSSAOA was successful in 16 benchmark functions, as in Group 1. 8 of them were unimodal and 
the other 8 were multimodal benchmark functions. In the benchmark functions that HSSAOA was successful, the second 
successful algorithm was AOA with 14 benchmark functions. Other algorithms with successful results were AOA (in 2 
benchmark functions), PSO (in 3 benchmark functions) and FFA (in 1 benchmark function). As a result of the analysis, other 
algorithms could not achieve the best results in optimizing the benchmark functions. Table 6 shows the results of the wilcoxon 
rank sum test of the optimized benchmark functions according to Group 2. 
 
Table 6 
According to Group 2, wilcoxon rank sum test 𝑝 values (N/A = not applicable) 𝑭𝒙   HSSAOA SSA AOA PSO GA FFA CS JAYA 𝐹ଵ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଷ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ସ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ହ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹଺   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹଻   2.87E-11 2.87E-11 2.87E-11 7.10E-04 2.87E-11 N/A 2.87E-11 2.87E-11 𝐹    3.39E-07 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଽ   2.87E-11 1.15E-02 2.87E-11 N/A 2.87E-11 7.73E-10 2.87E-11 2.20E-05 𝐹ଵ଴ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଵ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଶ 2.87E-11 3.18E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଷ N/A 2.87E-11 2.13E-09 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵସ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵହ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଺ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଻ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଼ 2.87E-11 4.49E-08 8.14E-03 N/A 2.87E-11 3.42E-03 5.23E-11 7.90E-05 𝐹ଵଽ N/A 2.87E-11 3.18E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶ଴ 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଵ N/A 5.32E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଶ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 
 

According to Table 5, statistical analysis was performed between successful algorithms and other algorithms. According to 
the results in Table 6, these algorithms obtained statistically significant differences compared to the algorithms they were 
compared. Table 7 contains the average and standard deviation results of the optimized benchmark functions according to 
Group 3. 
 

Table 7 
Normalized (0-1) average (Ave.) and standard deviation (Std.) results of optimized benchmark functions according to Group 3 𝑭𝒙 

HSSAOA SSA AOA PSO GA FFA CS JAYA 
Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. 𝐹ଵ   0.00E+00 0.00E+00 4.22E-02 5.36E-02 1.37E-07 5.68E-07 4.12E-03 3.67E-03 9.47E-01 7.59E-01 3.23E-01 3.94E-01 1.00E+00 5.12E-01 9.77E-01 1.00E+00 𝐹ଶ   0.00E+00 0.00E+00 7.99E-02 3.05E-01 7.77E-05 5.93E-04 2.22E-03 6.64E-03 8.16E-01 8.68E-01 4.21E-02 3.76E-01 1.00E+00 1.00E+00 5.60E-02 1.67E-01 𝐹ଷ     0.00E+00 0.00E+00 1.16E-01 2.70E-01 2.14E-04 1.82E-03 2.09E-02 3.21E-02 1.00E+00 1.00E+00 1.16E-01 5.77E-01 9.71E-01 6.89E-01 5.68E-01 8.51E-01 𝐹ସ   0.00E+00 0.00E+00 9.12E-09 1.43E-08 6.24E-18 2.45E-18 4.02E-15 1.93E-15 1.00E+00 1.00E+00 4.34E-09 5.22E-09 2.43E-01 1.44E-01 5.48E-07 8.03E-07 𝐹ହ   0.00E+00 0.00E+00 6.03E-10 2.79E-09 3.75E-42 9.91E-42 9.69E-09 3.89E-08 1.00E+00 1.00E+00 1.49E-10 4.97E-10 3.05E-01 2.89E-01 1.75E-04 5.17E-04 𝐹଺     0.00E+00 0.00E+00 7.53E-02 3.02E-01 4.78E-05 5.18E-04 2.16E-03 6.51E-03 7.85E-01 1.00E+00 4.27E-02 4.56E-01 1.00E+00 6.14E-01 5.49E-02 1.46E-01 𝐹଻   1.19E-03 1.03E-04 3.29E-04 1.03E-03 9.83E-04 2.67E-04 0.00E+00 0.00E+00 9.45E-01 1.00E+00 1.02E-05 1.21E-05 1.00E+00 9.15E-01 6.67E-03 1.63E-02 𝐹    2.29E-305 0.00E+00 1.05E-11 9.07E-12 0.00E+00 0.00E+00 1.94E-11 3.17E-11 1.00E+00 1.00E+00 9.49E-07 6.42E-07 4.38E-06 4.46E-06 1.76E-02 7.47E-02 𝐹ଽ     1.71E-01 1.24E-01 7.36E-06 1.94E-05 1.00E+00 1.00E+00 0.00E+00 0.00E+00 7.98E-03 5.43E-03 5.11E-08 8.95E-08 1.17E-05 8.84E-06 1.10E-04 2.88E-04 𝐹ଵ଴ 0.00E+00 0.00E+00 4.08E-03 8.22E-03 7.36E-11 1.15E-09 2.38E-02 2.49E-01 1.00E+00 1.00E+00 2.37E-02 7.39E-02 8.40E-01 5.70E-01 1.09E-02 2.88E-02 𝐹ଵଵ 0.00E+00 0.00E+00 4.45E-04 1.73E-03 2.20E-10 1.60E-09 3.09E-03 7.62E-03 9.31E-01 8.67E-01 2.25E-03 8.03E-03 1.00E+00 1.00E+00 1.19E-02 5.66E-02 𝐹ଵଶ 3.47E-02 3.54E-02 4.16E-13 3.41E-13 1.00E+00 1.00E+00 0.00E+00 0.00E+00 2.65E-03 2.74E-03 1.08E-08 8.91E-09 4.52E-08 6.30E-08 1.36E-02 1.05E-02 𝐹ଵଷ 0.00E+00 0.00E+00 1.82E-01 3.10E-01 3.05E-09 2.18E-08 6.05E-01 6.18E-01 6.06E-01 2.94E-01 4.49E-01 4.73E-01 1.00E+00 2.50E-01 8.77E-01 1.00E+00 𝐹ଵସ 0.00E+00 0.00E+00 1.66E-01 3.94E-01 3.80E-05 7.02E-04 2.97E-02 2.70E-01 9.02E-01 1.00E+00 7.42E-02 4.31E-01 1.00E+00 6.85E-01 2.43E-01 4.36E-01 𝐹ଵହ 0.00E+00 0.00E+00 1.77E-02 2.41E-02 9.94E-02 6.39E-01 8.73E-02 8.28E-02 9.48E-01 1.00E+00 2.39E-03 4.61E-03 1.00E+00 7.68E-01 3.91E-02 3.47E-02 𝐹ଵ଺ 0.00E+00 0.00E+00 6.81E-01 1.00E+00 4.82E-03 7.67E-02 8.26E-01 6.13E-01 6.95E-01 4.81E-01 1.00E+00 5.63E-01 9.73E-01 2.31E-01 5.48E-01 8.52E-01 𝐹ଵ଻ 0.00E+00 0.00E+00 5.52E-10 3.44E-10 4.42E-10 7.70E-10 1.66E-11 9.25E-12 1.00E+00 1.00E+00 1.81E-09 1.04E-09 1.01E-06 1.09E-06 7.55E-05 1.21E-04 𝐹ଵ଼ 6.84E-01 4.11E-01 1.42E-03 7.72E-04 1.00E+00 1.00E+00 0.00E+00 0.00E+00 1.39E-01 4.86E-02 9.77E-04 8.60E-04 3.15E-03 1.58E-03 1.42E-02 1.83E-02 𝐹ଵଽ 0.00E+00 0.00E+00 1.06E-06 3.58E-06 9.08E-32 3.88E-31 1.68E-04 2.70E-04 1.00E+00 1.00E+00 2.42E-03 5.01E-03 4.82E-01 4.12E-01 5.96E-04 1.87E-03 𝐹ଶ଴ 1.58E-151 1.79E-151 5.20E-04 4.84E-03 0.00E+00 0.00E+00 9.17E-07 1.93E-06 1.00E+00 1.00E+00 1.06E-02 4.14E-02 4.84E-02 8.95E-02 2.83E-02 1.20E-01 𝐹ଶଵ 0.00E+00 7.28E-36 1.55E-06 5.77E-06 1.33E-27 0.00E+00 1.81E-05 1.01E-04 8.89E-01 5.73E-01 1.45E-01 1.00E+00 1.00E+00 4.78E-01 4.06E-04 5.33E-04 𝐹ଶଶ   0.00E+00 0.00E+00 1.87E-01 3.73E-01 2.05E-03 1.63E-02 4.31E-02 5.23E-02 7.91E-01 1.00E+00 1.25E-01 2.86E-01 1.00E+00 7.32E-01 2.95E-01 5.65E-01 
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According to the data in Table 7, HSSAOA achieved the best results in a total of 16 benchmark functions, 8 of which are unimodal 
and 8 of which were multimodal, as in previous analyzes (Table 3 and Table 5). In the benchmark functions that HSSAOA was 
successful, the second successful algorithm was AOA with 14 benchmark functions. AOA (in 2 benchmark functions) and PSO (in 
4 benchmark functions) were the other two algorithms that achieve the best results. Table 8 shows the results of the wilcoxon rank 
sum test of the optimized benchmark functions according to Group 3. 
 
Table 8 
According to Group 3, wilcoxon rank sum test 𝑝 values (N/A = not applicable) 𝑭𝒙   HSSAOA SSA AOA PSO GA FFA CS JAYA 𝐹ଵ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଷ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ସ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ହ   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹଺   N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹଻   2.87E-11 1.04E-10 2.87E-11 N/A 2.87E-11 2.60E-04 2.87E-11 2.87E-11 𝐹    3.88E-04 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଽ   2.87E-11 1.95E-02 2.87E-11 N/A 2.87E-11 3.18E-11 2.87E-11 1.09E-03 𝐹ଵ଴ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଵ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଶ 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵଷ N/A 2.87E-11 2.51E-05 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵସ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵହ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଺ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଻ N/A 2.87E-11 9.19E-06 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଵ଼ 2.87E-11 2.58E-06 1.63E-08 N/A 2.87E-11 7.91E-04 2.87E-11 4.91E-06 𝐹ଵଽ N/A 2.87E-11 7.03E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶ଴ 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଵ N/A 2.87E-11 5.32E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 𝐹ଶଶ N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 
 
When Table 8 is examined, according to Table 7, HSSAOA, AOA and PSO algorithms have created a statistically significant 
difference compared to other algorithms with which they were statistically compared in benchmark functions they were successful. 
Fig. 4-6 shows the logarithmic convergence curves of the fitness values of some functions optimized by the algorithms run according 
to Group 1-3, respectively. 
 

  
 

Fig. 4 Logarithmic convergence curve of some functions according to Group 1 
 
 
 

  
 

Fig. 5 Logarithmic convergence curve of some functions according to Group 2 
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Fig. 6 Logarithmic convergence curve of some functions according to Group 3 
 
When the convergence curves of the functions in Fig. 4-6 are examined, it is seen that HSSAOA has better optimization. While the 
fitness values of other algorithms become stable after a certain iteration value, the hybrid algorithm continued to improve fitness 
values until the last iteration value.  
 
5. Conclusions and Future Works 
 
HSSAOA is a hybrid metaheuristic algorithm developed by adapting the exploration phase equations of AOA to replace the SSA's 
equations for the position update of the leader salp/salps and introducing new updates to the existing structure. The hybrid algorithm 
achieved the best result in 16 of 22 benchmark functions in each group compared to 7 algorithms compared. According to these 
results, the algorithms were subjected to the wilcoxon rank sum statistical test. The algorithm that was successful in each group was 
compared with other algorithms. As a result, HSSAOA obtained a statistically significant difference compared to the other 7 
algorithms. This indicates that the algorithm was successful in both stages. This is proof that different metaheuristic algorithms can 
be hybridized by changing the exploration and/or exploitation stages and better results can be achieved. The developed hybrid 
algorithm is generally successful. However, there are also benchmark functions where it cannot achieve the best results. In this case, 
the algorithm can be tried to be improved without changing the structure of the hybrid algorithm. For example, by increasing the 
number of search agents and the number of iterations or by updating the constant values of the algorithm with different values, it 
can be observed whether the algorithm is successful in terms of performance without changing the structure of the algorithm. In 
cases where the hybrid algorithm cannot be successful without changing its structure, it can be determined whether the algorithm is 
successful in terms of performance by changing the structure of the algorithm. For example, hybridizing the hybrid algorithm with 
a third algorithm or adding/changing the part taken from the AOA to a different or same part of the SSA can be given as examples 
of structural change. In short, with the changes made, it is thought that HSSAOA will be a better hybrid metaheuristic algorithm.  
 
In addition, it is thought that the algorithm will be successful in areas such as optimizing different functions, training artificial neural 
network, clustering and feature selection by using this hybrid algorithm in future studies. 
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