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 The mixed-model assembly line balancing problem (MMALBP) in multi-demand scenarios is 
investigated, which addresses demand fluctuations for each product in each scenario. The objective 
is to minimize the sum of costs associated with tasks allocation, workstation activation, and penalty 
costs for unbalanced workloads. A mixed integer programming model is developed to consider the 
constraint of workstation space capacity. A phased heuristic algorithm is designed to solve the 
problem. The computational results show that considering demand fluctuations in multiple demand 
scenarios leads to more balanced workstation loads and improved assembly line production 
efficiency. Finally, sensitivity analysis of important parameters is conducted to summarize the 
impact of parameter changes on the results and provide practical management insights. 
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1. Introduction 

 
The assembly line is a critical production line of manufacturing enterprises, and the layout of the assembly line determines 
the processing sequence of raw materials, the value-added space of products, and the actual economic benefits generated by 
the scheduling of various equipment and personnel (Daneshamooz et al., 2022). Therefore, whether the layout of the assembly 
line is reasonable directly affects the production efficiency and production cost of the enterprise. Manufacturers usually design 
and layout assembly lines according to actual production needs, to complete the tasks of transforming raw materials and semi-
finished products into final delivered products (Zhenping et al., 2023). 
 
Early research on assembly line problems (ALP) typically assumed a fixed production cycle and uniform production ratios 
across shifts without any changes. However, demand often fluctuates due to market and policy influences, and production 
tasks vary across shifts, resulting in significant deviations from expected performance and workstation loads. Existing research 
on demand fluctuations mainly focuses on two aspects: one is to re-optimize existing assembly line systems based on 
production conditions (rebalancing), and the other is to consider demand fluctuations in the initial design of assembly line 
layouts and develop a layout scheme that can respond to changes in demand (initial balancing). 
 
Generally, initial balancing methods are more effective than rebalancing methods in terms of balancing the cost and workload 
of assembly lines when dealing with demand fluctuations. In existing literature that applies initial balancing methods, most 
introduce flexible methods such as buffer zones, parallel assembly lines, and parallel workstations. A few studies have 
introduced parallel tasks, which allow the same tasks to be assigned to different workstations for processing, as a flexible 
method to deal with demand fluctuations. An assembly line with parallel tasks can flexibly handle fluctuating demands while 
balancing the workload of each workstation. However, the premise of introducing parallel tasks is to configure the 
corresponding production environment, such as equipment and materials, for the corresponding workstation. 
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This paper focuses on the assembly line balancing problem in the face of demand fluctuations. By introducing parallel tasks 
and enabling different product processing plans in different demand scenarios, the assembly line can maintain a good balance 
and workload distribution. For the sake of clarity, the problem proposed in this paper is defined as the mixed-model assembly 
line balancing problem in multi-demand scenarios. 
 
The rest of this paper is organized as follows: Section 2 provides a literature review of relevant studies. Section 3 describes 
our problem, introduces assumptions and relevant parameters, and presents the mathematical model. Then, in Section 4, a 
solution method is developed, and in Section 5, the computational results based on the instance of the assembly line problem 
set are discussed, along with corresponding sensitivity analysis, providing some practical management insights. Finally, 
Section 6 presents the conclusion and future directions for further research. 

2. Literature review 

This review is divided into two parts, beginning with a listing and analysis of the two existing balancing types for dealing 
with demand fluctuations, followed by an evaluation of the main measures, and influencing factors of existing flexible 
methods. 

2.1 Two existing assembly line balancing types 

At present, there are two main methods to deal with the assembly line balance problem of demand fluctuations: initial balance 
and rebalancing. 
 
The rebalancing method mainly considers two aspects: the product launch sequence and the worker processing. Sikora (2021) 
considers the balancing and sequencing problem of assembly lines under different demand scenarios, where the task allocation 
remains unchanged but the product launch sequence changes with the demand scenario. Li et al. (2023) address the problem 
of workload imbalance and product accumulation caused by demand fluctuations, with the objective of minimizing the number 
of workstations, maximizing workload balance, and reducing product waiting time. They solve the assembly line design and 
sequencing problem of different scales through hierarchical algorithms and mixed heuristic algorithms. Simaria et al. (2009) 
consider the U-shaped assembly line production under multiple demand scenarios, where each scenario produces only one 
product, and workers are allowed to move between multiple workstations to cope with demand fluctuations. Li and Gao (2014) 
model the assembly line balancing problem by setting the probability of occurrence of different demand scenarios, and allow 
workers to process the assembly line products in high-load demand scenarios that exceed the timeout. Yang and Gao (2016) 
train workers to have cross-functional abilities for adjacent workstations to solve the problem of workstation overload under 
different demand scenarios. 
 
The initial balancing method mainly starts from the actual layout of the assembly line, such as increasing buffer zones, adding 
parallel assembly lines, parallel workstations, and setting parallel tasks. Zhang (2020) established a finite buffer queue network 
model. When demand fluctuates, blockages occur on the assembly line. Setting buffer zones can temporarily store unfinished 
workpieces, ensuring that the production of the assembly line is not affected. Jiao et al. (2022) established a model that 
combines parallel assembly lines and U-shaped layouts to cope with demand fluctuations and designed a bidirectional priority 
heuristic algorithm for solving the problem. Danes et al. (2022) considered the problem of parallel assembly of multiple 
products with high demand, allowing products to be processed at parallel workstations. They established a mixed integer 
programming model and solved it using an adaptive neighborhood search algorithm. Mosadegh et al. (2022) allowed the 
allocation of the same task of different products to different workstations. When demand fluctuates, parallel tasks are added 
to the bottleneck workstation to alleviate its processing pressure. They established a mixed integer programming model with 
the objectives of minimizing workstation opening costs and tasks duplication rates and designed a branch-and-bound 
algorithm for solving the problem. 
 
Relatively speaking, when demand fluctuations cause an imbalance in the assembly line, the cost of initial balancing by 
considering the characteristics of each demand fluctuation scenario is slightly lower than the cost of rebalancing. Thiago et al. 
(2021) considered different demand scenarios, allowing different processing schemes (allowing equipment movement) for 
each task in different demand scenarios, with the goal of minimizing the number of workstations and establishing a mixed 
integer programming model. They also designed a heuristic algorithm for solving the problem and demonstrated the economic 
feasibility of assembly line layout plans considering different demand scenarios through example results. However, Thiago et 
al. did not provide a proof of the feasibility of equipment movement (e.g., whether the workstation capacity is sufficient) after 
relaxing the assumption that equipment cannot move, nor did they consider the time and economic costs of equipment 
movement. 

2.2 The main measures and influencing factors 

In addition, assembly lines that only consider assembly line balance often experience unbalanced workstation loads and low 
production efficiency when facing demand fluctuations. To balance the workload of each workstation on the assembly line, 
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flexible methods such as setting up parallel assembly lines (Aguilar et al., 2020; Özcan, 2019), parallel workstations ( Lopes 
et al., 2019, 2021;  Leiber et al., 2022) and parallel tasks (Mosadegh et al., 2012;  Anuar & Bukchin, 2006; Guo et al., 
2008) )can effectively improve bottleneck links and balance workstation loads. Among them, the parallel tasks strategy 
requires less space and is more universal and easier to operate. 
 
Compared to the parallel layout of multiple assembly lines and multiple work units of parallel workstations, adding parallel 
tasks requires significantly less space and is more versatile. For a single task, improvements can be made by purchasing 
equipment needed for task duplication, which is not only cost-effective but also allows for flexible adjustments according to 
the actual needs of the enterprise. 
 
In the research related to parallel tasks, Mosadegh et al. (2012) considered allowing the same task of a product in a mixed-
model assembly line to be processed at different workstations in an MPS, maximizing the utilization of workstation time, 
reducing the total task time, and balancing the workload of workstations. Anuar et al. (2006) allowed the same task to be 
processed at multiple workstations, adjusting the assembly tasks between stations dynamically during the operation of the 
assembly line, reducing the cycle time while achieving greater production efficiency. Guo et al. (2008) introduced parallel 
tasks with the objective of minimizing the total idle time, first determining the shared tasks and task allocation ratios among 
different workstations, and then determining the task allocation rules. The above studies balanced the workload between 
workstations by allowing parallel tasks, but did not consider the equipment configuration cost generated by allowing parallel 
tasks, nor did they explore the relationship between tasks and workstations. 
 
The introduction of parallel tasks will inevitably increase the cost of equipment configuration, including the cost of equipment 
purchase and the cost of setting up on the workstation, and the costs generated by the same task configuration on different 
workstations (such as processing time and raw material transportation time) may vary. Cakir et al. (2011) considered the 
equipment purchase cost required for task allocation to workstations, with the goal of improving workstation load smoothness 
and reducing assembly line total cost, and studied the single-product assembly line balancing problem. Niroomand (2021) 
considered the cost of task allocation and the cost of workstation activation. Salehi et al. (2020) aimed to minimize the sum 
of equipment configuration costs, workstation activation fees, and worker wages, and designed a hybrid simulated annealing 
algorithm to solve the assembly line balancing problem. Pearce et al. (2019) considered workstation characteristics, restricted 
task allocation, and established a multi-constraint integer programming model for complex real-world assembly line balancing 
problems. Hazır et al. (2013) established a mathematical model for assembly line balancing design problems considering 
assembly tool constraints and solved it using a solver. These scholars considered task allocation from the perspectives of 
allocation cost and allocation restrictions, but there are few studies that combine the task-workstation matching relationship, 
workstation space constraints, and task allocation costs (the equipment configuration cost). 
 
Therefore, this paper investigates the problems of assembly line balancing and load balancing, taking into account different 
demand scenarios. Parallel tasks are introduced, allowing the allocation of equipment corresponding to the same task to 
different workstations. Additionally, the equipment configuration cost is considered, as well as space limitations on each 
workstation. The objective is to minimize the equipment configuration cost, workstation activation cost, and penalty costs for 
unbalanced load on the assembly line. 
 
The main contributions of this paper are summarized as follows: 

 
Firstly, the MMALBP in multi-demand scenarios is studied, considering parallel tasks, spatial constraints of workstations, and 
the correspondence between tasks and workstations. 

 
Secondly, a mixed integer programming model is established to decide the tasks allocation plan and product processing 
strategy. The objective of the model is to minimize the total cost, including workstation activation costs, equipment 
configuration costs, and penalty costs for uneven workstation loads. 

 
Finally, a phased heuristic method is developed to solve the problem, and the effectiveness of the algorithm is verified through 
numerical instances and sensitivity analysis providing management insights. 

3. Problem definition and mathematical formulation 

3.1 Problem Description and Analysis 

3.1.1 Problem Description 

This paper combines the actual production scenarios in the workshop and considers how to allocate equipment and plan the 
production workstations for different products in each demand scenario based on the different demand scenarios in multiple 
production cycles, i.e., the different numbers of products put into production. The goal is to reduce the layout cost of the 
production line and improve production efficiency, while smoothing the workload of each workstation. 
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The problem can be described as follows: given a cycle time, the types of products and the demand for each product within 
each production cycle, the tasks i and the priority relationship between the task are predetermined. The set of successor tasks 
S(i), the number of available workstations |J|, and the maximum number of tasks that can be assigned to each workstation N 
are also known. Each task requires different equipment, and if a task is assigned to a workstation, the equipment required for 
that task must be installed at the corresponding workstation. It is assumed that the same task of each product can only be 
completed at one workstation, while the same task of different products can be completed at different workstations, allowing 
parallel tasks to be set up at different workstations. The objective is to assign tasks to workstations and determine which 
workstation will complete each task of each product during the production cycle, to balance the workload of each workstation 
as much as possible under different demand scenarios and minimize the layout cost of the assembly line. 

3.1.2 Problem Analysis 

The mixed-model assembly line balancing problem with multiple demand scenarios has a two-stage characteristic. In the first 
stage, equipment allocation is performed, and in the second stage, the processing plan for each product's various tasks is 
determined based on the equipment allocation and the production requirements of each demand scenario. Therefore, this 
problem can be represented as a mixed-integer programming model. The research on the mixed-model assembly line balancing 
problem with multiple demand scenarios is based on several assumptions: 
 

(1) There is no difference in available workstations, and each task can be assigned to any workstation; 
(2) The task time of each task is related to the product, not the assigned workstation; 
(3) Each task of the same product must be completed at one workstation within each production cycle, while the same 

task of different products can be completed by different workstations; 
(4) The demand for each product in each scenario is known and remains constant; the task allocation plan for different 

products in different scenarios may differ.  

3.2 Mathematical Model of Mixed-Model Assembly Line Balancing Problem in Multi-Demand Scenarios 

3.2.1 Notation 

(1) Sets 
S : Set of product types 
I : Set of tasks  
J : Set of workstations 
D : Set of demand scenarios 

( )S i : Set of immediate successor task types for task i 
 
(2) Index 
s : Index of product category, s S∈  
i : Index of task index, i I∈  
j : Index of workstation, j J∈  
d : Index of requirement scenario, d D∈  
 
(3) Parameters: 
C : Cycle time 
F : Fixed cost of workstation activation 
M : Any large real number 
N : Maximum number of tasks that can be allocated to a workstation 

ija : The equipment configuration cost required for production of task i on workstation j 

ist : Task time required for task i of product s 

β : Penalty coefficient for unbalanced maximum workload difference 

dsq : The proportion of the demand for product s in scenario d to the total demand for product s 

dQ : The total demand for products required in scenario d 
 
(4) Decision variables 
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d_ minT : The minimum workload of the workstation in scenario d 

_ maxdT : The maximum workload of the workstation in scenario d 

3.2.2 Mathematical Model 

In this paper, we establish a mixed integer programming model for load balancing in a mixed-model assembly line with 
multiple demand scenarios of parallel tasks. 
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The objective function (1) represents the minimization of total cost, where the first term represents the equipment 
configuration cost, the second term represents the cost of workstation activation, and the third term represents the sum of 
penalty costs for unbalanced workload among workstations in different scenarios. The constraints (2)-(12) are as follows: (2) 
each task must be assigned to at least one workstation; (3) the maximum number of tasks that can be assigned to each 
workstation cannot exceed N; (4) a workstation can only process a corresponding task if the required equipment is allocated 
to that workstation; (5) the processing sequence of tasks must be satisfied; (6) a task for the same product can only be processed 
at the same workstation; (7) if a task is assigned to a workstation, the workstation must be activated; (8) the maximum 
processing time for any workstation cannot exceed the cycle time; (9)-(10) the average workload of any activated workstation 
must be within the range of the maximum and minimum values; and (11)-(12) the decision variable values are subject to 
constraints. 
 
Because the load balancing problem in traditional single-demand scenario mixed-model assembly lines is NP-hard, the load 
balancing problem in multi-demand scenario mixed-model assembly lines is an extension of the single-demand scenario 
problem, making the problem even more complex and difficult to solve. In this paper, we propose to use a phased heuristic 
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approach based on the model structure to solve the problem. 

2. 3.2.3 Example 

This section utilizes an example to illustrate the superiority of considering different demand scenarios compared to not 
considering demand scenarios in the case of demand fluctuations. Specifically, we consider an assembly line that produces 
two products and three possible demand scenarios. The product precedence diagram and the processing times for each 
operation (indicated by the number in the upper right corner of each operation) are shown in Fig 1. The cycle time 7C =  
and the demand quantities for products A and B under each of the three demand scenarios are presented in Table 1. 
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Fig. 1. Product precedence diagram 

 
Table 1  
Demand quantities for products under each demand scenario 

Product Scenario 1  Scenario 2 Scenario 3 Average 
A 9 6 3 6 
B 7 5 9 7 

 
Table 2 presents the optimal task allocation schemes, the number of active workstations, and the average maximum workload 
difference for four different scenarios. These scenarios include considering demand scenarios and parallel tasks, considering 
parallel tasks but not demand scenarios (where the demand for each scenario is averaged and treated as a single demand 
scenario for task allocation), considering demand scenarios only, and not considering either. These results were obtained by 
using the Gurobi solver to directly solve the model based on the given data. 
 
Table 2 shows that considering demand scenarios and parallel tasks results in the smallest average maximum workload 
difference, indicating that the workload is most balanced among workstations in this condition. On the other hand, the 
allocation scheme that does not consider either demand scenarios or parallel tasks has the largest maximum workload 
difference, indicating poor balance among workstations. When considering a single factor, the effectiveness of considering 
parallel tasks is better, but it requires additional equipment configuration costs. While considering demand scenarios alone do 
not require additional equipment costs but requires additional workstations to balance the workload. When both factors are 
considered, the number of workstations is not increased, and the maximum workload difference is significantly improved, 
resulting in a balanced workload among workstations. However, this also increases the equipment configuration cost. 
 
Table 2  
Allocation results considering different factors 

Factors 
Sequence number of activated workstations Average 

maximum 
workload 
difference 1 2 3 4 5 6 7 8 

considering demand scenarios and parallel 
tasks 1,2 2,3 4 6,8 5,8 5,7 9,10  1.32 

considering only parallel tasks 1,3 4,6 2,3 5,7 4,7 6,8 9,10  1.38 

considering only demand scenarios 1 2,3 6 4 5 8 7 9,10 2.71 

not considering either 1 2,3 5 4 6，7 8 9,10  3 

 

4. A Phased algorithm 

The mathematical model for balancing mixed-model assembly lines with multiple demand scenarios involves many integer 
variables and complex coupling relationships between variables, making direct solving of the model time-consuming. In this 
section, we propose a phased heuristic algorithm based on the model structure. In the first stage, we obtain the initial equipment 
allocation plan for processing tasks based on the product precedence diagram. In the second stage, we decide on the product 
task allocation plan for each scenario based on the initial equipment allocation plan. In the third stage, we determine the final 
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equipment allocation plan for processing operations based on the product task allocation plan and calculate the objective 
function value.  
 
In the first stage, we establish a traditional task balancing and allocation model without parallel tasks based on the product 
precedence diagram. By solving the model, we obtain the initial equipment allocation plan. We solve the task balancing and 
allocation model D S+  times in total, sequentially solving for D  demand scenarios and S  individual products. We 
then summarize the results of each sub-problem. The specific model is as follows: 
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The objective function (13) represents the minimization of total cost, where the first term represents the equipment 
configuration cost, the second term represents the cost of workstation activation, and the third term represents the sum of 
penalty costs for unbalanced workload between workstations under average demand during the cycle. Constraint (14) indicates 
that each task is assigned to a workstation. Constraint (15) specifies that the maximum number of tasks that can be assigned 
to each workstation cannot exceed N . Constraint (16) ensures that the task processing sequence is satisfied. Constraint (17) 
states that a workstation can only process a task if the required equipment for that task is assigned to that workstation. 
Constraint (18) limits the maximum processing time for any workstation to the cycle time. Constraints (19)-(20) ensure that 
the average workload for any activated workstation falls within the range of the maximum and minimum values. Constraints 
(21)-(22) specify the value constraints for the decision variables. 
 
In the second stage, we use the results obtained from solving the sub-problems in the first stage to obtain the initial equipment 
allocation plan for processing operations, i.e., the values of ijx . We then make product task allocation decisions for each 
cycle with the goal of workload balancing, resulting in the product task allocation plan for each scenario. The specific model 
is as follows: 
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The objective function (23) represents the sum of penalty costs for unbalanced workload between workstations in each demand 
scenario. The model includes constraints (2)-(11) as described in the previous text. Constraint (24) specifies the value 
constraints for the decision variables. 
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In the third stage, we use the product task allocation plan obtained in the second stage as input parameters for the model (1)-
(12) and solve the model again to obtain the final equipment allocation plan for processing operations. 
 
The algorithm steps are as follows: 
 
Step 1: Solve for the equipment and product allocation plan without parallel tasks for each demand scenario separately. 
Combine the equipment allocation results from multiple scenarios to obtain the initial equipment allocation plan. Proceed to 
Step 2. 
 
Step 2: Solve the sub-problems with parallel tasks allowed for each demand scenario based on the initial equipment allocation 
plan obtained in Step 1, resulting in the product task allocation plan for the second stage. Proceed to Step 3. 
 
Step 3: Use the product task allocation plan obtained in Step 2 as known parameters and solve the original model again to 
obtain a new equipment allocation plan and calculate the objective function value. 
 
Repeat Steps 2-3 until the objective function value of the new solution no longer decreases or the specified termination time 
is reached. The algorithm flow chart is shown in Fig 2: 

 
 

 

 

 

 

Fig. 2. Algorithm flow chart 

5. Numerical experiments 

In this section, we generate simulation examples based on the basic data in reference (Otto et al., 2013). We solve the examples 
using both the commercial solver Gurobi and the phased heuristic algorithm, and then compare and analyze the results of the 
two methods. Finally, we conduct sensitivity analysis on important parameters to derive some management recommendations. 

5.1 Parameter Setting 

Based on the data information from literature (Otto et al., 2013), a tasks precedence diagram is generated. The parameters of 
task number I , product category number S , and scene number D  are set, with task number I  being 10, 15, and 20, 

product category number S  being 2 and 3, and scene number D  being 2, 3, and 4. The example is generated by using the 

full combination method for all parameters, resulting in a total of 18 sets of examples. The task time it  is randomly generated 

from a uniform discrete distribution [0,7]U  , and the configuration cost ija   of the task on the workstation is randomly 
generated from a uniform discrete distribution [3,12]U .  
 
The maximum number of tasks that can be scheduled for each workstation is set to 3N = , with a cycle time of 7C = . The 
fixed cost of activating a workstation is 20F = , and a penalty coefficient is applied for unbalanced workload is 1β = . The 
demand ratio of demand scenarios in each cycle is randomly generated for different scale instances, with a total sum of 1.  

5.2 Analysis of experiment results 

For each instance, the Gurobi 9.0.2 solver and a phased heuristic algorithm were used for calculations. The programming was 
done using Python 3.8 and the calculations were run on a Linux server with an Intel(R) Xeon(R) Gold -6248R CPU clocked 
at 3.00 GHz and 32 GB RAM. Due to the exponential increase in solver run time with increasing instance size, a maximum 
run time of CPU3600s was set for the solver in this study. 

Initialization 
Parameter

Solve sub-problems of 
each scenario (single 

equipment assignment 
problem)

Obtaining the equipment 
allocation scheme, according 

to the solution results, 

Obtaining new feasible 
solutions, by re-solving the 

sub-problems of each scenario 
through equipment allocation 

schemes

Is the new solution 
superior? Terminate

Yes

No
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5.2.1 The comparison of solution time and accuracy 

Table 3 shows the results obtained by directly using the Gurobi solver to solve the integer programming model and using the 
phased algorithm designed in this paper. The table records the solution time, average and maximum objective function values, 
and the GAP value compared to the solver solution for 18 sets of instances. As the size of the instance increases, the solution 
time of both methods increases. For instances with the same number of tasks and product types, the solution time also increases 
with the number of cycles. However, the direct solution time of the solver is much larger than that of the phased heuristic 
algorithm for all instances. For some instances with 15 tasks, 4 scenarios, and 2 products, the solver cannot obtain the optimal 
solution within 3600s ('*' in the third column indicates the number of instances in which the solver cannot obtain the optimal 
solution within 3600s, and '-' indicates that no instance can provide the optimal solution within the given time). However, the 
maximum solution time of the phased heuristic algorithm for all instances does not exceed 500s, and the GAP value compared 
to the solver solution is also within 5.7%. 

5.2.2 The analysis of the change in objective function values 

As the size of the instance increases, the objective function value also increases, but the average GAP value fluctuates between 
3% and 6%. The best GAP values obtained during the calculations for each instance are also listed, and in some instances, the 
optimal solution can be obtained ('*' in the last column indicates the number of case studies in which the optimal solution was 
obtained).  
 
To investigate the variation in objective function values for different numbers of product types, the mean values of each 
objective function for each instance are listed in Table 4. The number of workstations, the equipment configuration cost, and 
penalty cost for unbalanced workload are compared for instances with the same number of tasks and scenarios but different 
numbers of product types. The results for instances with 2 product types are shown on the left, while those with 3 product 
types are shown on the right. Fig 3 provides a more intuitive comparison of the optimization objectives for different product 
types in Table 4. Fig 3(a) shows that, except for the instance with 15 tasks and 2 scenarios, the number of workstations required 
for 3 product types is lower than that for 2 product types in all other instances. 
 
Table 3  
The comparison of solution results 

 
The Gurobi solver results The phased algorithm results 

GAP 

 

CPU time(s) objective value CPU time(s) objective value  

I S T− −  Average 
value 

Maximum 
value 

Average 
value 

Maximum 
value 

Average 
value 

Maximum 
value 

Average 
value 

Maximum 
value 

Best 
GAP 

10-2-2 8.69  13.58  225.44  237.80  0.62  1.11  232.17  243.00  3.00  0.003* 
10-2-3 96.65  315.01  238.22  258.20  4.22  2.99  248.14  275.80  4.21  0.002 
10-2-4 455.16  934.57  252.48  264.60  5.33  4.53  262.78  270.20  4.05  0.001 
10-3-2 4.25  11.61  185.17  212.10  1.10  2.87  191.97  253.00  3.40  0.006 
10-3-3 12.57  43.68  199.49  227.20  2.06  4.94  206.28  241.20  3.28  0.003 
10-3-4 292.68  1122.23  212.25  248.20  27.89  124.16  220.03  256.20  3.69  0.002 
15-2-2 43.26  348.50  264.19  304.60  1.44  3.16  275.31  312.30  4.24  0.004 
15-2-3 508.88  2438.40  287.47  336.90  3.31  13.52  302.79  381.90  5.12  0.003 
15-2-4 2238.91  36009* 311.05  351.50  26.13  88.98  328.60  400.30  5.57  0.001 
15-3-2 352.51  1015.56  256.13  276.30  23.57  59.94  264.39  286.60  3.23  0.004 
15-3-3 1855.52  36005 274.83  306.00  49.47  114.39  286.46  325.90  4.29  0.00 
15-3-4 — — 294.57  331.90  147.88  289.77  303.79  341.80  3.11  0.00 
20-2-2 1203.76  36003 353.90  390.10  11.98  18.18  366.83  415.00  3.66  0.38  
20-2-3 1999.76  36009 364.67  398.00  32.71  111.41  383.13  429.10  5.03  0.002 
20-2-4 — — 414.84  479.00  208.05  422.27  427.10  487.50  3.01  0.00 
20-3-2 1653.21  36004 349.19  391.50  32.97  111.67  368.76  422.20  5.65  1.12  
20-3-3 — — 373.88  402.00  159.32  414.45  388.39  402.00  3.88  0.002 
20-3-4 — — 408.40  463.30  2369.16  899.14  420.94  478.20  3.12  0.03  

 
Table 4  
Comparison of different values 

I D−  Objective value The number of workstations Penalty cost Equipment configuration cost 
|S|=2 |S|=3 |S|=2 |S|=3 |S|=2 |S|=3 |S|=2 |S|=3 

10-2 238.25  210.15  5.33  4.93  58.92  28.61  72.67  82.87  
10-3 244.35  229.64  5.13  4.93  68.61  47.11  73.07  83.87  
10-4 293.40  262.15  5.40  5.07  99.93  65.55  85.47  95.27  
15-2 305.99  297.77  7.33  7.53  60.05  42.84  99.27  104.27  
15-3 353.69  324.41  8.00  7.80  79.36  48.81  114.33  119.60  
15-4 390.92  352.72  7.87  7.53  112.59  76.59  121.00  125.47  
20-2 437.89  402.87  10.60  10.53  90.89  46.60  135.00  145.60  
20-3 454.79  437.67  10.13  9.87  113.72  84.53  138.40  155.80  
20-4 510.83  475.81  10.33  10.13  156.29  114.81  147.87  158.33  

 
In Fig 3(b), the cost of an unbalanced workload for each instance with 2 product types is greater than that for instances with 
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3 product types. In Fig 3(c), it is observed that the equipment configuration cost increases with the number of product types, 
but the flexibility of the assembly line is also increased, which reduces the penalty cost for the unbalanced workload. Through 
comparison, it is found that when the number of tasks remains constant, the number of workstations opened does not change 
significantly with an increase in the number of cycles, but the cost of unbalanced workload and the equipment configuration 
cost gradually increase. This is because each scenario incurs penalty costs, and the equipment configuration cost 
corresponding to reducing the penalty cost also gradually increases. 

 

Fig. 3. Cost comparison 

5.3 Sensitivity analysis 

The calculation results vary with different parameter settings in the same instance, such as equipment allocation results and 
total cost. This section mainly conducts sensitivity analysis on four parameters: cycle time C , maximum number of devices 
that can be placed on a workstation N , workstation activation cost F , and penalty coefficient for uneven load cost β . 
Taking the medium-sized case 15-3-3 (task-scenario-product) as an instance, the impact of different parameter settings on 
total cost, fixed cost of workstation activation, extreme value of uneven load, and the equipment configuration cost is analyzed. 

5.3.1 Analysis of the Impact of Cycle Time Variations 

To analyze the impact of cycle time on total cost, workstation activation, load variation, and equipment allocation results, 
cycle time was sequentially taken from 7 to 12. To avoid the limitation of maximum equipment number of the workstation 
when the cycle time is large, it was set to 5. Other parameters were fixed, and the calculated results are shown in Fig 4. In Fig 
4(a), the bar chart is used to describe the penalty costs for unbalanced workload under different parameters, and the line chart 
is used to describe the penalty cost generated by load variation. In Fig 4(b), the line chart is used to describe the trend of the 
objective function value OBJ under different parameters, and the changes in the equipment configuration cost Cost_F and 
workstation activation cost Cost_S are also shown. 
 
Fig 4(a) shows the penalty costs for unbalanced workload and total load imbalance in different scenarios at different cycle 
times. It can be observed from the load variation in each scenario that the load variation decreases first and then increases 
with the increase of cycle time. After the cycle time reaches 12, the load variation remains unchanged. The penalty costs for 
unbalanced workload follow the same trend, indicating that when the cycle time is sufficiently large, the total cost and solution 
are no longer affected by the cycle time. 
 
In Fig 4(b), it can be observed that the cost of workstation opening decreases initially, then increases and finally remains 
constant with an increase in the cycle time. The equipment configuration cost increases initially, then decreases and finally 
remains constant. The total cost increases initially, then decreases, and finally increases slightly until the cycle time to 12. 
This indicates that with an increase in the cycle time, the number of workstations decreases, while the amount of equipment 
that can be placed on each workstation increases. This can reduce the unbalanced load phenomenon and lower the total cost. 
However, when the cycle time is sufficiently large, the total cost will no longer change with an increase in the cycle time due 
to the inherent limitations of the problem.  
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Thus, the cycle time has a direct impact on the total cost of the mixed-model assembly line balancing problem in multi-
demand scenarios. It has a significant effect on the number of workstations and equipment configuration cost, while its impact 
on load balancing is relatively minor. 
 

 
Fig. 4. The Impact of Cycle Time Variation on Cost 

 

5.3.2 Analysis of the impact of changes in the number of equipment that can be installed on workstations 

To analyze the effect of the maximum number of equipment that can be accommodated by a workstation on the solution 
results, the maximum equipment number N was sequentially increased from 1 to 7 while keeping the other parameters 
constant. The solution results are shown in Fig 5. Fig 5(a) uses a bar chart to describe the variation trend of load range under 
different parameter scenarios and uses a line chart to describe the change in penalty cost caused by load range. Fig 5(b) uses 
a line chart to represent the objective function value OBJ, the equipment configuration cost Cost_F, and workstation activation 
cost Cost_S for each scenario corresponding to different parameters. 

 
Fig. 5. The Impact of N Variation on the Results 

 
From Fig 5(a), it can be observed that as the value of increases, the load imbalance within each scenario gradually decreases. 
When reaches a value of 4, it remains constant and the load imbalance within Scenario 1 becomes 0. Additionally, the penalty 
costs for unbalanced workload in each case also gradually decreases and then remains constant. This indicates that the number 
of devices has a significant impact on load balancing, and when the number of equipment is sufficiently large, the load on the 
workstation becomes highly balanced. 
 
From Fig 5(b), it can be observed that as N increases, the total cost gradually decreases. Both the workstation activation cost 
and equipment configuration cost decrease initially and then remain constant. The increase in the amount of equipment that 
can be placed on workstations leads to a reduction in the number of activated workstations, thereby lowering the workstation 
activation cost. The decrease in total equipment configuration cost is due to the reduction in the amount of equipment that can 
be placed on workstations, resulting in a decrease in the adjustable space for equipment on the workstation. Moreover, the 
cost of placing the same equipment on different workstations varies. Therefore, when the amount of equipment that can be 
placed is smaller, the cost of equipment tends to be relatively higher. 
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Increasing the number of configurable equipment on workstations is a fundamental method to improve the extreme load 
imbalance in various scenarios. Moreover, it does not have a significant impact on the total cost when the equipment 
configuration cost is reasonable. However, due to practical production environment limitations, it is usually not feasible to 
place too much equipment. Therefore, actual decision-making in enterprises needs to be tailored to the specific circumstances 
to determine the maximum number of equipment that can be placed. 

5.3.3 Analysis of the impact of Fixed Cost Changes in activation workstation on results 

To analyze the impact of fixed costs of activation workstations on the solution results, the fixed costs were gradually increased 
from 0 to 24 while keeping the other parameters constant and solving the problem instance. The solution results are shown in 
Fig 6. Fig 6(a) uses a bar chart to describe the trend of the average number of workstations activated under different parameter 
instances and uses a line chart to describe the change in penalty costs generated by load range. Fig 6(b) uses a line chart to 
represent the objective function value OBJ, the equipment configuration cost Cost_F, and activation workstation cost Cost_S 
under different parameters and instances. 
 
From Fig 6(a), it can be observed that the number of opened workstations decreases with the increase of fixed cost and then 
remains constant, while the penalty costs for the unbalanced workload first increases and then decreases while remaining 
constant. This indicates that the cost of activation workstations has a greater impact on the number of workstations but has a 
smaller impact on the penalty costs for unbalanced workload. From Fig 6(b), it can be seen that, except for equipment 
configuration costs, the other two costs increase. When the cost of activation workstations reaches 15, the slope of the change 
no longer varies, indicating that the solution to the problem remains unchanged. However, the equipment configuration cost 
decreases as the number of workstations decreases, but when the number of workstations decreases to 6, more equipment is 
needed to smooth the load to reduce the penalty cost. 
 
Therefore, the variation of F mainly affects the number of workstations that are turned on, and has a certain impact on 
equipment allocation, resulting in some changes in the load. 

 
Fig. 6. The Impact of F Variation on the Results 

5.3.4 Analysis of the impact of penalty coefficient β variation on results 

To analyze the impact of penalty coefficient β  on the solution results of the problem, β  was increased from 0 to 10 while 
keeping the other parameters constant, and the problem was solved accordingly. The results are shown in Fig 7. Fig 7(a) 
presents the average number of activation workstations under different parameter settings using a bar chart, and the trend of 
penalty cost caused by load variation is described using a line chart. Fig 7(b) uses a line chart to show the objective function 
value OBJ, equipment configuration cost Cost_F, and workstation opening cost Cost_S under different parameter settings. 
 
In Fig 7(a), it can be observed that as the penalty coefficient increases, the load range of workstations within each scenario 
decreases after reaching the critical point ( 4 7，β = ) of the penalty coefficient change, and the total penalty cost also decreases. 
However, after the penalty coefficient reaches 7, the load range no longer changes, and the total penalty cost increases 
according to the rate of change β . From Fig 7(b), as the penalty coefficient increases, to balance the workload of workstations 
and reduce the load range, the equipment configuration cost of the assembly line also increases, and the workstation cost 
slightly increases. Moreover, every time the number of workstations increases, the equipment configuration cost also increases 
accordingly. After the penalty coefficient reaches 7, neither the number of workstations nor the equipment configuration result 
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changes, and only the penalty cost increases at a fixed ratio in the total cost composition. 
 

 
Fig. 7. The Impact of β Variation on the Results 

 
Therefore, the variation of β  has a direct impact on load balancing and equipment configuration. When β  is too large, it 
increases the number of workstations activated and reduces the cost of configuring devices, while decreasing the extreme 
workload difference in each scenario. This indicates that increasing the penalty coefficient can also effectively improve the 
problem of excessive workload difference, but it will increase the cost of equipment configuration and the cost of opening 
workstations. Therefore, a trade-off needs to be made in actual decision-making or reasonable weight parameters need to be 
selected based on different preferences. 

6. Conclusions 

This paper introduces parallel tasks in the assembly line balancing problem in multi-demand scenarios, taking into account 
the spatial constraints of workstations and the matching relationship between tasks and workstations. The objective is to 
balance the assembly line layout cost and the workload between workstations. By considering the equipment configuration 
cost, workstation activation cost, and penalty cost for workload imbalance, a more realistic mixed integer programming model 
is established to address the mixed-model assembly line balancing problem.  
 
Decision making for a multi-period problem can be divided into two stages, the first stage of decision-making involves 
determining the allocation of equipment and the number of workstations to be opened, while the second stage involves 
deciding on the product allocation plan for each cycle. To tackle the complexity of multi-cycle problems, a phased heuristic 
algorithm is designed to obtain approximate optimal solutions quickly. For small and medium-sized instances, partial optimal 
solutions can be obtained, while large-scale instances can be solved rapidly, with GAP values within an acceptable range. 
 
Finally, sensitivity analysis was conducted to analyze the results of the four main parameters after changes. The analysis 
focused on the cost of equipment configuration, the cost of workstation activation, the maximum workload difference and 
penalty cost during each cycle. The findings provide insightful conclusions for practical management decisions in the 
enterprise. 
 
In terms of future research, we could consider many relevant extensions of the assembly line problems. Such as, we assume 
that each task can be assigned to any workstation, but in subsequent studies, considering the more correspondence between 
tasks and workstations. Another interesting extension for future research is to consider how to incorporate heuristic rules into 
the framework of phase algorithms to reduce the difficulty of problem solving and decrease solution time. Alternatively, 
starting from the structure of the model, designing an exact algorithm for solving the model to improve solution efficiency 
and accuracy is also an intriguing avenue for further research. 
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