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 During the spread of the epidemic, the home delivery service (HDS) has been quickly introduced 
by retailers which helps customers avoid the risk of viral infection while shopping at offline stores. 
However, the operation cost of HDS is a huge investment for O2O retailers. How to minimize the 
operating costs of HDS is an urgent issue for the industry. To solve this problem, we outline those 
management decisions of HDS that have an impact on operating costs, including dynamic vehicle 
routing, driver sizing and scheduling, and propose an integrated optimization model by 
comprehensively considering these management decisions. Moreover, the dynamic feature of 
online orders and the heterogeneous workforces are also considered in this model. To solve this 
model, an efficient adaptive large neighborhood search (ALNS) and branch-and-cut algorithms are 
developed. In the case study, we collected real data from a leading O2O retailer in China to assess 
the effectiveness of our proposed model and algorithms. Experimental results show that our 
approach can effectively reduce the operating costs of HDS. Furthermore, a comprehensive 
analysis is conducted to reveal the changing patterns in operating costs, and some valuable 
management insights are provided for O2O retailers. The theoretical and numerical results would 
shed light on the management of HDS for O2O retailers. 
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1. Introduction 

 
During the spread of the epidemic, the online-to-offline (O2O) retail mode is currently popular in the retail industry. The O2O 
retail mode implements both offline sales and online sales in an offline store. Customers can place orders online and receive 
their goods through the home delivery service (HDS) offered by retailers, while traditional offline customers pick up the goods 
by themselves and check out at cashier desks (Chen, Fan, Gu, & Pan, 2022). As HDS helps customers avoid the risk of viral 
infection while shopping at offline stores, these retailers configured with HDS have grown rapidly (He et al., 2021). In 
practice, there are two specific modes to help retailers to configure HDS: self-building and platform mode. For the self-
building mode, the retailer developed an app and built a fleet to provide HDS to consumers, such as Hema Fresh in China and 
Costco in the U.S. For the platform mode, retailers sell on an independent Online-to-offline (O2O) platform and the HDS is 
provided by the O2O platform, such as Meituan in China and Instacart, Postmates, and DoorDash in the U.S. In this paper, 
our research is arising from an O2O retailer with the self-building mode. To express more concisely, the O2O retailer that 
appears later refers to the self-building mode. A typical O2O retailer was used to demonstrate how it works. Hema Fresh 
(Hema, 2021), which was established in 2017, is a pioneering O2O retailer in China, has more than 200 brick-and-mortar 
stores, and offers more than 7,000 high-quality items to 25 million customers. Local customers within a 3km radius of the 
offline shop could place orders online and choose the specific time windows of HDS to receive their goods. The length of 
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time windows is fixed and determined by the retailer, which we term the committed delivery time. Such as, Hema Fresh 
promises the HDS will be fulfilled within 30 minutes. As a result, the business hours of Hema Fresh are divided into multiple 
delivery periods based on the committed delivery time of HDS. Customers can choose which period to receive their goods. 
For the O2O retailers, HDS plays a key role, which directly affects customer satisfaction. However, the operation cost of HDS 
is a huge investment for O2O retailers. How to minimize the operation costs of HDS is an urgent issue for O2O retailers. Our 
research is focused on this question. To solve this problem, we divided the operation cost into transportation costs and 
employment costs by analyzing the operating process of HDS, and outlined those management decisions that have an impact 
on operating costs, including dynamic vehicle routing, driver sizing and scheduling. Furthermore, our proposed an integrated 
optimization method by comprehensively considering the impact of these management decisions on operation cost. To the 
best of our knowledge, few studies have integrated these issues to comprehensively analyze the impact of these multiple 
management decisions on HDS’ operation costs (see the literature review in Section 2).  
 
In addition, these unique characteristics of the O2O retail industry set our study apart from others, such as the dynamic features 
of online orders and the heterogeneous workforces. Firstly, the volume of online orders fluctuates dramatically both on an 
hourly and daily basis. In hourly terms, the volume of online orders has two distinct peak periods: lunchtime and dinner time. 
In daily terms, the volume of online orders also fluctuates greatly on holidays, weekends, and weekdays. Secondly, there are 
three types of workforce, namely, in-house, outsourcing, and crowdsourcing drivers, with different work shifts, shift lengths, 
serviceability, salary structures, and rest breaks. These unique characteristics of the O2O retail industry are also considered 
in our optimization model. Therefore, we developed an integrated optimization model to formulate the multiple management 
decisions, which also considers the dynamic features of online orders and the heterogeneous workforces. In this model, the 
multiple management decisions are formulated as three sub-models, which are multi-period vehicle routing problems with the 
deadline model (MPVRPD), the daily heterogeneous driver sizing and scheduling model (DHDSSM), and the monthly 
heterogeneous driver sizing and scheduling model (MHDSSM). Multiple interlinked constraints were incorporated into the 
three sub-models, which enables the integrated model to greatly reproduce the decision-making process in real scenarios. To 
obtain the optimal solution, the adaptive large neighborhood search (ALNS) algorithm and branch-and-cut algorithm are 
applied to solve the integrated model. A case study of an O2O retailer in China is explored to assess the effectiveness of our 
proposed model. In addition, comprehensive analyses are conducted to reveal the pattern of HDS efficiency changes, and 
several valuable management insights are provided. The contributions of this research are summarized as follows. 
 
(1) We proposed a novel integrated optimization approach for O2O retailers to minimize the operation cost of HDS by 

integrating multiple decision-making processes, including vehicle routing, drive sizing, and scheduling. 
(2) An integrated optimization model embedded with a scenario-based sample method is developed to formulate the problem, 

which considers the dynamic features of online orders and the heterogeneous workforces in the O2O retail industry. 
(3) The adaptive large neighborhood search and branch-and-cut algorithms are applied to solve the integrated optimization 

model, and the effectiveness of our proposed model and algorithms is verified by a real case study of a leading Chinese 
O2O retailer. 

(4) A comprehensive analysis is conducted to uncover patterns of change in HDS operating costs, and several valuable 
management insights are provided. The theoretical and numerical results would shed light on the management of HDS 
for O2O retailers. 

 
The remainder of this paper is organized as follows. Section 2 presents the related literature. The integrated optimization 
model and algorithms are introduced in Section 3. Section 4 is the case study. The discussion is shown in Section 5. Section 
6 is the conclusion and directions for future research. 
 
2. Related works 
 
The multiple decision-making processes in HDS consisting of vehicle routing, drive sizing, and scheduling, are embedded in 
our integrated model. Therefore, we focus on compiling the literature on vehicle routing, driver sizing, and scheduling in O2O 
retail and other service sectors due to some similarities with O2O retail. 
 
2.1 Dynamic vehicle routing problem 
 
The operation cost of HDS includes transportation costs and employment costs. Numerous studies have shown that 
management decisions on vehicle routing have an impact on transportation costs (Soeffker, Ulmer, & Mattfeld, 2022). As a 
result, literature on vehicle routing issues has been compiled. Considering the dynamic feature of online orders, the vehicle 
routing problem arising in O2O retail mode can be classified as the dynamic vehicle routing problem (DVRP). The literature 
on DVRP emerged in the late 1970s, and developed substantially, particularly since the beginning of the century (Ojeda Rios 
et al., 2021). Pillac, Gendreau, Guéret, and Medaglia (2013) provided a classification of DVRPs into four categories. Based 
on the operation process of O2O retail mode, the DVRP in O2O retail mode can be classified as static and deterministic 
problems (one of the four categories). In static and deterministic problems, all input is known beforehand and vehicle routes 
do not change once they are in execution. Multi-period static programming is an effective strategy to solve this type of DVRP, 
which transformed the problem into multiple static vehicle routing problems (Ojeda Rios et al., 2021). Therefore, we formulate 
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the DVRP in O2O retail mode as the static multi-period capacity vehicle routing problem (MPCVRP). Considering the time 
windows feature of online orders in HDS, the MPCVRP arising in O2O retail mode can be further classified as MPVRPTW. 
Some literature has adopted this model to formulate the DVRP in O2O retail mode. Lespay and Suchan (2022) introduced the 
territory design for MPCVRPTW arising in a food company’s distribution center and proposed a mixed-integer linear program 
(MILP) and heuristic algorithm to solve the problem. Wang et al. (2021) addressed the issue of collaboration and 
transportation resource sharing in retail, by formulating and solving a two-echelon collaborative multi-depot MPCVRP. And 
they proposed a multi-objective integer programming model and a heuristic algorithm to solve the problem. Formulating the 
dynamic routing plan problem as MPCVRPTW is feasible for most scenarios, but in this scenario of our research, a more 
efficient model can be used.  
 
In our research scenarios, the time window of online orders is fixed based on the typical retailer’s presentation in Section 1. 
In addition, the time window of these orders in a period is the same. Hence, for the DVRP arising in O2O retail, we can adopt 
a more relaxed formulation and define it as a multi-period capacity vehicle routing problem with a deadline (MPVRPD). 
Compared to the MPCVRPTW model, which is widely used in this field, MPVRPD is not only equally applicable to our 
research, but it is also more efficient to solve. The algorithm used to solve MPVRPTW also can be used to solve MPCVRPD. 
These algorithms can be divided into exact algorithms and heuristic algorithms. An overview of exact algorithms can be seen 
in these papers (Dayarian, Crainic, Gendreau, & Rei, 2015; Desaulniers, Pecin, & Contardo, 2019; Lam, Desaulniers, & 
Stuckey, 2022). However, the MDCVRPD is an NP-hard problem and its scale is much larger in real-world applications. 
Metaheuristics are often more suitable for practical applications. Therefore, we propose an improved ALNS algorithm to solve 
the CVRPD that is obtained by decomposing MDCVRPD. 
 
ALNS is a relatively new metaheuristic that was first introduced by Stefan Ropke and David Pisinger in their seminal works 
(Pisinger & Ropke, 2007; S. Ropke & D. Pisinger, 2006; Stefan Ropke & David Pisinger, 2006) as an extension of the large 
neighborhood search (Shaw, 1998). ALNS framework offers several benefits for the designers of optimization algorithms 
(Turkeš, Sörensen, & Hvattum, 2021). The framework of ALNS allows us to utilize multiple neighborhoods within the same 
searching process in an adaptive way, where this adaptiveness is attained by recording the performance of each neighborhood 
and dynamically adjusting the selection of methods according to this record (Keskin, Laporte, & Çatay, 2019). In addition, 
the adaptive selection of neighborhoods provides some extra freedom for the designers to incorporate more destroy and repair 
operators as the dynamic selection mechanism will limit the execution of ineffective operators(Guastaroba, Côté, & Coelho, 
2021). An overview of the ALNS can be found in these reviews (Ahuja, Ergun, Orlin, & Punnen, 2002; Elshaer & Awad, 
2020; Windras Mara, Norcahyo, Jodiawan, Lusiantoro, & Rifai, 2022). 
 
2.2 Heterogeneous driver sizing and scheduling 
 
The literature on workforce scheduling is quite vast, but we mainly focus on the literature about workforce scheduling in the 
O2O retail and other service sectors due to some similarities with retail. Several review papers were published covering the 
workforce scheduling problems for nurse rostering, physician scheduling, and railway crew scheduling (Defraeye & Van 
Nieuwenhuyse, 2016; Erhard, Schoenfelder, Fügener, & Brunner, 2018; Lee & Loong, 2019; Maria Gonzalez-Neira, 
Montoya-Torresc, & Barrera, 2017; Ojstersek, Brezocnik, & Buchmeister, 2020). And several authors contributed to 
workforce scheduling in the traditional retail sector include (Álvarez, Ferrer, Muñoz, & Henao, 2020; Bürgy, Michon-Lacaze, 
& Desaulniers, 2019; Chen et al., 2022; Mani, Kesavan, & Swaminathan, 2015; Mou & Robb, 2019). To the best of our 
knowledge, no review paper on driver scheduling problems in the O2O retail context has been published. DHDSSM and 
MHDSSM arising in O2O retail can be seen as an extension of workforce scheduling problems. Baker Kenneth (1976) 
classified workforce scheduling problems into three types based on the scheduling cycle; (1) shift scheduling: which refers to 
the assignment of daily work shift; (2) day-off scheduling: which refers to the assignment of days-off into in weekly schedule; 
and (3) weekly tour scheduling: it refers to the combination of shift scheduling and day-off scheduling. Considering that the 
employment cycle of drivers in O2O e-commerce is measured in months, we combine shift scheduling, day-off scheduling, 
and weekly tour scheduling, to extend the scheduling problem as DHDSSM and MHDSSM. Furthermore, each month, the 
volume of online orders also fluctuates greatly on holidays, weekends, and weekdays. Hence, a scenario-based sample method 
is applied to predict daily online orders (Liu, Sadowska, & De Schutter, 2022; Qian, Guo, Sun, & Wang, 2022), which makes 
the driver's scheduling scheme more accurate. 
 
In this paper, our proposed problem has unique features. Ernst, Jiang, Krishnamoorthy, and Sier (2004) classified the 
scheduling problems into three categories based on the demand: (1) task-based: it refers to the demand of employees obtained 
for the individual task; e.g., transport scheduling, bus scheduling; (2) shift-based: it refers to the number of workers required 
to be on duty during the different shift; e.g., nurse scheduling, ambulance scheduling, and crew scheduling; and (3) flexible 
demand: it refers to varying demand in the smallest period of the planning horizon. e.g., retail workforce scheduling, and call 
center scheduling. Based on the categories, our proposed DHDSSM is a mixed scheduling problem, due to the scheduling of 
crowdsourcing drivers in O2O retail mode being flexible demand, and the in-house and outsourcing drivers being shift-based.  
In addition, another feature that differs from other studies is the heterogeneity of drivers considered in our research. Xu et al. 
(2022) considered two types of individuals for the vehicle routing problem in disaster scenarios. Another heterogeneity of 
workers, such as learning ability and worker skills, was also considered in these studies (Fang, Guan, Yue, Zhang, & Wang, 
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2022; Fichera, Costa, & Cappadonna, 2017; Toth & Kulcsar, 2021). In the O2O retail industry, there are three different types 
of drivers that can be hired to deliver goods. For each type of driver, their salary structure, serviceability, work shift, shift 
length, and rest break are different. In our study, we comprehensively considered these heterogeneities. In addition, the 
DHDSSM and MHDSSM are integrated with the dynamic vehicle routing problem in this paper, which is more difficult to 
solve. Zamorano and Stolletz (2017) devised a branch-and-price algorithm to solve the technician routing and scheduling 
problem with up to about 66 customers. Pereira, Alves, and Moreira (2020) proposed a constructive algorithm and heuristic 
algorithms based on ant colony optimization to solve the multiperiod workforce scheduling and routing problem with up to 
about 20 customers and 60 tasks. Punyakum, Sethanan, Nitisiri, Pitakaso, and Gen (2022) proposed a heuristic algorithm to 
tackle a multi-visit and multi-period workforce scheduling and routing problem with up to about 100 customers. In this 
scenario of our search, the number of online orders during peak periods is more than 200. Existing studies have not dealt with 
such large-scale workforce and routing problems. Therefore, it is necessary to design new models and algorithms to solve 
large-scale workforce and routing problems. 
 
Based on the literature review and the characteristics of our research questions, a more relaxed formulation for DVRP arising 
in O2O retail is proposed. In addition, compared with the literature on workforce size and scheduling problem, our proposed 
DHDSSM and MHDSSM has more unique features. Furthermore, these existing approaches to the integrated problem 
consisting of vehicle routing and workforce scheduling are not applicable to large-scale instances. In this way, our study 
contributes to filling the above gaps. 

 
3. Proposed method 
 
3.1. Problem statement 
 
The research problem in this paper arises from a pioneering O2O retailer in China that has self-built HDS. The O2O retailer 
remains open from 8:30 to 22:00, seven days a week. Each day, the business hours are divided into multiple delivery periods 
based on the committed delivery time. For this retailer, the committed delivery time is set to 30 minutes, hence the business 
hour is divided into 27 delivery periods. Customers within a 3km radius of the offline shop can place orders online and choose 
a suitable delivery period to receive their goods. The volume of online orders fluctuates dramatically both on an hourly and 
daily basis. In hourly terms, the volume of online orders has two distinct peak periods: lunchtime and dinner time. In daily 
terms, the volume of online orders also fluctuates greatly on holidays, weekends, and weekdays. In O2O retail, there are three 
types of drivers available (in-house, outsourcing, and crowdsourcing drivers), which have different work shifts, shift lengths, 
service quality, salary construct, and rest breaks. For each driver, all depart from the offline shop. After completing the 
delivery, in-house and outsourcing drivers need to return to the offline shop and wait for the next task. Crowdsourcing drivers 
don’t need to go back to the shop. O2O retailers have strict requirements for HDS service. 
 
In this scenario, the operation cost of HDS is a huge investment for O2O retailers. How to maintain the service level of HDS 
within the acceptable range of customers with minimum operation cost is a new challenge for O2O retailers.? We decompose 
the complex problem into three sub-problems, as follows. 
 

(1) How to minimize transportation costs for each period? 
(2) How to minimize employment costs for each day? 
(3) How to minimize the driver sizing for one month? 

 
Meanwhile, the requirements of retailers, customers, and drivers need to be satisfied. In these problems, we make the following 
assumptions which are common in the literature on O2O retail. For each type of driver, the average speed obtained from 
historical orders is adopted to represent their delivery speed. For each type of driver, the average service score obtained from 
the customer’s rating in historical orders is adopted to represent their service quality. If the customer’s rating is higher, its 
service quality is better. 
 
The transportation and employment costs of HDS have an impact on management decisions regarding vehicle routing, driver 
sizing, and scheduling. Therefore, this paper proposed a systematic methodology to solve these problems, which will be 
introduced in the next part. To make the methodology easier to understand, the mathematical notation and description in this 
paper are presented in Table 1. 
 
Table 1  
Definition of symbols. 

Set Description 
V,E Sequences of vertices V and edges E in graph G, V={1,…v…n}, E={1,…e…n}, 𝑣 ∈ 𝑉, 𝑒 ∈ 𝐸. 
M Sequences of days in a month, M={1,…m…28}, 𝑚 ∈ 𝑀. 
M’ Sequences of weekends in a month, M’={6,…m…28}, 𝑚 ∈ 𝑀′. 
T Sequences of periods in a day, T={1,…t…n}, t∈T. 
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W Driver’s types of in-house, outsourcing, and crowdsourcing are indicated by serial numbers 0, 1, and 2, 
W={0,1,2}, 𝑤 ∈ 𝑊. 𝐻௪ Order of work shifts for wth type drivers, 𝐻௪={1,…h,…,n}, ℎ ∈ 𝐻௪, 𝑤 ∈ 𝑊. 

Parameters 𝑄௪ Number of available drivers with the wth type, 𝑞 ∈ 𝑄௪, 𝑤 ∈ 𝑊. 𝑝௪௛  Number of peak periods covered by the hth work shift of the wth type drivers, 𝑤 ∈ 𝑊, ℎ ∈ 𝐻௪. 𝑙௪ Shift length of the wth type drivers, w∈W. 𝑟௪ Service quality of the wth type drivers, 𝑤 ∈ 𝑊. 𝑟𝑠௜ Customer’s rating score of the ith order, 𝑖∈O. 𝑡𝑔௜ The generation time of the ith order; 𝑖∈O. 𝑡𝑐௜ Completion time of the ith order; 𝑖∈O. 𝑡𝑒௜ Earliest arrival time of the ith order; 𝑖∈O. 𝑡𝑙௜ Latest arrival time of the ith order; 𝑖∈O. 𝑙𝑝௜ Pick-up location of the ith order; 𝑖∈O. 𝑙𝑑௜ Drop-off location of the ith order; 𝑖∈O. 𝑑௜௝ Distance between the ith order and jth order, 𝑖, 𝑗∈O. 𝑓𝑐௪ Fixed cost per day for the wth type drivers, w∈W. 𝑣𝑐௪ Variable cost per order for the wth type drivers, 𝑤∈W. 
a Minimum working day in a month. 
b Maximum working day in a month. 
c Vehicle transportation costs per kilometer. ծ Average number of times per month that drivers serve during peak hours. 
Ʊ Average speed of the driver in meters per second. 
ℇ Probability of crowdsourcing drivers accepting orders. 
մ Maximal number of days off scheduled on weekends per month. 
β Maximum capacity of vehicles. 
ℛ Average service time for the customer, such as parking time, upstairs time, etc. 
Ɵ Minimum service score required by retailers. 

Decision Variables 𝑢௜ Arriving time of the ith order, 𝑖, 𝑗 ∈ 𝑂௧. 𝑣௜௝௦  If sth vehicle contains the ith order and jth order, 𝑣௜௝௦ = 1;otherwise, 0. 𝑖, 𝑗 ∈ 𝑂௧, 𝑠 ∈ 𝑆௧. 𝑥௦௪௧  In the tth period, if the sth vehicle is assigned to wth type drivers, 𝑥௦௪௧ = 1; otherwise, 0. 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆௧, 𝑤 ∈ 𝑊. 𝑦௪௛ Number of the wth type drivers required for the hth work shift, ℎ ∈ 𝐻௪, 𝑤 ∈ 𝑊. 𝑧௤௪௠௛ If the qth of the wth type driver works on the hth work shift of the mth day, 𝑧௤௪௠௛ = 1; otherwise, 0. 𝑚 ∈ 𝑀, 𝑞 ∈𝑄௪, ℎ ∈ 𝐻௪, 𝑤 ∈ 𝑊. λ௤௪ If the qth of the wth type driver is employed, λ௤௪ = 1; otherwise, 0. 𝑤 ∈ 𝑊, 𝑞 ∈ 𝑄௪. 
 

3.2 Methodology 
 
A three-stage optimization methodology is proposed to minimize the transportation and employment costs of HDS. The 
framework of the three-stage optimization methodology is shown in Fig. 1. At first, a scenario-based sample method is applied 
to formulate the hourly and daily fluctuations of online order volumes. Historical data of online orders in these scenarios 
including peak periods, weekdays, weekends, and festivals are used to predict the order volumes. Machine learning is a 
powerful tool for scenario prediction and makes predictions more accurate (Hendry & Pretis, 2022; Liu et al., 2022; Qian et 
al., 2022). Based on the forecast data, we can further optimize the vehicle routing, driver sizing, and scheduling decisions.  
 
In this methodology, three interconnected sub-models are constructed based on the multiple management decisions in HDS, 
which are MPVRPD, DHDSSM, and MHDSSM. For each period, MPVRPD is applied to minimize transportation costs 𝑇𝐶௧௠ 
and obtain the low bound of drivers’ demand numbers. After the low bound of drivers’ demand number in each period is 
obtained by the MPVRPD, which will be used as a constraint in DHDSSM. DHDSSM is developed to obtain the minimum 
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demand number for different types of drivers in a day. The daily employment costs are denoted as 𝐸𝐶௠. Until the daily 
demand numbers for different types of drivers are obtained, MHDSSM is applied to obtain the monthly minimal driver sizing. 
 
Using a three-stage model to describe the problem can improve computational efficiency and facilitates solving larger-scale 
cases. Since MPVRPD is an NP-hard problem, if we integrate this problem with the driver sizing and scheduling problems 
into a single model, the computation time of this model will be unacceptable when dealing with large-scale cases. Therefore, 
we developed the three-stage model. Furthermore, multiple interlinked constraints were incorporated into the three sub-
models, which enables the model to greatly reproduce the decision-making process of HDS in real scenarios. Each sub-model 
will be described in detail in the next section. 

Future data of online orders 

Scenario-based sample method

Historical data of online orders  

Multi-period capacity vehicle 
routing problem with deadline 

(MPVRPD)

Demand for drivers in each period

Daily heterogeneous driver 
sizing and scheduling model  

(DHDSSM)

Daily demand for drivers 

Minimizing daily 
transportation costs

Monthly heterogeneous driver 
sizing and scheduling model  

(MHDSSM)

Monthly demand for drivers 

Minimizing monthly 
driver sizing

Improve the operational 
efficiency of IDS

Multiperiod
Multiday

Minimizing daily 
employment costs

Predict fluctuations in 
order volume 

 
Fig. 1. Framework of the three-stage optimization methodology. 

 
3.3 Models 

 

3.3.1 Model of MPVRPD 
 
The first-stage model is MPCVRPD. Classical models of MPVRPD can be found in these papers (Dayarian et al., 2015; 
Larrain, Coelho, Archetti, & Speranza, 2019; Lespay & Suchan, 2022). Considering the characteristics of the O2O retail, we 
modified the classical model as follows. 
 

(1) Objective function 
 
For each period, the objective function aims to minimize the transportation cost 𝑇𝐶௧௠. The transportation cost is mainly related 
to the travel distance, so the objective function is shown below. 
 𝑇𝐶௧௠ = Min෍ ෍ 𝑑௜௝𝑣௜௝௦(௜,௝)∈ை೟௞∈ௌ ∗ c ∀𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀 (2) 

 

(2) Constraints 
 

Constraints (3) and (4) indicate that vehicles start and end at the offline shop.  
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Constraint (5) represents that each order must be delivered.  ∑ ∑ 𝑣௜,௝௦(௜,௝)∈ை೟௦∈ௌ೟ =  1  ∀𝑖, 𝑗 ∈ 𝑂௧ (5) 

Constraint (6) indicates the volume of orders assigned to vehicles could not exceed the capacity of the vehicle.  ෍ 𝑣௜,௝௦(௜,௝)∈ை೟ ≤ 𝛽 ∀𝑠 ∈ 𝑆௧ (6) 

Constraints (7) and (8) show that the arrival time of orders must be less than the deadline.  𝑢௜ + 𝑑௜௝/Ʊ + ℛ −𝑀(1 − 𝑣௜௝) ≤ 𝑢௝ ∀𝑖, 𝑗 ∈ 𝑂௧ , s ∈ 𝑆௧ (7) 𝑢௜ ≤ 𝑡௜௟ ∀𝑖 ∈ 𝑂௧ (8) 
Constraint (9) is the flow balance constraint.  ෍ 𝑣௜௝௦(௜,௝)∈ை೟ −෍ 𝑣௝௜௦(௝,௜)∈ை೟ =  0 ∀s ∈ 𝑆௧ (9) 

Constraints (10) and (11) denote the range of decision variables. 𝑣௜௝௦ ∈ {0,1} ∀i, j∈𝑂௧, 𝑠 ∈ 𝑆௧ (10) 𝑢௜ ≥ 0 ∀𝑖 ∈ 𝑂௧ (11) 
 

3.3.2 Model of DHDSSM  
 
The second-stage model is DHDSSM. An integer linear programming model is devised to formulate the DHDSSM, which 
aims to minimize daily employment costs. In this model, the heterogeneity of drivers with different work shifts, shift lengths, 
serviceability, and salary structures are considered. Different work shifts 𝐻௪ mean that each driver’s work shift can start at a 
different time. And the shift length 𝑙௪ of different types of drivers is different. If the retailer’s business hours are from 8:30 to 
22:00, the relationship between 𝐻௪ and 𝑙௪ can be expressed as follows, taking in-house drivers as an example. Set the shift 
length of 𝑙଴ to 8 hours, and work shifts of in-house drivers are obtained by dividing business hours by the shift length 𝑙଴. The 
order of these work shifts is stored in 𝐻଴, noted as 𝐻଴ = {1, … ,11}, ℎ ∈ 𝐻଴. If an in-house driver is assigned to work in the 
first work shift, ℎ = 1, it means the in-house driver’s working hours are from 8:30 to 16:30. If an in-house driver is assigned 
to work in the last work shift, ℎ = 11, it means the in-house driver’s working hour is from 14:00 to 22:00. 
 

(1) Objective function 
 
For each day, the objective function 𝐸𝐶௠ aims to minimize the daily employment costs, which are related to the number of 
orders assigned to the employee and the fixed employment cost. Therefore, the objective function is shown below.  
 𝐸𝐶௠ = Min෍ ෍ ෍ 𝑥௦௪௧௪∈ௐ௦∈ௌ೟௧∈் ∗ 𝑣𝑐௪ ∗ |𝑠| + ෍ ෍ 𝑦௪௛௛∈ுೢ ∗ 𝑓𝑐௪௪∈ௐ  (12) 

 
(2) Constraints 

 
Constraints (13) indicates that each vehicle can be assigned to one driver. 
 ෍ 𝑥௦௪௧௪∈ௐ = 1 ∀𝑠 ∈ 𝑆௧, 𝑡 ∈ 𝑇 (13) 

 
In constraints (14), the number of vehicles required in the tth period is denoted as |𝑆௧|, which is obtained from the output of 
MPVRPD. Based on MPVRPD, we can obtain the number of vehicles required in each period. Constraints (14) represents 
that the number of drivers working in the tth period must be greater than the low bound of vehicles’ required numbers |𝑆௧| in 
the same period.  
 ෍ ෍ 𝑦௪௛௧⊂௛,௛∈ுೢ௪∈ௐ ≥ |𝑆௧| ∀𝑡 ∈ 𝑇 (14) 

 
Constraints (15) emphasizes that the number of drivers working in the tth period must be greater than the number of vehicles 
required in the tth period. 
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Since the working hours of crowdsourcing drivers are flexible, we apply probabilities to estimate the number of crowdsourcing 
drivers required in the tth period. In addition, the working time of crowdsourcing drivers is limited during the peak time 𝑇′. 
Constraints (16) indicates the number of crowdsourcing drivers required in the tth period. 
 ෍ 𝑥௦௪௧௦∈ௌ೟ ≤ ℇ ∗ |𝑆௧| w=2, ∀𝑡 ∈ 𝑇′ (16) 

 
Constraint (17) ensures that the service quality meets the requirements of O2O retailers. 
 ෍ ෍ ෍ 𝑥௦௪௧௪∈ௐ௦∈ௌ೟ ∗ 𝑟௪ ∗ |𝑠|௧∈் ≥ Ɵ (17) 

 
Constraints (18) and (19) denote the range of decision variables. 𝑠௦௪௧ = {0,1} ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆௧,𝑤 ∈ 𝑊 (18) 𝑦௪௛ ≥ 0, 𝑦௪௛ ∈ 𝑍 ∀ℎ ∈ 𝐻௪,𝑤 ∈ 𝑊 (19) 

 
(3) Valid inequalities 

 
We introduce two valid inequalities to strengthen the constraint (19), the inequalities are expressed as follows.  
 𝑦௪௛ ≤ 𝑀𝑎𝑥{𝑆௧} 𝑤 ∈ {0,1}, 𝑆௧ ⊂ 𝑆 (20) 𝑦ଶ௛ ≤ 𝑀𝑎𝑥{𝑆௧} ∗ 𝐸 𝑤 = 2, 𝑆௧ ⊂ 𝑆 (21) 

 
3.3.3 Model of MHDSSM  
 
In the third stage, the integer nonlinear programming model is devised to formulate the MHDSSM, which aims to minimize 
the monthly drive sizing. In this paper, we assume that each month consists of four weeks. And the model is shown below. 

 
(1) Objective function 

 
Since crowdsourcing drivers have free working hours and they decide on their own what time to start working, we just consider 
in-house and outsourcing drivers in MHDSSM. The driver’s types of in-house, outsourcing are indicated by serial numbers 0 
and 1, 𝑊ᇱ={0,1}, 𝑤 ∈ 𝑊′. 
 𝑀𝑖𝑛෍ ෍ λ௤௪௤∈ொೢ௪∈ௐᇱ  (22) 

(2) Constraints 
 
Constraint (23) limits that each driver can only choose one work shift in a day. 
 ෍ 𝑧௤௪௠௛௛∈ுೢ ≤ 1 ∀𝑤 ∈ 𝑊′,𝑞 ∈ 𝑄௪,𝑚 ∈ 𝑀 (23) 

 
Constraints (24) and (25) represent the driver's workday constraints.  
 ෍ ෍ 𝑧௤௪௠௛௛∈ுೢ௠∈ெ ≤ 𝑏 ∀𝑤 ∈ 𝑊ᇱ, 𝑞 ∈ 𝑄௪ (24)𝑖𝑓 λ௤௪ = 1, then෍ ෍ 𝑧௤௪௠௛௛∈ுೢ௠∈ெ ≥ 𝑎 ∀𝑤 ∈ 𝑊ᇱ, 𝑞 ∈ 𝑄௪ (25)

 
In constraint (26), 𝑦௪௛ is the output of DHDSSM, which be used as a parameter in MHDSSM. Based on DHDSSM, we can 
obtain the number of drivers required for each day, denoted as 𝑦௪௠௛. Constraint (26) indicates that the number of working 
drivers on the mth day must be greater than the number of drivers required on the same day. 
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Constraint (27) shows that the driver is hired as long as he or she is scheduled for a work shift. 
 

λ௤௪ = ⎩⎨
⎧0, ෍ ෍ 𝑧௤௪௠௛௛∈ுೢ௠∈ெ ≤ 01, ෍ ෍ 𝑧௤௪௠௛௛∈ுೢ௠∈ெ ≥ 1 ∀𝑤 ∈ 𝑊′, 𝑞 ∈ 𝑄௪ (27) 

 
The constraint (28) indicates that there is a limitation on the number of days off scheduled in weekends per month. Scheduling 
a day off on a weekday is not the same as a weekend, and more drivers want their day off to be scheduled on a weekend. That 
way they can spend the weekend with their families. 
 𝑖𝑓 λ௤௪ = 1, then,෍ ෍ 𝑧௤௪௠௛௛∈ுೢ௠∈ெᇱ ≤ մ ∀𝑤 ∈ 𝑊ᇱ, 𝑞 ∈ 𝑄௪ (28) 

 
The constraint (29) indicates that the higher the service quality of the driver, the more frequently the driver works during peak 
periods. 
 𝑖𝑓 λ௤௪ = 1, then෍ ෍ 𝑧௤௪௠௛ ∗ 𝑝௪௛௛∈ுೢ௠∈ெ ≥ ծ + ┌𝑟௪ − Ɵ┐ ∀𝑤 ∈ 𝑊ᇱ, 𝑞 ∈ 𝑄௪ (29) 

 
Constraints (30) and (31) denote the range of decision variables. 
 𝑧௤௪௠௛ ∈ {0,1} ∀𝑚 ∈ 𝑀, 𝑞 ∈ 𝑄௪ ,ℎ ∈ 𝐻௪ ,𝑤 ∈ 𝑊 (30) λ௤௪ ∈ {0,1} ∀𝑤 ∈ 𝑊, 𝑞 ∈ 𝑄௪ (31) 

 
(3) Valid inequalities 

 
The constraint (27) is relaxed to the formulation (32), which can simplify the model and improve the calculation efficiency. 
 ෍ ෍ 𝑧௤௪௠௛௛∈ுೢ௠∈ெ ≤ λ௤௪ ∗ |𝑀| ∀𝑤 ∈ 𝑊′,𝑞 ∈ 𝑄௪ (32)

 
3.4 Solving algorithm 
 
Since the three sub-models have different computational scales in the application, we apply heuristic and exact algorithms to 
solve them respectively. In the scenario we studied, the number of online orders during peak periods exceeded 200, and the 
exact-based algorithm could not solve the MPVRPD within an acceptable time. Therefore, an adaptive large neighborhood 
search algorithm (ALNS) is developed to solve the MPVRPD. Besides, the branch-and-cut algorithm is applied to solve 
DHDSSM and MHDSSM. 
 
The ALNS developed in this paper is an extension of the route minimization heuristic algorithm proposed by Nagata and 
Bräysy (2009) and the slack induction by string removals heuristic algorithm proposed by Christiaens and Vanden Berghe 
(2020). The main feature of our approach is that several novel destroy operators are devised and embedded in the ALNS. 
Moreover, a simple adaptive local search mechanism is developed to improve the quality of solutions. The next subsections 
will discuss the main building blocks of ALNS, starting with an overview of ALNS. 
 
Fig. 2 gives an overview of ALNS where the deleteTime, repairTime, and destoryTime are the user-defined parameters. Our 
proposed ALNS is based on a two-stage approach where the number of routes and the travel distance is independently 
minimized. In the first stage (lines1-8), the aim is to minimize the number of routes, and the aim of the second stage (lines 9-
15) is to minimize the travel distance. ALNS starts with an initial solution (line 1) generated by the function called 
INITIAL_SOLUTIONS(Ncus), where Ncus is the number of customers. In the initial solution, each customer is served 
individually by a separate route. And then the procedure (lines 2-8) is repeatedly applied to reduce the number of routes one 
by one until the total computation time reaches a given limit. 
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Algorithm 1 (Adaptive large neighborhood search) 
begain 

1: s := INITIAL_SOLUTIONS(Ncus); 
2: While time < deleteTime do 
3: s’, EP := DELETE_ROUTE(s) 
4: While EP ≠∅ or time < repairTime do 
5: s’’, EP = REPAIR_ALGORITHM(s’, EP) 
6: end while 
7: If EP = = ∅ then s := s’’ 
8: end while 
9: While time < destoryTime do 

10: s’, EP = DESTORY_ALGORITHM(s) 
11: While EP ≠∅  and time < reapairTime do 
12: s’’, EP = REPAIR_ALGORITHM(s’, EP) 
13: end while 
14: If EP = = ∅ then s := s’’ 
15: end while 

end 

Fig. 2. Framework of the adaptive large neighborhood search. 
 
To minimize the number of routes, the function DELETE_ROUTE(s) is started by selecting and removing a route randomly 
from the current solution s (line 3). Thus, the output s’ of the algorithm is a feasible partial solution, and the customer 
concluded in the removed route is stored to the ejection pool EP. The main idea of the ejection pool is to hold the set of 
unserved (ejected) customers. And then, the function REPAIR_ALGORITHM(s’, EP) is devised to insert the unserved 
customer in the partial feasible solution s’ one by one until the total computation time reaches a given limit or the EP is empty. 
After this loop, we check whether EP is empty. If EP is empty, it means that we find a new feasible complete solution. We 
can be based on the new solution and start the next iteration. 
 
In the second stage (lines 9–15), ALNS aims to minimize the travel distance until the computation time reaches a given time 
limit. For each iteration, the first function DESTORY_ALGORITHM(s) is designed to delete the bad customer nodes from 
the solution s. The classical destroy operators such as random removal (Stefan Ropke & David Pisinger, 2006), worst removal 
(S. Ropke & D. Pisinger, 2006), and shaw removal (Christiaens & Vanden Berghe, 2020) are applied in these functions. After 
that, the function REPAIR_ALGORITHM(s’, EP) is applied again to insert these bad customer nodes in the partial feasible 
solution s’ one by one until the total computation time reaches a given limit or the EP is empty. After this loop, we check 
whether EP is empty. If EP is empty, we base on the new solution to start the next iteration. 
 
Algorithm 2 (Repair algorithm) 

Input s’, EP 
1: While EP ≠∅  and time < reapairTime do 
2: Remove a customer v form EP with LIFO strategy 
3: s’’ := INSERT_ALGORITHM(v, s’) 
4: If s’’ is infeasible then  
5: s’’ := ADAPTIVE_LOCAL_SEARCH(s’’) 
6: If s’’ is infeasible then 
7: s’’, EP’  = EJECTION_ALGORITHM(v, s’’) 
8: EP = EP U EP’ 
9: s’ := s’’ 

10: End while 
11: If EP ≠ ∅ then s’’ := s’ 

Output s’’, EP  

Fig. 3. The framework of the repair algorithm. 
 
Fig. 3 gives an overview of the repair algorithm. This algorithm starts with the removed customer v which is selected from 
the EP according to the last in first out strategy (LIFO). First, the INSERT_ALGORITHM(v, s’) is applied to insert the 
customer v in the position with minimal distance. If there is not a feasible solution, the ADAPTIVE_LOCAL_SEARCH(s’’) 
is applied to search for a feasible solution in the neighboring area. If there is not a feasible solution in the neighboring area, 
the EJECTION_ALGORITHM(v, s’’) is used to randomly eject customers until the solution s’’ is feasible. the ejection 
customer is added to the EP (line 8). Finally, the feasible solution s’’ are copied to s’, start the next iteration. After this loop, 
we check whether the EP is empty. If EP is not empty, we restore the solution s’’ to the input state. 
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Fig. 4 gives an overview of the adaptive local search algorithm. The classical relocate, exchange, 2opt, 2opt* operators are 
used to search for a better feasible solution. A roulette wheel is applied as the adaptive mechanism. The preference value (PV) 
is initialized as a dictionary, the key is the operator’s name, and the value is initialized to 1 (line 1). The function 
RWSELSECTION(PV) based on the preference value PV can output the operator which has higher probabilities to improve 
the solution s. If the chosen operator finds a better feasible solution, the preference value PV of this operator is increased by 
1, otherwise, 0.5.  
 
Algorithm 3 (Adaptive local search algorithm) 

input s 
1: PV = {relocate:1,2opt*:1,exchange:1,2opt:1} 
2: While time < localsearchTime do 
3: operator_name = RWSELSECTION(PV) 
4: if operator_name ==’relocate’ then 
5: s’, save_cost = RELOCATE(s) 
6: If operator_name ==’ 2opt*’ then 
7: s’ , save_cost = 2OPT* (s) 
8: If operator_name ==’ exchange’ then 
9: s’ , save_cost = EXCHANGE(s) 

10: If operator_name ==’ 2opt’ then 
11: s’ , save_cost = 2OPT(s) 
12: If s’ is feasible and save_cost > 0 then 
13: PV[operator_name]=PV[operator_name]+1 
14: s := s’ 
15: else: 
16: PV[operator_name] = 0.5 
17: End while 

Output s 

Fig. 4. The framework of the adaptive local search algorithm. 
 
The branch-and-cut algorithm is an efficient method to solve the integer programming model. Considering that the DHDSSM 
and MHDSSM model is very compact and the size of instances in the application is small, we just use the standard process of 
the Branch-and-cut algorithm to deal with this problem. The pseudo-code of the algorithm is shown in this article (Hopcroft 
1973), so we do not make redundant claims here. 

 
4. Experimental results 
 
4.1 Data collected 
 
The data is collected from a leading O2O retailer in China which has more than 200 offline stores in China and over 400,000 
online orders per day. We took one of these stores as the subject of our study. The offline store located in the Yubei district 
of Chongqing, China. Local customers can place orders online and choose an appropriate time to receive their goods by the 
HDS. The O2O retailer remains open from 8:30 to 22:00, seven days a week. During each day, the business hours are divided 
into 27 time periods with a length of 30 minutes. We chose orders from a typical weekday as experimental data to validate 
our approach. The experiment data contains 2380 online orders. The critical information on online orders is shown in Table 
2. Complete data supporting the findings of this study are publicly available at https://github.com/0BigMax0/Data-BWSO. 
The temporal and spatial distributions of these online orders are shown in Figure 5. It’s obvious that online orders fluctuate 
more sharply during peak periods: like lunchtime and dinner time. Online orders are distributed within 3 km of offline stores. 
 

Table 2 
Partial information of historical orders on a weekday 

Order 𝒕𝒈𝒊 𝒕𝒄𝒊 𝒕𝒆𝒊 𝒕𝒍𝒊 𝒍𝒑𝒊 𝒍𝒅𝒊 W 𝒓𝒔𝒊 
1 8:12 8:52 8:30 9:00 [106.539375,29.592201] [106.531681, 29.576249] 1 100 
2 8:08 8:56 8:30 9:00 [106.539375,29.592201] [106.531811, 29.584772] 2 95 
3 8:08 8:58 8:30 9:00 [106.539375,29.592201] [106.532845, 29.589659] 1 100 

… … … … … … … … … 
2378 21:19 21:51 21:30 22:00 [106.539375,29.592201] [106.533968, 29.589057] 3 80 
2379 21:26 21:52 21:30 22:00 [106.539375,29.592201] [106.537291, 29.589327] 1 95 
2380 21:27 21:43 21:30 22:00 [106.539375,29.592201] [106.534673, 29.580077] 1 100 
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(a) Temporal distributions of orders                                        (b) Spatial distributions of orders 

Fig. 5. Temporal and Spatial distributions of orders (a)-(b). 
 
4.2 Parameter setting 
 
To verify the effectiveness of our proposed integrated optimization methodology, the ALNS is coded in Python 3.9, and runs 
in Windows 10 with Intel Core i5-8250U CPU, with 1.80 GHz and 8.00 GB RAM. The branch-and-cut algorithm is called 
from the Gurobi solver in version 9.1.2. In Gurobi, the gap of the optimal solution is set to 5%, and the maximum computation 
time of Gurobi is set to 10 minutes. In ALNS, the parameters of deleteTime, destoryTime, and reapairTime are set to 40, 20, 
and 5 in seconds respectively. In addition, other parameters are obtained by drawing the experience of the manager with a 
deep background in the O2O retail industry. All parameters used in the experiment are shown in Table 3. 
 
Table 3  
Setting model’s parameters. 

Parameters Unit Value 
W -- [0,1,2] 
M -- [1,2,3,…,28] 
T -- [1,2,3,,..,27} 𝐻଴ Hour [8:30,9:00,…,14:00] 𝐻ଵ Hour [8:30,9:00,…,14:00] 𝐻ଶ Hour [8:30,9:00,…,21:30] 𝑟௪ Score [95,85,80] 𝑓𝑐௪ CNY [35,150,0] 𝑣𝑐௪ CNY [2,0,4] 𝑙௪ Hour [8,8,0.5] 
a Day 12 
b Day 20 
c CNY 0.4 
Ʊ m/s 11 ծ -- 20 
ℇ -- 20 % 
մ Day 6 
β Orders 8 
ℛ Minute 3 
Ɵ Score 90 

 
4.3 Computation results in the real case  

 
4.3.1 Result of MPVRPD in each period 
 
To compare the efficiency of our proposed ALNS, the efficient memetic algorithm (MA) proposed by Nagata, Bräysy, and 
Dullaert (2010) is applied to solve the MPVRPD. Due to the very short committed delivery time, the calculation time for 
solving MPVRPD should ideally be less than 1 minute. In this paper, the calculation time for the ALNS and MA are limited 
to 1 minute. The experimental results are shown in Table 4. In Table 4, the first column represents the sequence of periods. 
The second and third columns show the start time and end time of the period. The fourth column represents the number of 
online orders in that period. The fifth column represents the results of the MA, which includes the minimum number of drivers 
(Min.D) and minimum transportation cost (Min.C) in CNY. The sixth column records the results of our proposed algorithm, 
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which also includes the same indexes. The last two rows statistics the cumulative number of drivers and the total transportation 
costs.  
 
Table 4 
Results of MPVRPD on a typical day 

Seq 𝒕𝒆 𝒕𝒍 Num  MA (1 min)  ALNS (1min) 
 Min.D Min.C  Min.D Min.C 

1 8:30 9:00 71  10 12.07  10 10.95 
2 9:00 9:30 81  12 11.54  11 10.45 
3 9:30 10:00 84  13 13.81  11 12.76 
4 10:00 10:30 64  11 9.04  9 8.54 
5 10:30 11:00 89  13 13.40  12 11.80 
6 11:00 11:30 90  13 13.17  12 12.21 
7 11:30 12:00 154  21 19.12  20 17.88 
8 12:00 12:30 147  20 17.23  19 16.79 
9 12:30 13:00 158  21 20.77  20 20.60 
10 13:00 13:30 153  20 20.71  20 18.91 
11 13:30 14:00 66  10 7.73  9 7.28 
12 14:00 14:30 57  9 6.88  8 6.10 
13 14:30 15:00 30  4 6.00  4 6.21 
14 15:00 15:30 80  11 12.04  11 11.87 
15 15:30 16:00 83  11 13.49  11 12.70 
16 16:00 16:30 63  9 8.00  8 7.39 
17 16:30 17:00 79  12 11.53  10 10.45 
18 17:00 17:30 59  8 8.05  8 7.32 
19 17:30 18:00 158  21 18.51  20 19.09 
20 18:00 18:30 171  22 22.95  22 20.70 
21 18:30 19:00 160  23 21.72  21 19.82 
22 19:00 19:30 104  16 15.13  14 15.39 
23 19:30 20:00 66  11 11.85  9 11.00 
24 20:00 20:30 37  5 5.12  5 5.27 
25 20:30 21:00 35  5 7.35  5 7.47 
26 21:00 21:30 29  5 5.20  4 4.86 
27 21:30 22:00 11  2 2.26  2 2.26 

Total   338 334.67  315 316.08 
 

The experiment results show that the ALNS is highly applicable to solving MPVRPD. The cumulative number of required 
drivers obtained by ALNS was 315, less than the 338 obtained by MA. In addition, ALNS obtained a total transportation cost 
of RMB 316.08. This is also better than the RMB 334.67 obtained by the MA. Therefore, our proposed ALNS is more effective 
for solving the dynamical vehicle routing problem of O2O home delivery services. Figure 6 shows part of the experimental 
results obtained by ALNS, which depicts the planned delivery paths in the periods 8:30-9:00 and 12:00-12:30. In this figure, 
the black point represents the location of online orders, and a colorful cycle represents a planned delivery path. These planned 
delivery paths have no significant redundancy and ensure that O2O retailers receive lower transportation costs. 
 

           
(a) Planned vehicle paths in 8:30-9:00                                (b) Planned vehicle paths in 12:00-12:30 

Fig. 6. Planned delivery paths in partial time intervals (a)-(b). 
 

4.3.2 Result of DHDSSM in each day 
 
Based on the experimental result in MPVRPD, the minimum number of drivers required in each period is obtained. Then, we 
will solve the driver sizing and scheduling problem, which is formulated as DHDSSM. In this paper, the branch-and-cut 
algorithm is applied to solve the DHDSSM. The experiment results are shown below. 
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The minimum daily employment cost obtained by the Gurobi solver is 4327, and the decision information is shown in Table 
5. In Table 5, the first column represents the sequence of periods. The second column represents the number of online orders. 
The third column shows the required number of drivers in each period, which are obtained by the MPVRPD. The last three 
columns show the decision information of the optimal scheduling plan, which records the number of drivers who start working 
at that time. The last row statistic is the total number of each column.  
 
Table 5  
The optimal solution of DHDSSM. 

Seq Orders Drivers In-house Outsourcing Crowdsourcing 
1 71 10 1 10 0 
2 81 11 0 0 0 
3 84 11 0 0 0 
4 64 9 0 0 0 
5 89 12 1 0 0 
6 90 12 4 1 0 
7 154 20 1 4 0 
8 147 19 0 3 0 
9 158 20 0 1 0 
10 153 20 1 0 0 
11 66 9 1 1 0 
12 57 8 0 2 0 
13 30 4 0 0 0 
14 80 11 0 0 0 
15 83 11 0 0 0 
16 63 8 0 0 0 
17 79 10 0 0 0 
18 59 8 0 0 0 
19 158 20 0 0 0 
20 171 22 0 0 2 
21 160 21 0 0 2 
22 104 14 0 0 0 
23 66 9 0 0 0 
24 37 5 0 0 0 
25 35 5 0 0 0 
26 29 4 0 0 0 
27 11 2 0 0 0 

Total 2380 315 9 22 4 
 
The experimental results show that 31 drivers are needed to fulfill the whole day’s online orders, and 4 planned delivery paths 
are needed for crowdsourcing. To more visually demonstrate the relationship between the driver's needs and the scheduling 
plan, we plotted Fig. 7, where the red line indicates the number of drivers required and the bar graph indicates the number of 
drivers supplied. In this figure, the number of drivers working in each period meet the number of drivers required. In addition, 
the number of idle drivers is higher in the middle of the day, so these idle drivers can have enough time to take turns for meals 
and rest. To make it easier for managers to use, the best decision information is presented in the form of a Gantt chart in Fig. 
8. Each driver can access his work shift in the Gantt chart. 
 

 

  
Fig. 7. Relationship between drivers' demand and the 
scheduling of drivers 

Fig. 8. Gantt chart for drivers’ work shifts 
 

 
4.3.3 Result of MHDSSM in a month 
 
Based on the DHDSSM, the number of drivers required in a day is obtained. To obtain the minimum number of drivers 
required in a month, we have to know the number of drivers required each day. Since the data of daily online orders is 
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necessary to generate the daily number of drivers required, we applied the scenario-based sample method to predict future 
online orders. The distribution of online orders in the same scenario has a certain correlation, hence in the context of the O2O 
retail industry, we can roughly divide the scenario into weekdays and weekends. The detailed prediction method can be found 
in this paper (Qian et al., 2022). However, due to the lack of complete online orders in each scenario, we assumed that the 
number of drivers required on the weekend day is more than 20% of that workday. After that, MHDSSM is applied to obtain 
the minimum number of drivers required in a month. The minimum driver sizing for a month obtained by the Gurobi solver 
is 45, and the decision information is shown in Table 6. In Table 6, the first column represents the sequence of drivers. The 
second column represents the type of driver. The third and fourth columns indicate the number of working days (WD) and 
days off (DO) in a month for each driver. The fifth column shows the number of days off scheduled on weekends (DOW). 
The last row indicates the number of peak times (NPT) served by the drivers. To make it easier for managers to use, the best 
decision information is presented in the form of a Gantt chart in Fig. 9. Each driver has a clear view of his workday in the 
Gantt chart. 
 
Table 6  
The optimal solution of MHDSSM 

Seq Type WD DO DOW NPT 
1 in-house 19 9 5 37 
2 in-house 20 8 6 38 
3 in-house 20 8 6 38 
4 in-house 18 10 5 36 
5 in-house 20 8 6 36 
6 in-house 19 9 5 37 
7 in-house 20 8 6 39 
8 in-house 20 8 6 36 
… … … … … … 
33 outsourcing 19 9 6 27 
34 outsourcing 20 8 6 31 
35 outsourcing 20 8 6 31 
36 outsourcing 19 9 6 28 
37 outsourcing 19 9 6 30 
38 outsourcing 20 8 6 31 
39 outsourcing 19 9 6 27 
40 outsourcing 20 8 6 30 
41 outsourcing 20 8 6 28 
42 outsourcing 20 8 6 31 
43 outsourcing 20 8 6 34 
44 outsourcing 20 8 6 28 
45 outsourcing 19 9 6 19 

 
Fig. 9. Gantt chart for drivers’ workday. 

 
5. Discussion 
 
5.1 Impact of the relaxation of rest break 
 
To analyze the impact of rest breaks on the monthly driver sizing, we focus on these important parameters b, and մ. The other 
parameters are set the same as those set in Section 5.3.3. The experimental results are recorded in Table 9. 
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In Table 7, the first column records the maximum working day in a month, which is set to 20, 22, and 24 days. The second 
column records the maximum number of days worked on weekends per month. The last column records the number of drivers 
required monthly obtained by MHDSSM. 
 
Table 7  
Impact of the relaxation of rest breaks 

b մ  Driver required in the month 
 In-house Outsourcing Total 

20 

2  36 96 132 
4  18 48 66 
6  13 32 45 
8  13 32 45 

22 

2  36 96 132 
4  18 48 66 
6  12 32 44 
8  11 27 38 

24 

2  36 96 132 
4  18 48 66 
6  12 32 45 
8  11 27 38 

 
As the parameter մ increases, the number of drivers decreases significantly. If the maximum working day in a month does not 
exceed 20 days, and regardless of whether days off are scheduled on weekends, O2O retailers just need to employ 45 drivers. 
If the maximum number of working days per month is set to 22 days, and regardless of whether days off are scheduled on 
weekends, O2O retailers just need 38 drivers. In this case, if drivers agree to set the maximum number of working days per 
month at 22 days, and regardless of whether days off are scheduled on weekends, the O2O retailer can hire the minimum 
number of drivers to fulfill online orders. 

 
5.2 Impact of the relaxation of shift length 
 
To analyze the impact of shift length on daily employment costs, we first set the salary composition for different types of 
employees during overtime work. Outsourcing divers earn 20 CNY per hour during overtime. In-house drivers earn 4 CNY 
for delivering an order during overtime. After that, we analyze the impact of shift length on the daily employment costs by 
solving the DHDSSM and MHDSSM. The experimental results are recorded in Table 8. In Table 8, the shift length of in-
house and outsourcing drivers in hours are set in the first and second columns respectively. The third columns are the minimum 
employment costs in CNY obtained by DHDSSM. The fourth and fifth columns represent the decision information of the 
optimal solution. The decision information contains the number of in-house drivers, outsourcing drivers, and the total number 
of drivers. 
 
Table 8  
Impact of the relaxation of shift length. 𝒍𝟎 𝒍𝟏 EC 

 Daily demand for drivers  Monthly demand for drivers 
 In-house Outsourcing Total  In-house Outsourcing Total 

8 
8 4327  9 22 31  13 32 45 
9 4448  13 17 30  19 25 44 
10 4227  11 16 27  16 23 39 

9 
8 4307  8 22 30  12 34 46 
9 4448  13 17 30  20 25 45 
10 4227  11 16 27  16 23 39 

10 
8 4253  6 22 28  9 32 41 
9 4328  10 17 27  15 25 40 
10 4227  11 16 27  16 23 39 

 
In this case, if O2O retailers maintain in-house drivers’ shift lengths at 8 hours and extend the shift length of outsourcing 
drivers to 10 hours, they can effectively reduce employment costs by 100 CNY. If O2O retailers maintain outsourcing drivers’ 
shift lengths at 8 hours and extend the shift length of in-house drivers to 10 hours, they can reduce employment costs by 74 
CNY. Therefore, extending the shift length of outsourcing drivers to 10 hours can effectively reduce employment costs for 
O2O retailers. 

 

5.3 Impact of the relaxation of committed delivery time  
 

(1) Committed delivery time’s impact on the distribution of online orders 
 
In this test, the committed delivery time is set to [15, 20, 25, 30, 35, 40, 45] in minutes. And then, we divide the 2380 online 
orders into the corresponding time intervals based on the completed time of these online orders. 
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Fig. 10. The distribution character of online orders with the different committed delivery time. 

 
As shown in Fig. 10, the line graph shows the number of online orders in each time interval. It is obvious that the committed 
delivery time is larger, and the number of online orders fluctuates more sharply during lunch and dinner time. When the 
committed time is set to 45 minutes, online orders exceed 250 in the peak period and below 50 in the low period. However, 
when the committed delivery time is set to 15 minutes, online orders are 120 in the peak period and below 50 in the low 
period. 
 

(2) Committed delivery time’s impact on daily transportation and employment costs 
 
To analyze the impact of the committed delivery time on the daily transportation cost, the ALNS is applied to solve the 
MPVRPD model with different committed delivery times. The experimental results are shown in Fig. 11.  
 

 
Fig. 11. The impact of the committed delivery time on transportation and employment costs. 

 
For the transportation cost, we would draw the conclusion that the longer the committed delivery time set by the O2O retailer, 
the lower the transportation costs. When the committed delivery time is set to 45 minutes, the transportation cost is only about 
289 CNY, which is just half of the transportation cost when the committed delivery time is set to 15 minutes. However, when 
we revisit the issue from the customer's perspective, customers' behaviors would change when setting a longer committed 
delivery time. Therefore, increasing the committed delivery time could reduce transportation costs, but there may be a risk of 
losing customers. 
 
For the employment cost, when the committed delivery time increases from 15 to 30 minutes, the employment cost decreases 
significantly. When the committed delivery time exceeds 30 minutes, the employment cost rises dramatically. The reason is 
that when the promised delivery time is shorter, the number of orders delivered by the driver is smaller to avoid overruns. If 
the committed delivery time is set too long, the number of online orders will be too huge. Although the capacity of delivery 
tools would be utilized sufficiently, a large number of drivers are still needed to fulfill these huge orders. In this case, if the 
committed delivery time is set to 30 minutes, which could obtain the minimum employment cost with 4327 CNY.  

(3) Committed delivery time’s impact on daily total costs 
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Fig. 12 illustrates the impact of the committed delivery time on the total cost. It is obvious that the share of transportation 
costs is low in the total cost, and that transportation costs decrease as the committed delivery time increases. Employment 
cost is a major component of total cost approaching 90%. In this case, if the committed delivery time is set to 30 minutes, the 
minimum total cost is 4643 CNY. 

 
Fig. 12. The impact of the committed delivery time on the daily total costs. 

 
6. Conclusion 
 
In this paper, we propose an integrated optimization methodology to minimize transportation costs and employment costs for 
O2O home delivery services. We propose an innovative integrated model that integrates multiple decision processes in HDS, 
including vehicle routing, drive sizing, and scheduling, and considers the dynamic characteristics of online orders and the 
heterogeneity of the workforce in O2O retail. To solve the integrated model, we developed an efficient adaptive large 
neighborhood search (ALNS) and branch-and-cut algorithms. A case study of an O2O retailer in China is explored to assess 
the effectiveness of our proposed model and algorithm.  
 
More importantly, some valuable managerial implications are proposed in the sensitivity analysis, which we summarize 
below. 
 
(1) To minimize the monthly driver sizing, it is an effective measure to not ensure that drivers' days off fall on weekends when 
making scheduling plans. In addition, it is also effective to extend the maximum number of working days per month, but it is 
not certain that every driver will agree. 
 
(2) To minimize the employment costs, it is a valuable attempt to extend the shift length of drivers. Extending the shift length 
of drivers contributes to reducing the number of drivers required each day. In the case study, even though we offer higher 
wages during overtime, it still helps us reduce employment costs. It has to be stressed that the effectiveness of this method 
depends on the salary structure of the driver. 
 
(3) To minimize transportation costs, it is an effective measure to extend the committed delivery time. However, when the 
committed delivery time is extended beyond 30 minutes, the employment cost rises dramatically. How to set an appropriate 
committed delivery time is the key. 
 
(4) To minimize the total costs, setting an appropriate committed delivery time is an effective measure. Based on our proposed 
method can help O2O retailers find the appropriate committed delivery time for their company. In this case, if the committed 
delivery time is set to 30 minutes, the minimum total costs 4643 CNY. 
 
Although this paper proposes an effective integrated optimization model to help O2O retailers minimize the total costs of 
HDS, there are still some limitations. More varieties of salary structures should be considered in future studies, which have a 
stronger impact on employment costs. Although the transportation cost is a relatively small part of the total cost, developing 
more efficient heuristic algorithms to obtain low-cost path planning solutions is still an effective way to reduce transportation 
costs. More heterogeneous features affecting the quality of delivery services should be considered. 
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