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exploration phase of the arithmetic optimization algorithm (AOA) to the position update part of the
salp swarm algorithm (SSA) of the leader salps/salps. And also, there have also been a few new
additions to the SSA. The proposed HSSAOA was tested in three different groups using 22

Benchmark benchmark functions and compared with 7 well-known algorithms. HSSAOA optimized the best
Optimization results in a total of 16 benchmark functions in each group. In addition, a statistically significant
Metaheuristic difference was obtained compared to other algorithms.
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1. Introduction

Optimization is the process of bringing the problem or problems in the sciences or social sciences closest to the desired
result..When optimizing problems, constraints and certain limits can be introduced. The result obtained in the optimization
process is not always the lowest result. According to the type of problem, the best case may be the highest result (Tarik et al.,
2016; Wright, 2022; Yang & Deb, 2015). In order to reach the best approach to the solution in optimization problems,
algorithms are used in which operations are performed step by step. These algorithms are of two types, deterministic and
stochastic algorithms. (Yang, 2010a; Britannica, 2022). When deterministic algorithms are used in the solution of problems,
exact and same values are obtained as a solution. The process is short. However, there is a high probability of getting stuck in
the local optimum. When the same problem is solved using a stochastic algorithm, different solutions are obtained each time.
Even if it takes longer to reach the best solution in stochastic algorithms than deterministic algorithms, using randomness in
the search process ensures that the local optimum is not caught and a better global solution is obtained. (Brownlee, 2021;
Friedrich, 2022; Kochenderfer & Wheeler, 2019; Sergeyev et al., 2017; Yang, 2010a). Stochastic algorithms have many
subcategories, and metaheuristic algorithms are at the top of these categories. Metaheuristic algorithms are simple, easy,
adaptable to all kinds of problems, and non-derivative. Metaheuristic algorithms have been developed by researchers in
categories such as physics, biology, swarm, evolutionary-based (Mirjalili et al., 2014; Sharma & Tripathi, 2022). Examples
of today's popular metaheuristic algorithms are Arithmetic optimization algorithm (AOA), salp swarm algorithm (SSA),
particle swarm optimization algorithm (PSO), genetic algorithm (GA), firefly algorithm (FFA), cuckoo search algorithm (CS)
and jaya algorithm (JAYA) can be given (Abualigah et al., 2021; Dede et al., 2020; Holland, 1992; Kennedy & Eberhart,
2007; Mirjalili et al., 2017; Rao, 2016; Yang & Deb, 2009; Yang, 2010b).
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A hybrid algorithm is a type of algorithm created using a cooperative or integrative structure, which is one of the hybrid
algorithm types of two or more algorithms. Algorithms included in the hybrid algorithm in a cooperative structure try to
optimize the problem by working in parallel or sequentially. In the integrative structure, the structure is created by adding or
editing the part or code of one algorithm to the structure of the other algorithm. The integrative algorithm created in the new
situation is expected to optimize the problem in the best way (Talbi, 2002; Ting et al., 2015; Yilmaz et al., 2022a).
Researchers can develop hybrid algorithms using one or more of the above models.

Some of the reasons why researchers developed hybrid algorithms are as follows:

Exploration and exploitation stages are of great importance in metaheuristic algorithms. Exploration is the stage in which
solutions are determined so that the problem can reach the global optimum in the search space. Exploitation, on the other
hand, is the process of choosing the best solution from the discovery. The process done in the exploitation stage is also more
limited due to the discovery stage, that is, it is also expressed as the stage of reaching the local optimum. In principle, the
exploration-exploitation pair should work in harmony in metaheuristic algorithms. Otherwise, this situation affects the
performance of the algorithm. Therefore, it is necessary to reconsider the exploration and exploitation stages of the algorithm
(Alba & Dorronsoro, 2005; Akyol, 2021; Crepinek et al., 2013). For example, an algorithm that is weak in terms of
exploration can become more efficient by using the exploration phase of a different algorithm, that is, by hybridizing it.

According to the No Free Lunch (NFL) theorem, not all problems can be solved by adhering to just one algorithm. While an
algorithm may reach the closest results to the solution in some problems, it may not achieve the desired result in others. The
method of the algorithm developed to solve a problem may lead to the opposite (undesirable) results in solving the other
problem (Wolpert & Macready, 1997). However, using two or more algorithms as cooperative or integrative hybrids can
contribute to better optimization of more problems.

Some of the current hybrid metaheuristic algorithm researches in the literature are as follows:

Senel et al. (2019) implemented a new hybrid algorithm by placing the exploitation part of the PSO in the exploration phase
of the grey wolf optimizer (GWO). The developed hybrid algorithm has been tested on benchmark functions, process
flowsheeting problem, parameter estimation for frequency modulated sound waves and leather nesting problem. They found
that the hybrid algorithm was successful compared to the algorithms they compared. Bas (2021) performed the hybrid process
using the tree seed algorithm (TSA) in order for AOA to achieve more successful results. It used TSA's seed production
method in the random walking phase of AOA and led to the generation of new candidate solutions. The performance of the
hybrid algorithm has been compared first with AOA and then with well-known heuristic algorithms. 13 constrained
optimization problems were used in the comparison process. The researcher stated that the hybrid algorithm was successful
compared to other algorithms and obtained a statistically significant difference. Ramesh & Manavalan (2021) developed a
hybrid algorithm (SSOAGOA) using SSA and grasshopper optimization algorithm (GOA). The developed algorithm was
used as a feature selection method to determine the necessary properties to diagnose prostate cancer. SSA hybridized with
PSO, GA, GOA, ant colony algorithm (ACO) and whale optimization algorithm (WOA) were used to compare the results.
The properties of the features obtained from the hybrid algorithm were sent to the machine learning classifiers. According to
the experimental results obtained from the classification algorithms, it has been determined by the researchers that feature
selection with SSOAGOA is more successful than other hybrid algorithms. Wang et al. (2021), created a new hybrid algorithm
using aquila optimizer (AO) and harris hawks optimizer (HHO). The hybrid algorithm used in solving 23 benchmarking
problems and 4 industrial engineering design problems was compared with 5 algorithms. As a result, the researchers
determined that the hybrid algorithm is more successful than other algorithms. Yilmaz et al. (2022b) trained the learning
processes of multilayer perceptrons with a hybrid algorithm they prepared using multiverse optimization algorithm (MVO)
and simulated annealing algorithm (SA). They used 12 data sets in their experimental studies. The researchers compared the
experimental analysis results with the results obtained from the multilayer perceptron trained with 12 algorithms. As a result,
they determined that the hybrid algorithm achieved superior and successful results compared to other algorithms.

Purpose of this study is to develop a new hybrid algorithm (HSSAOA) with high performance and accuracy, minimized error
rate, and statistically proven success by using SSA and AOA. With HSSAOA, which is an integrative hybrid algorithm type,
the exploration phase of AOA is adapted to a part of SSA. It is thought that HSSAOA, which is tested in optimizing benchmark
functions, will be a more successful hybrid algorithm than SSA, AOA and other popular metaheuristic algorithms used in the
study.

The contents of the article are explained in 5 sections and these contents are as follows:
In Section 1 (Introduction), information about optimization, algorithm, deterministic and stochastic algorithm, metaheuristic
algorithm, hybrid algorithm and its types, current researches in the literature with hybrid algorithm and purpose of the study

were explained.

In Section 2 (Overview), the SSA and AOA used in the development of the HSSAOA were described.
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In Section 3 (Proposed Hybrid Algorithm) HSSAOA, which consists of hybridizing SSA and AOA, was mentioned. The flow
diagram of the developed hybrid algorithm and its equations adapted according to the new situation were given.

In Section 4 (Experimental Results), information was given about which algorithms were used in comparison, benchmark
(unimodal and multimodal) functions used in comparison analysis, number of search agents/iterations/independent runs and
parameters of algorithms. Then, comparison results of algorithms, logarithmic convergence curves and statistical results were
included.

In Section 5 (Conclusions and Future Studies), the success of the developed HSSAOA was discussed. In addition, information
was given about the suggestions that will guide researchers who want to deal with HSSAOA in the future.

2. Overview
2.1. 854

SSA was developed by Mirjalili et al. (2017), taking into account the lifestyle and food supply system of salp live’s. Salps are
transparent, like a jelly-fish and lead their lives in chains at deeps in the seas and oceans. There are leader and follower salps
in the structure of each salp swarm. The leader is responsible for finding the food. The follower salps follow the leader salp
and supply their own food. The leader salp updates its position each time it approaches the food. The follower salps update
their position depending on the leader. In SSA, during the exploration process, it is tried to find the positions where the food
is in the search space, while in the exploitation process, the existing positions are compared with the neighboring positions to
determine the best position to reach the food from these (Bairathi & Gopalani, 2019; Faris et al., 2020; Mirjalili et al., 2017).

Mirjalili et al. (2017) explained the mathematical expressions of the salp swarm algorithm as follows;

The positions of the salps are held in an SalpP matrix of size Nxd (search agent x search space). First, the positions of the
salps are randomly assigned in the [b — ub (lower bound-upper bound) range determined at the beginning. Eq. (1) contains
the mathematical expression in which the leader's position is updated.

FoodP; + ¢y x ((ub; — by) x c; + lby) ¢ >0,5

()
FoodP; — ¢;x ((ubj —lbj)xc, + lbj) c3<05

Salpp} =

According to this equation, S ollij1 is the leading salp position, FoodP; is the information of the food position in the jp,
dimension, [b; is the lower bound of the j;;, dimension, ub; is the upper bound of the j,, dimension and c,-c; are a random
number between 0 and 1. In the first article about SSA, the c; value is 0. In this case, a part of the equation cannot be used.
Therefore, in a study in which Mirjalili is among them, the value of c3 is given as 0.5 and it is included in the equation in this
way (Faris et al., 2020; Mirjalili et al., 2017). The ¢, parameter is one of the main values for Eq.(1). It equilibrates the
exploration and exploitation phase, which is calculated as in Eq.(2)

: 2
¢, = 2¢~Grier) ©)
According to this equation, the term e represents the euler number, itr equals the current iteration value and Mitr equals the
maximum iteration value. In Eq.(3), there is a position update of the follower salps. According to this equation,
S alpP]-i represents the follower salp and S aliji_1 represents the previous follower salp.

SalpP} = (SalpP} + SalpP{™")/2 3)

In the literature, there are SSA studies using multiple leader salp instead of a single leader salp. The use of multiple leader
salp structure increased the randomness in the algorithm and positively affected the algorithm. However, this situation had a
negative effect by increasing the instability of the algorithm. Some researchers have proposed an algorithm structure in which
the leader (N/2) and follower (N/2) salps are accepted as half and half in order to benefit from the positive aspect of this
situation and to be less affected by the negative aspects (Wang et al., 2018; Zhang et al., 2019). In addition, this situation is
also seen in the codes of the researchers who developed the SSA (Faris et al., 2016a; Mirjalili, 2018). Fig.1 shows the flowchart
of the SSA prepared according to multiple leader salp. In this study, multiple leader salp structures were used for SSA and
HSSAOA.
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Set initial values

Calculate the best food fitness (£f) value
FoodP Set the best salp as FoodP
Update the ¢; (Eq. (2))

Update leader salps position Eq. (1) Update follower salp position Eq. (3)

Bring salps that exceed limits into /b-ub range
itr=itr+1

Fig. 1 Flowchart of SSA -based on multiple leader salps- (Faris et al., 2016a; Mirjalili, 2018; Wang et al., 2018; Zhang et al., 2019)
2.2. 404

Developed by Abualigah et al. (2021), AOA is a population-based, structurally simple metaheuristic algorithm that updates
its solutions through mathematical operators in the exploration and exploitation stages. In the exploration phase, using
multiplication and division based equations, it searches for solutions in the search space of the problem by means of search
agents without falling into the local optimum trap. In the exploitation phase, it provides to improve the solutions obtained in
the exploration phase with addition and subtraction based equations.

Abualigah et al. (2021) explained the algorithmic steps of AOA as follows:

Initially, an x matrix of size Nxd (search agent x search space) is created in which the candidate solutions are held. Random
values are assigned to this x matrix within the specified range b — ub (lower bound - upper bound). Values are assigned to
the parameters required for the algorithm. The Math Optimizer Accelerated (M OA) function in Eq. (4) is used for the selection
of the exploration or exploitation search phase of the algorithm. The value calculated from the MOA function is a value that
increases incrementally from 0.2 to 0.9 during the iteration.

MOA (itr) = min + itr x (max — min) /Mitr 4)

In this equation MOA(itr) represents the value of the current iteration of the MOA function, itr equals the current iteration
value, Mitr equals the maximum iteration value, min and max values represent the minimum and maximum values that the
MOA function can take. The result obtained from this function should be calculated before the algorithm starts the processing
process. The result is compared with a random value (r;) from 0-1 range.

If ry is greater than the MOA function result, the exploration phase works. In the exploration phase, solutions are calculated
using Eq. (5).

D = best(x;) / (MOP + &) x ((ub; — b)) xp+1b;)  1,>05

xi(itr+1) =
! M= best(xj) x MOP x ((ubj - lb]-) Xp+ lbj) 7 <05

©)

According to this equation, x}(itr + 1) is the value of the next solution of the j, position of the i, solution, best(xj) is the
best solution of x in the j, position, Ib; and ub; are the lower and upper bounds at the j;, position, € parameter is a small integer
value, parameter 7, is a random number between 0-1 and parameter p is a constant value used to control the search process. If 1,
is greater than 0.5, division arithmetic operator based equation (D) is used, otherwise multiplication based arithmetic operator
based equation (M) is used. The Math Optimizer (M OP) value is calculated as in Eq. (6).

MOP =1 — (itr'V/*/Mitr/*) (6)

According to this equation, itr equals the current iteration value, Mitr equals the maximum iteration value and & represents
an important and sensitive value.
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Ifr; is less than or equal to the MOA function result, the exploitation phase runs. In the exploitation phase, solutions are
calculated using Eq. (7).

) S = best(x;) — MOP x ((ub; —lb;) x p+ lb; r3>0,5
xj’(itr +1) = ( ]) (( j 1) 1) 3 R
A= best(xj) + MOP x((ubj — lbj) XU+ lbj) r3 < 0,5

According to this equation, The r; parameter is a random number between 0 and 1. If r3 is greater than 0.5, substraction
arithmetic operator based equation (S) is used, otherwise addition based arithmetic operator based equation (4) is used. Other
parameters ( x; (itr + 1), best(xj), MOP, ubj, lb; and p ) are used as in Eq. (5). Fig.2 shows the flowchart of the AOA.

Set initial parameters and solutions

f(best(x))
Calculate fitness function best(x)
Find best solution (best(x))

Find best fitness value ( f(best(x)) )

Update MOA Eq. (4) function value
Update MOP Eq. (6) function value
i=0

Update the solution with the S in Eq. (7) Update the solution with the 4in Eq. (7)

Fig. 2. Flowchart of AOA (Abualigah et al., 2021)

3. Proposed Hybrid Algorithm (HSSAOA)

In this developed algorithm, some changes have been made in the update method of the leader salps/salps. The division and
multiplication arithmetic operator-based equations in the exploration phase of AOA have been adapted to replace the equations
required for the leader update of the SSA. The MOA function, the max and min parameters of the MOA function, and the o«
and u parameters are used in the hybrid algorithm as they are used in the AOA. As in SSA and AOA, itr and Mitr values are
iteration and maximum iteration values, respectively. The way the algorithm works is as follows:

First of all, the positions of the salps are randomly assigned as in the SSA. Initial parameters of SSA and AOA are defined.
In order to compare the values obtained in the later stages of the algorithm, the (best) food position and accordingly the fitness
value are calculated from the randomly assigned positions. Position update of leader salp/salps is as in Eq. (8).

D = FoodP; ( MOP, b, —1b) x L+ Ib; )
Saliji _ ooar; /| C ew/ Cinew) X ((u j ]) Xl ]) c, i %gj ®
M = FoodP, x ((MOPneW Je1nen) % ((uby = b)) x p + lb,-)) €2 2
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According to this equation, S alpP]-i represents the position of the leader salps (if the leader is one, "1" is used instead of i), FoodP;
represents the information of the food position in the j, dimension, lb; represents the lower bound of the jy, dimension,
ubj represents the upper bound of j, dimension and ¢, represents a random number between 0 and 1. The use of u parameter is the
same as used in AOA. ¢ypey 1S an updated version of ¢; in SSA and MOP,,,, is an updated version of MOP in AOA. The equation
for Cinew 1s in Eq. (9) and the equation for MOP,,,, is in Eq. (10).

_(aitr=-1)\?
Coneyy = 26~ Uit ) ©)

Gr = 1= });> (10)

MOP,,, =1—- (
Mitr«

When the new equations are examined, iteration value (itr) has been updated as itr — 1, provided that it starts from 1. According

to Eq. (8), if ¢, is less than the value obtained from the MOA function, the division arithmetic operator-based equation (D) is used.

If c, is greater than and equal to the value obtained from the MOA function, the multiplication arithmetic operator-based equation

(M) is used. The MOA function is calculated according to Eq. (4). Position update of follower salps is as used in SSA (Eq. (3)). Fig.

3 shows the flowchart of the HSSAOA prepared according to the multiple leader salp used in the study.

Determine salp position (Sa/pP )

Set nitial SSA and AOA parameters
Calculate food position ( FoodP) based on initializing position
Calculate food fitness value ( #7) based on initalizing position

itr <=Mitr

Calculate MOA function (Eq. (4)
Calculate Cino parameter (Eq. (9))
Calculate MOPucy function (Eq. (10))

for every salp (SapP;)

Bring salps that exceed limits into /6-ub range Update follower salps position Eq. (3)

Calculate salp fitness ( sf)

Update leader salps position with the D in Eq. (8) Ml Update leader salps position with the 1 in Eq. (8)

SI<fF

FoodP = SalpP
fr=sf

Fig. 3. Flowchart of HSSAOA
4. Experimental Results

In order to determine the success of HSSAOA, it should be run by the number of determined search agents, the number of iterations
and the number of independent tries and the results should be compared with other popular metaheuristic algorithms. In order for
the results to be confirmed as successful, it should be determined that there is a statistically significant difference. In this study,
HSSAOA and other popular metaheuristic algorithms (AOA, SSA, PSO, GA, FFA, CS and JAYA) were compared using a total of
22 benchmark functions, 12 unimodal and 10 multimodal. Each algorithm was analyzed separately using the number of 30, 50 and
100 search agents. The number of iteration used in the analysis was 100. Each algorithm was run 30 times independently for the
number of search agents and iterations, and the averages and standard deviations of the results were calculated. In addition, the
fitness values obtained by some optimized benchmark functions during the iteration are shown in the logarithmic convergence curve.
In order to better understand the results of the mean and standard deviation of the benchmark function in the tables (Table3,
Table 5 and Table 7), the results were normalized between 0 and 1 (Mirjalili et al., 2017). In addition, the wilcoxon rank sum
test, which is one of the non-parametric statistical tests, was applied to prove the statistical success of the successful algorithm
compared to other algorithms (making a statistically significant difference). The algorithm that was successful as a result of
each function was compared with other algorithms. In order for an algorithm to be statistically successful, that is, to express
a statistically significant difference, it is required that the statistical result obtained ( p ) be less than 5E-02 (Derrac et al.,
2011; Mirjalili et al., 2017). For the analysis of the algorithms, the EvoloPy framework, written in Python, which analyzes
metaheuristic algorithms in areas such as optimization, clustering and artificial neural network, was used. AOA, which is not
included in the EvoloPy framework, and the developed hybrid algorithm were adapted to this framework (Faris et al., 2016a;
Faris et al., 2016b; Khurma et al., 2020; Qaddoura et al., 2020). In algorithms, there may be parameters calculated randomly
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or with equations, as well as parameters with constant values. The values of the parameters (o< and u) with constant values in
the AOA and HSSAOA, the values written in the code of the AOA was used (Abualigah, 2022). Constant values parameters
of other algorithms are the same as in the EvoloPy framework (Faris et al., 2016a). Parameters with constant values according

to the algorithms and their values are given in Table 1.

Table 1
Parameters, explanations and values of HSSAOA and other algorithms
Algorithm Parameter Explanation Value
HSSAOA The same as AOA
AOA o Important and sensitive parameter affecting the MOP function 5
u Parameter controlling the search process 0.499
SSA No constant parameters
Vmax Maximum particle velocity 6
Vmin Minimum particle velocity — Vmax
PSO wMax Maximum value of inertia weight 0.9
wMin Minimum value of inertia weight 0.2
cy 1st acceleration coefficient 2
c, 2 nd acceleration coefficient 2
cs B Scale factor 1.5
P, Discovery probability 0.25
Brmin Minimum parameter of attractiveness 0.2
Y Coefficent of absorption 1
FFA S
o« Parameter of randomization 0.5
Bo Initial attractiveness parameter 1
keep Elitism rate 2
GA Cp Possibility of crossover 1
m, Possibility of mutation 0.01
JAYA No constant parameters

The name and equation of the benchmark functions used in this study, modal type, lower bound (Ib), upper bound (ub),
dimension (dim) and default minimum fitness values (fmin) are given in Table 2 (Fletcher & Powell, 1963; Gavana, 2013;
Hussain et al., 2017; Jamil & Yang, 2013; Naik et al., 2016).

Table 2
Benchmark functions used in the study

Function Name Equation b ub dim fmin

d i

Fl(x):z ij 2100 100 20 0

Schwefel 1.2Y

i=1 \j=1
d

Schwefel 2.20Y F(x) = Z|xi| -100 100 20 0
=1

Schwefel 2.21Y F3(x) =max|x)|. 1<i<d -100 100 20 0
a a

Schwefel 2.22 Fu(x) = Z|xl-| + 1—[|xl-| 200 100 20 0
=1 i=1
d

Schwefel 2.23V Fy(x) = Z x20 40 10 20 0
=1
d

Step" FsG) = ) (Ul 100 100 20 0
=1
a

Step 2V F(x) = Z([x,- +0,50)2 2100 100 20 0
=1

Matyas’ Fg = 0,26(x? + x2) — 0,48x,x, -10 10 2 0

Wayburn Seader 1Y Fo(x) = (2 + x5t — 17)% + (2x; + x, — 4)? -5 5 2 0

a
Sum SquaresV Fro(x) = Z ix? 0 10 20 0

i=1
d

Fa(x) = Z xf

i=1

Sphere Model” 512 512 20 0

Brent" Fia(x) = (x1 + 10)2 + (x, + 10)2 + ="+ -20 o 2 0
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Table 2
Benchmark functions used in the study (Continued)

Function Name Equation b ub dim fmin
d
Rastrigin™ Fy3 = 10d + Z[xiz — 10cos (27x;)] 512 512 20 0
=)
1% \ 1%
AckleyM Fi4(x) = —20exp| —0,2 EZ x? | —exp <EZ cos(ani)> +20 + exp(1) -32 32 20 0
a2 | la
a d
g M X Xi
Griewank Fis) =) ———| Jcos (—) 1l 600 600 20 0
£.4000 1 Vi
i=1 i=1
a-1 ) >
Pathological™ Fue(®) Z 0,5 4 —SMY100%7 + x4, — 05 100 100 20 0
al X) = A -
& 16 £ 1+ 0,001(x2 — 2xXi; + X20)?
Price 4™ Fi7(x) = Qxix, — x2)? + (6x; — x7 + x,)? -500 500 2 0
arctan(x—z) arctan(x—z)+1'[
2020 =—}H1% X <0=0=—72—
Helical Valley™ ) -10 0 3 0
Fig(x) = 100 [(x3 —106)2 + <\/x12 +xf - 1) +x2
- 1
Csendes™ Fo(®) = z xS(2 +sin—) 1 1 20 o0
=1 i
d
Alpine 1M Fuo(x) = Z|xisin(xi +0,1x)] 40 10 20 0

i=1

Lo w2
Amgm" For () = ;Z|xi|—<]_[|xi|> 0 020 0
i=1 i=1

i=1

d \ d
Salomon™ Fpp(x) = 1 — cos \Zn inz } 01 inz 2100 100 20 0
i=1

U:Unimodal M: Multimodal

The results of the algorithms analyzed with different search agents, the same iteration and the number of independent runs
were grouped and named. Named Group 1 for 30 search agents/100 iterations/30 independent runs, Group 2 for 50 search
agents/100 iterations/30 independent runs, and Group 3 for 100 search agents/100 iterations/30 independent runs. Table 3
contains the average and standard deviation results of the optimized benchmark functions according to Group 1.

Table 3

Normalized (0-1) average (Ave.) and standard deviation (Std.) results of optimized benchmark functions according to Group 1

HSSAOA SSA AOA PSO GA FFA [ JAYA

Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std.
F, O000E+00 O0O00E+00 176E01 297E01 335E07 G689E07 LI9E02 137E02 100E+00 748E01 365E01 S5.11EOl 578E01 478E01 850E01 1.00E+00
F, O000E+00 000E+00 283E-01 S582E01 23E04 8.16E04 8ISE03 203E02 100E+00 LOOE+00 877E02 5.15E01 697E01 572E01 842E02 208E01
F; 000E+00 000E+00 300E01 602E01 520E04 227E03 396E02 131E0l 100E+00 100E+00 207E01 858E-01 645E-01 631E01 647E01 88IE0I
F, O000E+00 000E+00 476E-08 646E08 193E-19 338E20 193E-16 478E-17 100E+00 1.00E+00 G68IE09 102E08 422E03 281E03 451E06 S560E-06
Fs 000EH00 000EH00 466E06 725E-06 473E-38 162E37 375E07 561E07 100E+00 100E+00 331E08 829E-08 465E-03 4.12E03 7.03E04 9.06E-04
Fs 000E+00 0O00E+00 256E01 625E01 236E-04 848E-04 852E03 162E02 100E+00 100E+00 666E-02 447E-01 736E-01 529E-01 93302 2.06E01
F, 723E04 000EH0 244E(02 418E02 610E04 364E05 O000E+00 S8.19E05 100E+00 1OOE+00 393E04 3.12E03 397E01 345E01 196E02 558E-02
Fy 289E299 000EH00 O.17E-12 537E-12 000E+00 000E+00 136E-09 2.13E09 100E+H00 100E+00 410E07 191E07 528E06 362E06 237E2 4.14E-02
Fy 186E01 162E01 148E04 373E04 100E+00 100E+00 0.00E+00 O0O00E+00 462E03 494E03 393E06 106E05 431E05 467E05 211E04 4.18E-04
Fip 000E+00 O0O00E+00 5.10E02 8SIE(2 141E09 538E09 107E02 1O04E01 100E+00 1O0E+00 3.19E02 822E02 343E01 273E01 1.60E02 453E-02
F; 0Q0E+00 O0Q0E+00 343E02 709E(2 137E09 10SE08 2.13E02 6S8IE02 100E+00 100E+00 508E03 156E02 374E01 377E01 2.10E02 638E-02
F, 127E01 132E01 352E-13 277E-13  100E+00 100E+00 0.00E+00 000E+00 257E03 253E03 329E09 255E09 149E08 145E08 122E02 741E03
Fi3 000E+00 000E+00 3.14E01 617801 13508 787E08 781E01 100E+00 805E01 678E-01 495E01 911E01 100E+00 457E-01 866E-01 990EOI
Fy 000E+00 000E+00 390E01 100E+00 193E04 196E03 LI3EOI 337E01 100E+00 743E01 129E01 516E-01 909E-01 709E-01 347E01 9.76E-01
Fis 000E+00 0O00E+00 442E02 545E02 181EO01 100E+00 164E01 135E01 100E+00 883E0l 375E03 142E02 368E01 337E01 386E02 454E-02
Fig 000E+00 0O00E+00 S8.I8E01 395E01 284E02 157E01 88S8EOI 469E01 788E01 334E01 936E01 579E01 100E+00 260E01 650E-01 1.00E+00
Fy; 000E+00 0O00E+00 132E-10 977E-1l 706E-1l 6I2E-11 121E08 196E08 1OOE+00 1OOE+00 687E-I0 109E09 566E08 393E08 654E-04 1.04E03
Fig 100EH00 100E+00 223E02 354E(2 880EOI G694E01 0.00E+00 0O00E+00 128E01 1I3EO1 102E02 189E02 325E03 225E03 LIIE02 165E-02
Fio 000EH00 000E+00 480E04 115E-03 163E25 1I2E24 198E-02 455E02 100E+00 100E+00 958E-03 149E02 742E02 779E02 G6OSE03 132E-02
Fpo 962E-150 139E-149 192E02 2.16E02 000E+00 O000E+00 532E05 872E05 100E+00 332E01 244E-03 112E03 729E02 248E02 GO4E01 1.00E+00
Fy 000E+00 219E33 17IE03 833E04 433E28 O000E+00 3.04E04 4I10E04 625E01 126E01 100E+00 100E+H00 230E-01 498E-02 217E03 537E-04
Fy; 000E+00 0O00E+00 444E01 705E01 589E03 287E02 664E02 747E02 100E+00 100E+00 3.18E-01 781E-01 826E-01 717E-01 375E01 6.65E01

FX
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According to the results in Table 3, the hybrid algorithm was successful in a total of 16 benchmark functions. 8 of them were
unimodal benchmark functions and the other 8 were multimodal benchmark functions. In the benchmark functions that
HSSAOA was successful, the second successful algorithm was AOA with 15 benchmark functions. In benchmark functions
where HSSAOA could not reach the best results, AOA (in 2 benchmark functions) and PSO (in 4 benchmark functions)
achieved the best results. Other algorithms did not achieve the best results in any benchmark function. Table 4 shows the
wilcoxon rank sum test results ( p values ) of the analysis performed according to Group 1.

Table 4

According to Group 1, wilcoxon rank sum test p values (N/A = not applicable)

F, HSSAOA SSA AOA PSO GA FFA CS JAYA
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F3 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fs N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fe N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, 5.77E-11 2.87E-11 2.87E-11 N/A 2.87E-11 9.19E-06 2.87E-11 2.87E-11
Fg 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy 2.87E-11 8.34E-04 2.87E-11 N/A 2.87E-11 8.49E-10 2.87E-11 2.98E-06
Fio N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi1 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi, 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi3 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi4 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fis N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fie N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi7 N/A 1.07E-06 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fig 2.87E-11 6.98E-05 3.26E-03 N/A 2.87E-11 2.56E-03 6.24E-09 1.63E-04
Fig N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fyq 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fyq N/A 2.87E-11 5.32E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

When Table 4 is examined, according to Table 3, HSSAOA, AOA and PSO algorithms have created a statistically significant
difference compared to other algorithms with which they were statistically compared in benchmark functions they were
successful. Table 5 contains the average and standard deviation results of the optimized benchmark functions according to
Group 2.

Table 5
Normalized (0-1) average (Ave.) and standard deviation (Std.) results of optimized benchmark functions according to Group 2
 HSSAOA SSA AOA PSO GA FFA cs JAYA

* Ave. Std. Ave.  Std.  Ave.  Std. Ave.  Std. Ave.  Std. Ave.  Std. Ave.  Std.  Ave.  Std.

Fi 000E+00 0.00E+00 104E-01 125E-01 234E07 630E07 6G6IE03 637E03 989E0l 6.16E01 406E-01 476E01 7.67E01 382E01 1.00E+00 100E+00
F2  000E+00 000E+00 2.16E-01 5.14E-01 193E04 106E-03 S5.I2E-03 127E02 100E+00 1.00E+00 S506E02 387E-01 873E01 664E-01 745E02 143E01
F3  000E+00 000E+00 201E01 428E01 361E-04 168E-03 274E02 462E02 100E+00 855E01 198E01 1.00E+00 826E01 7.I1SE01 6.13E01 926E-01
Fy 000E+00 000E+00 151E-09 1.09E-09 932E-18 219E-18 433E-15 157E-15 100E+00 100E+00 138E03 187E03 3.1E01 203E01 388E-12 478E-12
F5  000E+00 000E+00 168E-07 238E-07 1.18E41 106E41 459E-08 969E08 100E+00 100E+00 28609 657E-09 459E-02 267E-02 532E04 798E-04
Fs  000E+00 000E+00 201E-01 543E01 183E-04 OS4E04 SOIE03 959E-03 100E+00 1.00EH0 550E02 298E-01 9.13E01 635E0I 7.75E-02 1.84E-1
F; 888E-04 277E-05 702E-03 182E-02 742E-04 1I0E04 198E05 264E05 100E+00 1.00E+00 0.00E+00 O000E+00 623E-01 6O0E01 107E-02 2.19E-02
Fg  174E304 000E+00 10IE-11 972E-12 000E+00 000E+00 179E-10 S36E-10 100E+00 1.00E+00 106E06 10206 746E06 7.14E06 357E02 200E-01
Fo  459E01 294E01  7.78E-04 200E-03 100E+00 100E+00 O0.00E+00 O000E+00 193E-02 135E02 325E08 252E08 S.I1E05S 388E-05 124E02 441E02
Fio 0.00E+00 0.00E+00 187E-02 484E02 587E-10 424E09 183E03 47I1E-03 100E+00 1.00E+00 154E-02 S5O0IE02 478E01 433E-01 140B02 4.15E-02
Fi1 000E+00 0.00E+00 587E-03 1.I9E02 202E-10 136E09 141E02 346E02 100E+00 1O00E+00 2.73E-03 126E02 629E01 465E-01 124E02 335E-02
Fiz 121E01  197E01  3.19E-13 297E-13 100E+00 1.00E+00 O000E+00 O000E+00 330E-03 348E03 S63E09 S99E09 1.65E08 2.13E-08 149E02 129E-02
Fiz 000E+00 000E+00 2.19E01 386E01 100E07 258E06 747E01 100EH00 744E01 663E01 478E-01 732E01 100E+00 454E01 953E01 9.13E-01
Fia 000E+00 0.00E+00 229E-01 S503E01 LIOE04 1I3E03 627E02 376E01 98SE-0I 88IE01 847E02 3.79E01 1.00E+00 632E-01 347E01  1.00E+00
Fis 000E+00 000E+00 3.17E02 3.14E02 989E02 574E01 157E01 167E01 100E+00 100E+00 249E03 663E03 670E01 7.77E01 427B02 595E02
Fis 0.00E+00 0.00E+00 7.78E-01 832E01 128E02 845E02 8S5IE01 S9IE0l 749E01 44201 9.73E-01 486E01 1.00E+00 18IE-01 646E01  1.00E+00
Fi7 000E+00 0.00E+00 626E-12 335E-12 783E-11 988E-11 155E-13 8O07E-14 100E+00 1O0E+00 257E-12 122E-12 22309 1.14E09 598E05 7.63E-05
Fig 100E+00 100E+00 11SE02 201E02 334E01 S03E01 000E+00 0.00E+H00 854E02 379E02 492B03 9.I8E03 214E03 1.14E03 125B02 220E2
Fig 000E+00 000E+00 570E-05 155E-04 284E28 189E27 3.I5E03 648E03 100E+00 1.00E+00 4.18E-03 609E-03 188E-01 172E01 523E03 131E-02
Fyo 261E-151 535E-151 357E02 141E01 000E+00 O000E+00 387E06 101E05 100E+00 100E+00 59703 935E03 6.17E02 6.15E02 276E02 3.58E2
F21 000E+00 272E-34  125E-04 753E05 7.63E28 000E+00 360E03 SSIE-03  100E+00 270E01 492E-01 100E+00 383E01 8OSE02 9GIE04 3.74E-04
Fo2 0.00E+00  0.00E+00 3.13E01 335E-01 430E-03 240E02 S564E02  550E02  1.00E+00 1.00E+00 237E01 62801 944E-01 74201 329E-01 644E01
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When Table 5 is examined, HSSAOA was successful in 16 benchmark functions, as in Group 1. 8 of them were unimodal and
the other 8 were multimodal benchmark functions. In the benchmark functions that HSSAOA was successful, the second
successful algorithm was AOA with 14 benchmark functions. Other algorithms with successful results were AOA (in 2
benchmark functions), PSO (in 3 benchmark functions) and FFA (in 1 benchmark function). As a result of the analysis, other
algorithms could not achieve the best results in optimizing the benchmark functions. Table 6 shows the results of the wilcoxon
rank sum test of the optimized benchmark functions according to Group 2.

Table 6

According to Group 2, wilcoxon rank sum test p values (N/A = not applicable)

F, HSSAOA SSA AOA PSO GA FFA Ccs JAYA
F N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, 2.87E-11 2.87E-11 2.87E-11 7.10E-04 2.87E-11 N/A 2.87E-11 2.87E-11
Fy 3.39E-07 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy 2.87E-11 1.15E-02 2.87E-11 N/A 2.87E-11 7.73E-10 2.87E-11 2.20E-05
Fio N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fiy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi, 2.87E-11 3.18E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi3 N/A 2.87E-11 2.13E-09 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fia N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fis N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fie N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fiy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fig 2.87E-11 4.49E-08 8.14E-03 N/A 2.87E-11 3.42E-03 5.23E-11 7.90E-05
Fiqg N/A 2.87E-11 3.18E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fao 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fyy N/A 5.32E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

According to Table 5, statistical analysis was performed between successful algorithms and other algorithms. According to
the results in Table 6, these algorithms obtained statistically significant differences compared to the algorithms they were
compared. Table 7 contains the average and standard deviation results of the optimized benchmark functions according to
Group 3.

Table 7
Normalized (0-1) average (Ave.) and standard deviation (Std.) results of optimized benchmark functions according to Group 3
. HSSAOA SSA AOA PSO GA FFA cs JAYA

¥ Ave. Std. Ave.  Std.  Ave.  Std. Ave.  Std. Ave.  Std.  Ave.  Std.  Ave.  Std.  Ave.  Std.

Fi  000E+00 000EH00 422E-02 536E02 137E-07 S568E-07 4.12E03 367E-03 947E-01 759E01 323E01 394E01 100E+00 5.12E01 9.77E-01 1.00E+00
F2  000E+00 000E+00 799E-02 30SE01 7.77E05 S593E04 222E03 664E03 8I16E01 868E-01 421E02 376E01 100E+00 1.00E+00 5.60E-02 167E-01
F3 000E+00 000E+00 1.16E-01 270E-01 2.4E04 182E03 209E02 321E02 100E+00 1OOE+00 1.16E01 S77E01 97IE0l 6.89E-01 S568E01 8.SIEO1
Fy  000E+00 000E+00 9.12E09 143E-08 624E-18 245E-18 402E-15 193E-15 100E+00 100E+00 434E09 522E09 243E01 144E01 548E-07 8.03E-07
F5  000E+00 000E+00 603E-10 2.79E09 375E42 991E42 96909 38908 100E+00 1.00E+00 149E-10 497E-10 305E01 289E01 175E-04 5.17E-04
Fs  000E+00 000E+00 7.53E02 3.02E01 478E05 5.I8E-04 216E03 6S5IE03  785B-01 100E+00 427E02 456E-01 100E+00 6.14E01 S49E-02 146E-01
F;  119E03 103E04 329E-04 103E03 983E04 267E04 000E+00 0.00E+00 945E-01 100E+00 102E05 121E05 100E+00 9.1SE01 667E-03 1.63E-02
Fg  229E-305 000E+00 10SE-11 907E-12 000E+00 O000E+00 194E-11 3.7E-11 100E+00 1.00E+00 949E07 G6A2E-07 438E06 446E06 1.76E-02 747E-02
Fo  171E01 124E01 736E06 194E05 100E+00 1.00E+00 O0.00E+00 O0.00E+00 798E-03 543E03 5.11E08 895E08 LI7E05 884E06 LIOE04 2.88E-04
Fio 000E+00 000E+00 408E03 822E03 73GE-11 11SE-09 238E02 249E-01 100E+00 1.00E+00 237E-02 739E02 840E01 S570E-01 1.09E02 2.88E-02
Fi1 000E+00 000E+00 445E-04 173E03 220E-10 160E09 3.09E03 7.62E03 931E01 S867E01 225E-03 8O03E03 100E+00 1.00E+00 1I19E02 566E-02
Fi 347602 354B02  4.16E-13 341E-13 100E+00 100E+00 0.00E+00 O0.00E+00 265E-03 274E03 108E-08 89IE09 4.52E08 630E08 136E02 1.05E-02
Fi3 000E+00 000E+00 182E01 3.10E01 305E09 218E08 605E01 6.8E01 60GE0l 294E01 449E01 473E01 100E+00 250E01 877E01 1.00E+00
Fis 000E+00 000E+00 166E01 394E01 380E-05 702E-04 297E02 270E-01 902E-01 100E+00 742E02 431E01 100E+00 685E-01 243E01 436E-01
Fis 000E+00 000E+00 1.77E-02 241E02 994E02 639E01 873E02 828E02 948E-0l 100E+00 239E-03 461E03 100E+00 7.68E01 391E-02 347E-02
Fis 000E+00 000E+00 681E01 100E+00 482E-03 767E-02 826E01 6.13E-01 695E-01 481E01 100EH00 563E01 973E01 231E01 548E01 8352E01
Fi7 000E+00 000E+00 552E-10 344E-10 442E-10 7.70E-10 166E-11 925E-12 100E+00 100E+00 18IE-09 1O4E09 10IE06 109E06 755E05 121E-04
Fig 684E01 4.11E01 142E03 772E04 100E+00 1.00E+00 0.00E+00 0.00E+00 139E01 486E02 9.77E-04 86OE04 3.15E03 158E03 14202 183E-02
Fig 000E+00 000E+00 106E06 358E06 OO0SE-32 388E-31 168E-04 270E-04 100E+00 1.00E+00 242E-03 5SOIE03 482E01 412E01 S96E04 187E-03
Fao 158E-151 1.79E-151 520E-04 484E-03 0.00E+00 0.00E+00 9.17E07 193E06 100E+00 1.00E+00 10GE-02 4.14E02 484E02 89SEL2 283E02 120E-01
Fo1 000E+00 728E-36  155B06 577606 133E27 000E+00 18IE05 10IE04 889E0l 573E01 145E-01 100E+00 1OOE+00 478E-01 406E-04 533E-04
Fo2 000E+00  0.00E+00 187501 373E-01 20SE03 1.63E02 431E02 523E02 791E01 1O0EH00 125E-01 286E01 100E+00 732E-01 295E01 S565E01
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According to the data in Table 7, HSSAOA achieved the best results in a total of 16 benchmark functions, 8 of which are unimodal
and 8 of which were multimodal, as in previous analyzes (Table 3 and Table 5). In the benchmark functions that HSSAOA was
successful, the second successful algorithm was AOA with 14 benchmark functions. AOA (in 2 benchmark functions) and PSO (in
4 benchmark functions) were the other two algorithms that achieve the best results. Table 8 shows the results of the wilcoxon rank
sum test of the optimized benchmark functions according to Group 3.

Table 8

According to Group 3, wilcoxon rank sum test p values (N/A = not applicable)

F, HSSAOA SSA AOA PSO GA FFA CS JAYA
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F, N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F3 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fs N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fg N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
F; 2.87E-11 1.04E-10 2.87E-11 N/A 2.87E-11 2.60E-04 2.87E-11 2.87E-11
Fg 3.88E-04 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fq 2.87E-11 1.95E-02 2.87E-11 N/A 2.87E-11 3.18E-11 2.87E-11 1.09E-03
Fio N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fiy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fip 2.87E-11 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fi3 N/A 2.87E-11 2.51E-05 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fiy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fig N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fie N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fiz N/A 2.87E-11 9.19E-06 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fig 2.87E-11 2.58E-06 1.63E-08 N/A 2.87E-11 7.91E-04 2.87E-11 4.91E-06
Fig N/A 2.87E-11 7.03E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fyo 2.87E-11 2.87E-11 N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fyq N/A 2.87E-11 5.32E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11
Fy N/A 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

When Table 8 is examined, according to Table 7, HSSAOA, AOA and PSO algorithms have created a statistically significant
difference compared to other algorithms with which they were statistically compared in benchmark functions they were successful.
Fig. 4-6 shows the logarithmic convergence curves of the fitness values of some functions optimized by the algorithms run according

to Group 1-3, respectively.
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When the convergence curves of the functions in Fig. 4-6 are examined, it is seen that HSSAOA has better optimization. While the
fitness values of other algorithms become stable after a certain iteration value, the hybrid algorithm continued to improve fitness
values until the last iteration value.

5. Conclusions and Future Works

HSSAOA is a hybrid metaheuristic algorithm developed by adapting the exploration phase equations of AOA to replace the SSA's
equations for the position update of the leader salp/salps and introducing new updates to the existing structure. The hybrid algorithm
achieved the best result in 16 of 22 benchmark functions in each group compared to 7 algorithms compared. According to these
results, the algorithms were subjected to the wilcoxon rank sum statistical test. The algorithm that was successful in each group was
compared with other algorithms. As a result, HSSAOA obtained a statistically significant difference compared to the other 7
algorithms. This indicates that the algorithm was successful in both stages. This is proof that different metaheuristic algorithms can
be hybridized by changing the exploration and/or exploitation stages and better results can be achieved. The developed hybrid
algorithm is generally successful. However, there are also benchmark functions where it cannot achieve the best results. In this case,
the algorithm can be tried to be improved without changing the structure of the hybrid algorithm. For example, by increasing the
number of search agents and the number of iterations or by updating the constant values of the algorithm with different values, it
can be observed whether the algorithm is successful in terms of performance without changing the structure of the algorithm. In
cases where the hybrid algorithm cannot be successful without changing its structure, it can be determined whether the algorithm is
successful in terms of performance by changing the structure of the algorithm. For example, hybridizing the hybrid algorithm with
a third algorithm or adding/changing the part taken from the AOA to a different or same part of the SSA can be given as examples
of structural change. In short, with the changes made, it is thought that HSSAOA will be a better hybrid metaheuristic algorithm.

In addition, it is thought that the algorithm will be successful in areas such as optimizing different functions, training artificial neural
network, clustering and feature selection by using this hybrid algorithm in future studies.
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