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 This paper considers the closed-loop supply chain design problem by examining financial criteria 
and uncertainty in the parameters. A robust multiobjective optimization methodology is proposed 
by considering financial measures such as maximizing the net present value (NPV) and minimizing 
the financial risk (FR). The proposed methodology integrates various multiobjective optimization 
elements based on epsilon constraints and robustness measurements through the FePIA (named 
after the four steps of the procedure: Feature–Perturbation–Impact–Analysis) methodology. 
Similarly, an analysis of the parameter variability using scenarios was considered. The proposed 
method's efficiency was tested with real information from a multinational company operating in 
Colombia. The results show the effectiveness of the methodology in addressing real problems 
associated with supply chain design. 
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1. Introduction 

 
A supply chain involves all the direct and indirect aspects leading to the solution required for customers in a macro view of 
an organization. The supply chain includes components that range from suppliers of raw materials, carriers, warehouses, small 
suppliers, manufacturers or producers, distribution centers, intermediaries, and end customers (Delgoshaei et al., 2019) (Fig. 
1). 

 
Fig. 1. Supply Chain 



  

 

362

In addition, the study of supply chains focuses not only on the objects or materials that are mobilized but also on the economic 
aspects, costs involved in each of the stages, services, interruptions, environmental impact, and profits of the system (Escobar, 
2017; Tordecilla-Madera et al., 2018). Supply chain management includes three decision levels within an organization: 
strategic, tactical, and operational (Escobar, 2009; Escobar, 2017), impacting decision-making at the corporate level. The 
strategic level refers to long-term decisions, such as the configuration of the supply chain, selection, and allocation of suppliers 
and customers, the number, size, and location of facilities, the types of products to be manufactured, acquisition of credits and 
financing, and the return obtained after investing in infrastructure. The tactical level refers to medium-term decisions, which 
include inventory management, production, and transportation selection. Finally, the operational level is more specific, and 
the planning and execution decisions are made for the actions chosen at other levels. At this level, decisions typically 
correspond to NP-hard problems (Escobar, 2017; Buritica et al., 2017). 
 
Return on investment and inherent risk are critical factors at the strategic level due to the variability or uncertainty in demand. 
The net present value (NPV) supports public or private companies in making investment decisions (Juhász, 2011). Similarly, 
financial risk (FR) in supply chains could be defined as the probability of an economic decision that does not result in the 
expected profit level (Escobar et al., 2019). Therefore, financial risk determines the probability of a viable business 
(Bagajewicz & Barbaro, 2003). 
 
In addition, supply chains must face uncertainty factors in each stage; for this reason, companies must adapt to unforeseen 
events, and this fact must be structured into the system to make it reliable (Polo et al., 2019). According to Ali et al. (2004), 
robustness is defined as preserving a system's characteristics even though it is subjected to an environment with fluctuating 
behavior. Klibi & Martel (2012) argued that a supply chain must maintain the same response if subjected to different scenarios. 
Therefore, the supply design must be sustainable regardless of disturbances by measuring and applying robustness, 
responsiveness, and resilience characteristics. 
 
Companies' competitiveness forces them to design and create strategies that optimize resources and maximize profits with 
minimal expenses. Additionally, due to the constant disturbances in a supply chain, it is necessary to formulate techniques 
that guarantee that businesses give investors confidence. In this way, the locations of the warehouses, production plants (PP), 
distribution centers (DC), or collection and repair centers (RC) allow for the prediction of strategic decisions to optimize the 
supply chain. 
 
This paper proposes a methodology for supply chain design considering strategic and tactical decisions, such as opening 
production lines, distribution centers, supplier selection, transport selection arrangements, and inventory expansion, in a 
closed-cycle supply chain. The proposed mathematical model seeks to maximize investment benefits and minimize financial 
risk by considering various scenarios. The proposed methodology integrates supply chain elements, such as multiobjective 
optimization based on epsilon constraints and robustness, in a model with uncertain demand through the FePIA methodology. 
The main contribution of this study is considering and integrating quantitative aspects such as multiobjective optimization, 
scenario-based optimization, closed supply chain with recovery of products, financial measures, and robustness to find a 
methodology that fits into the strategic and tactical levels of the company's supply chain operations. From the literature 
reviewed, no previous studies have considered integrating all these aspects, allowing for a more precise supply decision-
making process. In addition, the application of this method to a real case study measures the solution strategy's efficiency, 
allowing its scalability to other companies with similar characteristics. Indeed, the highlighted aspects of the proposed 
approach are the financial risk formulation within a robust stochastic multiobjective environment, the scenario consideration 
in the proposed model's mathematical structure, and the robustness measure by the FePIA methodology within a 
multiobjective mathematical model. 
 
The paper proceeds as follows. Section 2 presents a literature review of the problems associated with a supply chain 
optimization with multiple objectives that considers financial criteria and scenarios and identifies the relevance of the research 
work and the foundations for the recognized problem. Section 3 shows the detailed formulation of the problem with a mixed-
integer linear mathematical model and the details of the proposed solution methodology. In Section 4, the experiments are 
conducted, and the results are obtained. Finally, in Section 5, the investigation's conclusions are presented, and possible future 
works are established. 

 
2. Literature Review 
 
In supply chain studies, various types of decisions can be classified and differentiated. The types of decisions are strategic 
(long-term), tactical (medium-term), and operational (short-term). Long-term decisions consider the location of distribution 
centers, plants, and the best distribution of the flows and establish a network between the distribution centers and the suppliers 
and customers. Tactical decisions are related to the flow of products, inventory levels, and forecast of demand. Operational 
or short-term decisions involve a truck and routing scheduling and temporary storage in cross-docking and distribution centers.  
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Given that the proposed methodology has a strategic and tactical focus, similar problems within supply chain designs 
separately involve closed green supply chains, financial criteria, stochastic issues, multiobjective optimization, and 
robustness, which serve as the basis for the considered problem. 
 
2.1. Closed Green Supply Chains 

 
Recently, the importance of reverse logistics has grown due to reprocessing costs, mismanagement, the environmental impact 
of production processes, and the increasing advantages of recovering products for sustainable production. Reverse logistics 
can be defined as a set of processes to reuse products returned by customers through repair or refurbishment (Srivastava, 
2007). Studies have been published on reverse logistics issues (Amin & Zhang, 2013; García-Cáceres & Escobar, 2016; Paz 
& Escobar, 2019). A mixed-integer linear programming model is presented in that research to minimize total costs, 
considering demand and random returns. 
 
Allaoui et al. (2018) presented a critical literature review of operations research methods to design sustainable supply chains. 
In that work, a new two-stage hybrid solution methodology was proposed for the considered problem. In the first stage, partner 
selection is performed using hybrid multicriteria decision-making based on the analytical hierarchy process (AHP) method 
and the ordered weighted average aggregation (OWA) method. The results in the first stage were used in the second stage to 
develop a multiobjective mathematical model for supply chain design. 
 
Heidari-Fathian and Pasandideh (2018) considered sustainability criteria in a blood supply chain by presenting a 
multiobjective mixed-integer mathematical programming model. This work examined the total cost minimization of the 
supply chain and minimized the overall environmental impacts of the network's activities. Finally, Baghalian et al. (2013) 
presented a robust mixed-integer nonlinear mathematical model to determine profit performance in an agri-food supply chain. 
 
2.2. Economic and Financial criteria in Supply Chain 
 
Some authors have considered economic criteria for supply chain design. Kovačić and Bogataj (2017) proposed a supply 
chain model to minimize the NPV in energy production by considering reverse logistics decisions for supplying electricity to 
the main grid. Polo et al. (2019) applied the methodology proposed by Ali et al. (2004) in a mixed-integer nonlinear 
programming model to maximize the economic value added (EVA), considering the influence of disturbances on the system 
performance, showing the impact on the costs. Carvajal et al. (2019) proposed optimizing a sugarcane supply chain model to 
maximize the NPV, considering the influence of the climate, the machinery's capacity, and the availability of refinery plant 
biofuel. 
 
On the other hand, the FR can be defined as the probability that an economic decision results in an established performance 
level in a given time or the probability that the NPV is equal to or less than zero (Escobar et al., 2019). Escobar et al. (2019) 
presented a multiobjective mixed-integer linear programming model based on the idea proposed by Bagajewicz and Barbaro 
(2003) to maximize the NPV and minimize the FR of a supply chain. Likewise, Escobar (2017) presented a distribution 
network model for maximizing the NPV by considering the generation of scenarios to denote demand variability. 
 
2.3. Stochastic Supply Chains 
 
Guillén et al. (2005) considered the design and modernization of a supply chain consisting of several production plants, 
warehouses, markets, and associated distribution systems. The effects of uncertainty in the production scenario were 
considered by using a two-stage stochastic model. The problem's objective was evaluated, taking into account the benefit over 
the time horizon and the resulting demand's satisfaction. 
 
Azaron et al. (2008) proposed a multiobjective stochastic programming model to minimize costs and the probability of not 
reaching a specific budget. The decisions involved the supply chain structure, the opening or closing of plants and distribution 
centers. In contrast, Klibi and Martel (2012) applied simulations to determine the scenarios that could generate risks in a 
supply chain and assessed their incidents. 
 
Chen and Lee (2004) proposed a multiproduct, multistage, multiperiod programming model to address immeasurable goals 
for a multilevel supply network with uncertain market demands and product prices. The demand uncertainty was modeled as 
a series of discrete scenarios with known probabilities and fuzzy sets to describe the incompatibility of sellers and buyers with 
product prices. 
 
2.4. Robust Supply Chains 
 
Robustness can be found in different environments, such as biology, economics, electricity, robotics, and mechanics. It is 
defined as a system's ability to keep its internal functions and properties constant, regardless of external disturbances 
(Monostori, 2018). 
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Ben-Tal and Nemirovski (1999) developed a linear programming model with a feasible robust solution that generated a matrix 
in which the parameters and uncertain variables were located according to the corresponding probability scenarios and 
determined the optimal solution through computational traceability. Pishvaee et al. (2011) proposed a robust optimization 
model to address uncertainty in supply chain design problems by evaluating the robustness of solutions, minimizing costs, 
and determining strategic decisions for plant and distribution center openings. Jabbarzadeh et al. (2017) applied robustness to 
a multiobjective supply chain model in an electrical network by maximizing efficiency and minimizing losses with 
contradictory environmental and economic effects. In particular, robust systems provide a positive boost to reduce 
environmental impacts. Other practical application cases have been proposed by Banasik et al. (2017) and Habibi et al. (2017). 
 
Kim et al. (2018) considered a reverse logistics model for supply chains that applied a robustness methodology to maximize 
profit in a textile plant. In that work, the performance model was improved through the application of two robust counterparts. 
Delgoshaei et al. (2019) used a robustness measurement method to carry out a supply chain's programming, considering 
machinery failures and preventive maintenance, resulting in lower production losses and a reduction in unexpected failure 
times and achieving stability in sales fulfillment. Metaheuristic methods such as the ant colony and simulated annealing were 
used to solve the problem. 
 
Alavi and Jabbarzadeh (2018) presented a robust stochastic optimization model for the supply network design problem while 
accounting for commercial credit and bank financial resources. This robust model helped to determine the number and location 
of facilities as well as financing decisions. The goal was to maximize expected supply chain profits under demand uncertainty. 
Ruimin et al. (2016) considered a robust network that included multiple plants, collection centers, demand zones, and products 
and consisted of direct and reverse supply chains. First, a robust multiobjective mixed-integer nonlinear programming model 
was proposed to solve the problem under consideration. The methodology called FePIA was introduced by Ali et al. (2004). 
This research investigated the robustness of resource allocations to tasks in parallel and distributed systems. The 
methodology's main aspects were a mathematical description of a robustness metric for resource allocation concerning desired 
system performance features against multiple perturbations in multiple systems and environmental conditions and a procedure 
for deriving a robustness metric for an arbitrary system. A few authors have extended the FePIA methodology to evaluate 
robustness in supply chains (Polo et al., 2019; Polo et al., 2020). 
  
In the reviewed literature, no work was found that integrates robust multiobjective mathematical models with financial criteria 
and scenarios for a closed supply chain to maximize the system's robustness with a scheme extended from electric system 
problems. It is essential to mention that the literature considering the union of multiobjective models applying robustness 
methods is scarce, especially considering financial risk. 
 
3. Proposed Methodology 
 

In this paper, a general robust optimization model for closed-loop supply chains is proposed in which the relationship between 
the steps comprising the chain is analyzed. This analysis includes decisions to open and locate PPs, DCs, and RCs and 
decisions related to the forward and reverse flow of products. The mathematical model considers two objectives: maximizing 
the NPV by considering investments in infrastructure and minimizing the FR by considering strategies to maintain the 
infrastructure over time despite increased disruptions. Finally, the model uses reverse logistics problems in different 
equiprobable scenarios. The design of the chain under study is shown in Fig. 2. 
 

 
Fig. 2. Considered Supply Chain 
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The proposed model utilizes the following assumptions: 
 

• The plants have different business areas, each with different lines and products. 
• Production lines that handle only distribution at the national level are selected, and exports are not considered. 
• The production lines are located in different parts of the country. 
• Imported raw materials are assumed to be from national ports. 
• New distribution centers are assumed to be in different areas to satisfy demand. 
• Reverse logistics processes are contemplated to recover materials with defects from wholesale clients, in which some 

reprocessing must be carried out. 
 
The development of the mathematical model and the definition of sets, variables and parameters are presented as follows: 
 
3.1. Sets 
 𝑖 = Suppliers; 𝑖 = 1,2, … , 𝐼 𝑗 = Productive Plants; 𝑗 = 1,2, … , 𝐽 𝑘 = Distribution Centers; 𝑘 = 1,2, … ,𝐾 𝑝 = Products; 𝑝 = 1,2, … ,𝑃 𝑞 = Raw Materials; 𝑞 = 1,2, … ,𝑄 𝑙 = Wholesale Customers; 𝑙 = 1,2, … , 𝐿 𝑚 = Collection and Repair Centers; 𝑚 = 1,2, … ,𝑀 𝑡 = Time Periods; 𝑡 = 1,2, … ,𝑇 𝑠 = Scenarios; 𝑠 = 1,2, … , 𝑆 
 
3.2. Parameters 
 𝜑  = Probability of occurrence of scenario𝑠 Ω  = Expected value of the NPV in scenario 𝑠 [$] 𝐷𝐸𝑀  = Demand of product 𝑝 at customer 𝑙 in period 𝑡 according to scenario 𝑠 [𝑢𝑛𝑖𝑡 / 𝑡] 𝑈𝑃𝑇  = Units per ton of product 𝑝 [𝑢𝑛𝑖𝑡 / 𝑡 ] 𝑈𝑀𝑇𝑃𝑇  = Units per ton of raw material 𝑞 [𝑢𝑛𝑖𝑡 / 𝑡] 𝑃𝑅𝐸  = Price of product 𝑝 for customer 𝑙 [$ / 𝑡] 𝐶𝐶𝐷  = Handling cost of product 𝑝 at DC 𝑘 [$ 𝑢𝑛𝑖𝑡]⁄  𝐶𝑇𝐶𝐷  = Transportation cost of product 𝑝 from DC 𝑘 to customer 𝑙 [$ 𝑡⁄ ] 𝐶𝐼𝑃𝑃  = Inventory cost of raw material 𝑞 at plant 𝑗 [$ 𝑡]⁄  𝐶𝑃𝑃  = Manufacturing cost of product 𝑝 in plant 𝑗 [$ 𝑢𝑛𝑖𝑡]⁄  𝐶𝑇𝑃𝑃  = Transportation cost of product 𝑝 from plant 𝑗 to DC 𝑘 [$ 𝑡]⁄  𝐶𝑀𝑇  = Cost of raw material 𝑞 [$ 𝑢𝑛𝑖𝑡]⁄  𝐶𝑇𝑀𝑇  = Transportation cost of raw material 𝑞 from supplier 𝑖 to plant 𝑗 [$ 𝑡]⁄  𝐶𝐶𝑅  = Cost of RC 𝑚 per product 𝑝 [$ 𝑡⁄ ] 𝐶𝑇𝐶𝑅  = Transportation cost from customer 𝑙 to repairing center 𝑚 [$ 𝑡]⁄  𝐶𝑇𝐶𝑃  = Transportation cost from RC 𝑚 to plant 𝑗 [$ 𝑡]⁄  𝐶𝐴𝑇𝐶𝐷  = Transportation capacity CD 𝑘 per period [𝑡𝑜𝑛] 𝐶𝐴𝐶𝐷  = Storage capacity of CD 𝑘 [𝑡𝑜𝑛] 𝐶𝐴𝑃𝑁𝑃𝑃  = Production capacity of plant 𝑗 to process product 𝑝 [𝑡𝑜𝑛 / 𝑡] 𝐷𝑇  = Availability of transport cargo from DC 𝑘 [%] 𝑂𝐸𝐸  = Total effectiveness of plant equipment 𝑗 [%] 𝐶𝐴𝑃𝑃  = Storage capacity of repairing plant 𝑗 [𝑡𝑜𝑛] 𝐶𝐴𝑅  = Reprocessing capacity of RC 𝑚 [𝑡𝑜𝑛 / 𝑡] 



  

 

366𝐶𝐴𝐶𝑅  = Storage capacity of RC 𝑚 [𝑡𝑜𝑛 / 𝑡] 𝐶𝑂𝐹𝑃𝑃  = Fixed costs in plant 𝑗 per period [$/𝑡] 𝐶𝑂𝐹𝐶𝐷  = Fixed costs in DC 𝑘 per period [$/𝑡] 𝐶𝑂𝐹𝐶𝑅  = Fixed costs in RC 𝑚 per period [$/𝑡] 𝐶𝑀𝑇𝑃  = Raw material components 𝑞 in product 𝑝 [%] 𝐼𝑃𝑃  = Initial investment to install plant 𝑗 [$] 𝐼𝐶𝐷  = Initial investment to install DC 𝑘 [$] 𝐼𝐶𝑅  = Initial investment to install RC 𝑚 [$] 𝑇𝐼𝑀𝑃 = Income tax rate 𝐴𝑃𝑃  = Amortization and depreciation of plant 𝑗 in period 𝑡 [$] 𝐴𝐶𝐷  = Amortization and depreciation of DC 𝑘 in period 𝑡 [$] 𝐴𝐶𝑅  = Amortization and depreciation of RC 𝑚 in period 𝑡 [$] 𝐷𝐸𝐹 = Percentage of maximum defects allowed by the company 𝑊𝐴𝐶𝐶 = Weighted average cost of capital 
 
3.3. Variables 
 𝑀  = Amount of raw material 𝑞 of product 𝑝 sent from supplier 𝑖 to plant 𝑗 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝐼  = Final inventory of raw material 𝑞 at plant 𝑗 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑋  = Amount of product 𝑝 sent from plant 𝑗 to DC 𝑘 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑇  = Final inventory of product 𝑝 at DC 𝑘 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑌  = Amount of product 𝑝 sent from DC 𝑘 to customer 𝑙 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑈  = Amount of product 𝑝 under repair RC 𝑚 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑍  = Amount of product 𝑝 returned from customer 𝑙 to RC 𝑚 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑊  = Amount of product 𝑝 returned from RC 𝑚 to plant 𝑗 in period 𝑡 in scenario 𝑠 [𝑡𝑜𝑛] 𝑉  = Final inventory of products 𝑝 at the RC 𝑚 in the period 𝑡 in the scenario 𝑠 [𝑡𝑜𝑛] 𝑂𝑃𝑃  = 1 if plant 𝑗 must be opened, 0 otherwise 𝑂𝐶𝐷  = 1 if DC 𝑘 must be opened, 0 otherwise 𝑂𝐶𝑅  = 1 if RC 𝑚 must be opened, 0 otherwise 
 
3.4. Objective Functions 

 
3.4.1. Maximization of the Net Present Value (NPV)  
 
The first objective function is to maximize the weighted net present value (NPV) over the possible scenarios for the defined 
periods. This function is calculated with the sum of the probability of the free cash flow possible scenarios brought to the 
present minus the initial investment value if it is desired to keep the facilities in operation, as shown in Eq. (1). 𝑚𝑎𝑥 𝑁𝑃𝑉 =  𝜑 𝐹𝐶𝐹1 + 𝑊𝐴𝐶𝐶 − 𝐼  (1) 

 
The breakdown of the components of (1) is as follows: 
 𝐹𝐶𝐹 = [𝐸𝑁 − 𝐶𝑜𝑠𝑡 ] ∗ 1 − 𝑇𝐼𝑀𝑃 +  𝐷𝑒𝑚𝑝     ∀ 𝑠, 𝑡 (2) 
 𝐼 = 𝐼𝑃𝑃 𝑂𝑃𝑃 + 𝐼𝐶𝐷 𝑂𝐶𝐷 + 𝐼𝐶𝑅 𝑂𝐶𝑅  (3) 

 
Similarly, the components of Eq. (2) can be detailed as follows. Revenue (4) is equal to the sum of the products' prices 
multiplied by the number of products that reach the end customers. 
 𝐸𝑁 = 𝑃𝑅𝐸 𝑌      ∀𝑠, 𝑡 (4) 
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The expression 𝐶𝑜𝑠𝑡  corresponds to the sum of the expenses involved in the supply chain, such as transportation costs (5), 
handling costs (6), production costs (7), distribution costs (8), costs associated with raw materials and repair values (9) and 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡  (10). 

𝐶𝑇𝐶𝐷 𝑌 + 𝐶𝑇𝑃𝑃 𝑋 + 𝐶𝑇𝐶𝑅 𝑍 + 𝐶𝑇𝐶𝑃 𝑊
+ 𝐶𝑇𝑀𝑇 𝑀            ∀𝑠, 𝑡 (5) 

𝑈𝑃𝑇 𝐶𝐶𝐷 𝑇 + 𝐶𝐼𝑃𝑃 𝐼                                                                  ∀𝑠, 𝑡 (6) 

𝑈𝑃𝑇 𝐶𝑃𝑃 𝑋                                                                                                    ∀𝑠, 𝑡 (7) 

𝐶𝐶𝑅 𝑍 𝐷𝑒𝑚𝑝                                                                                            ∀𝑠, 𝑡 (8) 

𝑈𝑀𝑇𝑃𝑇 𝐶𝑀𝑇 𝑀                                                                                      ∀𝑠, 𝑡 (9) 

𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡 = 𝐶𝑂𝐹𝑃𝑃 𝑂𝑃𝑃 + 𝐶𝑂𝐹𝐶𝐷 𝑂𝐶𝐷 + 𝐶𝑂𝐹𝐶𝑅 𝑂𝐶𝑅     ∀𝑠, 𝑡 (10) 

 

𝐷𝑒𝑚𝑝 = 𝐴𝑃𝑃 𝑂𝑃𝑃 + 𝐴𝐶𝐷 𝑂𝐶𝐷 + 𝐴𝐶𝑅 𝑂𝐶𝑅                                ∀𝑠, 𝑡 (11) 

 
3.4.2. Minimization of the Financial Risk (FR) 
 
The second objective function seeks to minimize the FR assumed by companies when investing (Bagajewicz & Barbaro, 
2003). According to Eppen et al. (1989), FR is associated with the impossibility of achieving the required benefit. It assumes 
that the real risk is less than the expected benefit: 
 𝑀𝑖𝑛 𝐹𝑅 = 𝜑 𝛿 (𝑥,Ω) ⟹  𝑀𝑖𝑛 𝐹𝑅 = 𝜑  (Ω − 𝑁𝑃𝑉 )      (12) 

 
That is, the variables 𝑍 (𝑥,Ω) and 𝛿 (𝑥,Ω) depend on the result of the first objective function (1): 
 𝜑 𝐹𝐶𝐹(1 + 𝐶𝐶𝑃𝑃) − 𝐼 <  Ω  (13) 

 
A more natural way to understand the trade-off between risk and 𝑁𝑃𝑉  is through the cumulative risk curve, which indicates 
that the 𝑁𝑃𝑉  gain is proportional to risk. The 𝑁𝑃𝑉 = ∑ ( ) − 𝐼  is defined as the Net Present Value of the scenario 𝑠.  A more significant benefit is obtained with a higher risk (Escobar et al., 2020). Similarly, there would be no risk if the 𝑁𝑃𝑉  is more significant than Ω. 
 
3.5. Constraints  
 
Demand constraints: In the proposed model, we have assumed that the demand should be met. However, we have required 
that the dispatch variable to clients be less than or equal to the demand requested. 
 



  

 

368

𝑌 ≤ 𝐷𝐸𝑀     ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆,𝑝 ∈ 𝑃 (14) 

 
Capacity constraints: It is guaranteed that the plants, DCs and RCs do not exceed their operating capacities, considering that 
the production plants are affected by the total effectiveness of the equipment. 
 𝑋 ≤ 𝑂𝑃𝑃 𝑂𝐸𝐸 𝐶𝐴𝑃𝑁𝑃𝑃        ∀ 𝑗 ∈ 𝐽,𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (15) 

 𝑌 ≤ 𝑂𝐶𝐷 𝐷𝑇 𝐶𝐴𝑇𝐶𝐷      ∀ 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (16) 

 𝑈 + 𝑊 ≤ 𝑂𝐶𝑅 𝐶𝐴𝑅       ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (17) 

 
Material balance constraints: This constraint ensures that the nodes that participate in the supply chain have a correct flow 
of products and materials. In other words, the initial inventory plus the incoming materials is equal to the distributed materials 
plus the final inventory (Fig. 3). 
 

  
Fig. 3. Balance in Productive Plants Fig. 4 . Balance in Repairing Centers 

 
The equations for the balance of raw materials in the plants are indicated in Eq. (18) and Eq. (19): 
 𝑀 = 𝑋 𝐶𝑀𝑇𝑃 + 𝐼               ∀ 𝑡 = 1, 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑞 ∈ 𝑄 (18) 

 𝑀 + 𝐼 = 𝑋 𝐶𝑀𝑇𝑃 + 𝐼              ∀ 𝑡 ≥ 2, 𝑠 ∈ 𝑆, 𝑗 ∈ 𝐽, 𝑞 ∈ 𝑄 (19) 

 
Fig. 4 shows the product flows and the balance in the repair centers . 
 𝑍 + 𝑈 = 𝑊 + 𝑉          ∀ 𝑚 ∈ 𝑀, 𝑡 = 1, 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 (20) 

 𝑍 + 𝑉 + 𝑈 = 𝑊 + 𝑉          ∀𝑚 ∈ 𝑀, 𝑡 ≥ 2, 𝑠 ∈ 𝑆,𝑝 ∈ 𝑃 (21) 

 
Constraints of storage capacities: It is guaranteed that the inventories in the nodes do not exceed the storage capacities. Eq . 
(22) shows the storage capacity in plants, while the storage capacity in DCs is shown in Eq. (23), and the storage capacity in 
RCs is shown in Eq. (24). 
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𝐼 ≤ 𝑂𝑃𝑃 ∗ 𝐶𝐴𝑃𝑃            ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (22) 

 𝑇 ≤ 𝑂𝐶𝐷 ∗ 𝐶𝐴𝐶𝐷           ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (23) 

 𝑉 ≤ 𝑂𝐶𝑅 ∗ 𝐶𝐴𝐶𝑅           ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 (24) 

 
Raw material consumption constraints. Equation (25) determines the balance of raw material sent for manufacturing the 
finished product. 
 𝑀 = 𝐶𝑀𝑇𝑃 𝑋          ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆,𝑝 ∈ 𝑃, 𝑞 ∈ 𝑄, 𝑗 ∈ 𝐽 (25) 

 
Constraints of defects. Equation (26) determines the quantity of the defective product in the total demand. 
 𝑍 = 𝐷𝐸𝐹 ∗ 𝐷𝐸𝑀        ∀𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆,𝑝 ∈ 𝑃 (26) 

 
Integrality constraints: These equations guarantee that all variables are greater than or equal to zero. 
 𝑋 ,𝑇 ,𝑌 ,𝑈 ,𝑍 ,𝑊 ,𝑀 , 𝐼 ,𝑉 ≥ 0    ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿,𝑚 ∈ 𝑀, 𝑞 ∈ 𝑄, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑡 (27) 
 
Financial risk constraints: Additionally, in the second objective function (12), it must be taken into account that this applies 
only when the NPV does not reach the budgeted value; that is, the difference between the estimated value and the NPV 
obtained is greater than zero. 
 𝛿 (𝑥,Ω) ≥ Ω− 𝑁𝑃𝑉            ∀𝑠          (28) 
 𝛿 (𝑥,Ω) ≥ 0       ∀ 𝑠     (29) 
 
3.6. Robustness Measurement 
 
Once the mathematical model's baseline is defined, the robustness methodology is considered and carried out according to the 
FePIA procedure (Figure 5). Initially, the robustness requirements of the model are determined based on the results of 
objective functions (1) and (12), and the demand compliance (14) as a performance characteristic is defined as the occupation 
percentage of plants, DCs, and RCs. Additionally, the possibility of closing plants or distribution centers is contemplated. In 
the second instance, the disturbance parameters are defined that affect the main elements of the model's performance, as seen 
in Figure 5. The proposed steps of the FePIA methodology proposed by Ali et al. (2004), Polo et al. (2019), and Polo et al. 
(2020) can be summarized as follows: 
 

• Feature: In this step, the robustness requirements, operating characteristics and performance characteristics are 
described. They are quantitatively defined as the set Φ describing the performance characteristics of the system, 
where for each 𝜙 ∈  Φ, a variation of 𝜙  is presented. 

• Perturbation: This phase describes the perturbation parameters. In fact, 𝜋 ∈ Π  are the elements of the set of 
perturbation parameters. 

• Impact: The effects that the disturbance parameters have on the performance characteristics are identified. Indeed, 𝜙 = 𝑓 (𝜋 ) 
• Analysis: The variation scale of the characteristics generated by the robustness parameter variation is established. 

Indeed, for each 𝜙 ∈  Φ, the limit values of 𝜋  that meet the relationships 𝑓 (𝜋 ) = 𝛽  and 𝑓 (𝜋 ) = 𝛽  
must be determined. 
 

 
The following sections show the steps of the proposed methodology summarized in Fig. 5. 
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Fig. 5. Robustness Methodology 

 
3.6.1. Definition of Robustness Requirements 
 
As shown in Fig. 5, the robustness requirements 𝛤 that are affected by the disturbance parameter variations must be defined. 
These requirements 𝛾  ∈  𝛤 must be measurable and comparable. Initially, the values of the objective functions (%) (1) and 
(12) are presented to compare the effect of the benefits in standard situations with baseline values (see Table 1). Indeed, the 
aim of these objectives is to maximize the NPV (1) and minimize the FR (12), which must be consistent with the actions that 
are performed in the supply chain and the results that are obtained. On the other hand, there is a demand compliance, which 
is directly related to the performance of the supply chain. Table 1 shows the values established for each of the robustness 
requirements (% NPV, % FR and % demand). 
 
Table 1  
Range of requirements Γ Requirements ∝  ∝  𝛾  % NPV 50% NA 𝛾  % FR NA 25% 𝛾  % Demand 85% 100% 
 
The definitions of γ  to γ  are calculated by Eq. (30) to EQ. (32). The maximum (∝ ) and minimum (∝ ) values 
allowable for these requirements are defined in Table 1. 
 𝛾 = 𝑁𝑃𝑉𝐸(𝑁𝑃𝑉) 

(30) 𝑁𝑃𝑉 : Results of NPV in event 𝜋 𝐸(𝑁𝑃𝑉): Expected value of the NPV 𝛾 = 𝐹𝑅𝐼  (31) 𝐹𝑅 : Results in event 𝜋 𝐼 : Initial investment 𝛾 = ∑ 𝑌𝐷𝐸𝑀  
(32) ∑ 𝑌 : Sum of the quantity of products 𝑝 sent from 

DC 𝑘 to customers 𝑙 in scenario 𝑠 in event 𝜋 
 𝐷𝐸𝑀 ∶ Demand 

3.6.2. Definition of Operating Characteristics 
 
The operating characteristics are directly related to the ability of the company to meet the proposed goals. Therefore, they are 
related to the company's ability to produce, distribute, and operate throughout the supply chain to prevent the requirements 
from deviating from the established parameters. Table 2 shows the operating characteristics that are taken into account in the 
design of the supply chain. 
 
Table 2  
Range of Characteristics 𝛷 Operational Characteristics 𝛽  𝛽  𝜙  Percentage of Occupation of Plants 35% 70% 𝜙  Percentage of Occupation of Distribution Centers 45% 90% 𝜙  Percentage Occupation of Repairing Centers 40% 80% 𝜙  Number of Opened Plants 3 5 𝜙  Number of Opened Distribution Centers 3 5 𝜙  Number of Opened Repairing Centers 2 3 
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The calculations are performed according to each of the assets' total capacity, as shown in the following equations, and the 
number of assets required. 
 𝜙 = ∑ ∑ ∑ 𝑋∑ ∑ 𝐶𝑃𝑃  

(33) ∑ ∑ ∑ 𝑋 : Sum of the quantity of products 𝑝 
produced in PP 𝑗 sent to DC 𝑘 in scenario 𝑠 in event 𝜋 ∑ ∑ 𝐶𝑃𝑃 : Capacities of PP 𝑗 𝜙 = ∑ ∑ ∑ 𝑌∑ 𝐶𝐴𝑇𝐶𝐷   

(34) ∑ ∑ ∑ 𝑌 : Sum of the quantity of products 𝑝 
sent from DC 𝑘 sent to customers 𝑙 in scenario 𝑠 in event 𝜋 ∑ 𝐶𝐴𝑇𝐶𝐷  : Capacities of DC 𝑘 𝜙 = ∑ ∑ 𝑈 + ∑ ∑ ∑ 𝑊∑ 𝐶𝐴𝑅  

(35) ∑ ∑ 𝑈 + ∑ ∑ ∑ 𝑊 : Sum of the 
quantity of products reprocessed at RC 𝑚 in scenario 𝑠 in 
event 𝜋 
 ∑ 𝐶𝐴𝑅 : Capacities of RC 𝑚 𝜙 = 𝑂𝑃𝑃  

(36) ∑ 𝑂𝑃𝑃 :  Sum of binary variables of opening PP 𝑗  in 
event 𝜋 

𝜙 = 𝑂𝐶𝐷  
(37) ∑ 𝑂𝐶𝐷 : Sum of binary variables of opening DC 𝑘 in 

event 𝜋 

𝜙 = 𝑂𝐶𝑅  
(38) ∑ 𝑂𝐶𝑅 : Sum of binary variables of opening RC 𝑚 in 

event 𝜋 

 
3.6.3. Determination of disturbance parameters 
 
The different events 𝜋 𝜖 Π, in which the requirements 𝛤 and the characteristics 𝛷 of the supply chain are disturbed, are 
presented in Table 3. This table shows the variations in the parameters 𝜋 𝜖 Π, generating a set of 33 combinations (3 values 
for each event) of parameter variations in which the effect of disruptions on the requirements and main characteristics of the 
supply chain can be evidenced. 
 
Table 3  
Applied Perturbations Π Parameters 

𝜃 
Causes 𝜃  𝜃  𝜃  𝜋  Price of Product 105 96 94 Market variation, price competition 𝜋  Handling costs on CDs 105 110 120 Reprocesses  𝜋  General transportation costs 105 115 135 Road problems, blockages and collapses 𝜋  Raw Material Costs 102 105 110 Little supply of materials 𝜋  Fixed Costs 90 105 115 Administrative and operational cost overruns 𝜋  OEE 150 95 80 Machine and production speed problems 𝜋  Transportation Available 98 95 90 Road problems, blockages and collapses 𝜋  𝜋 + 𝜋      𝜋  𝜋 + 𝜋 + 𝜋      𝜋  𝜋 + 𝜋      𝜋  𝜋 + 𝜋      

 
4. Computational Results 
 
4.1. Case of Study 
 
The efficiency of the proposed methodology was tested in a mass-consumption company producing personal care items in 
Colombia. This method is subject to meeting the growing demand and competition that challenges each link in the supply 
chain. Although the company typically works with strict process control methodologies, waste control, such as World Class 
Manufacturing (WCM), has deficiencies in all links in the supply chain. In the relations of suppliers and wholesale customers, 
relationships are generated according to strategic alliances, and disturbances occur at the financial level. Suppliers control the 
acquisition costs in the company; customers and competition drive product prices, which are very relevant factors in terms of 
the company's profitability. On the other hand, the relationship with suppliers is essential in stabilizing the flow of raw 
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materials, which can be affected either by product shortages or by delivery times, directly affecting production and, 
consequently, demand fulfillment. 
 
For customers, market behavior is crucial for the fulfillment of the company's goals. A market study is required for making 
strategic decisions, such as increasing production capacity in production plants or opening new plants, opening distribution 
centers, procuring additional raw materials, reducing fixed costs, and closing production plants or distribution centers. In 
intermediate nodes such as plants, distribution centers, and repair centers, the flow of products moves from the company's 
internal assets and strategies such as the Warehouse Management System (WMS). The total effectiveness of the equipment 
(OEE) is controlled. The value of the OEEs is affected by four factors: fundamentals, quality, performance, and availability. 
These factors affect profitability and demand compliance. Quality is directly related to the number of compliant products 
manufactured related to the total number of products made; this is affected by low equipment operation, poor execution of 
production processes, and irregular defects within the raw materials. The performance is also affected by the machines' speed 
and operating rate. 
 
The performance can be affected by problems of speed reduction in machines. Constant stops can occur on the lines when 
there are queues or bottlenecks within the range or a lack of knowledge in operating the machine. Finally, the performance is 
directly affected by the operating time of the devices and the total work time. The most representative causes of speed 
reductions are machine failures, emergency damage, or scheduled repairs. However, plant shutdowns can also occur due to a 
lack of materials that creates machine stoppages when there is insufficient production programming (Muchiri & Pintelon, 
2008). 
 
The aim is for the OEE expected values to be above 80%; however, the average value has been at 65% in recent years, which 
is the starting base of the plant's capacities. On the other hand, there are issues related to inventories, either due to a lack of 
materials in the plant or online or inefficient scheduling according to the BOM (material lists). These issues are internal 
problems of the production plant due to high stock levels in the warehouses that store final products. These problems could 
be generated by inefficient scheduling in dispatches, transport delays, or production, creating production time losses in the 
plant of up to 5%, directly affecting the OEE of the company, which, to reduce the impact, has chosen to raise process costs 
up to 80%. 
  
Finally, there are external factors for the company, which are generally related to transport. Along the supply chain between 
each link, there is an implicit cost of transporting the products or materials moving between them. In this case, this cost is 
approximately 16% to 18% of production costs, which are affected by different factors: a) natural phenomena such as 
landslides, earthquakes, storms, or pandemics; b) socioeconomic events such as physical security problems, protest problems, 
and blockades; and c) effects from public infrastructures, such as airport closures, transport terminals, and deterioration of 
roads, which are also typical problems in Colombian logistics. 
 
4.2. Computational Results 
 
The proposed methodology was solved using an Intel Core i5 3.1 GHz computer with 8 GB of RAM. The model was 
programmed in AMPL, and the CPLEX 12.4 solver was used. Mathematical equations (1) to (29) were solved with expected 
initial data of profit and NPV in terms of the expenses and income obtained for 24 months, considering three equiprobable 
scenarios (optimistic, pessimistic, base). The results can be seen in Table 4. The values obtained for the initial NPV and FR 
were defined as the baseline to observe the changes generated with the application of the disturbances. For the solution of the 
multiobjective model, the epsilon restrictions method (ε-Constraint) was used, which consists of restricting one objective 
function to be optimized with the optimal values of the other objective function (Laumanns et al., 2006; Pérez-Cañedo et al., 
2020; Guerriero et al., 2014). In this case, the NPV was restricted with the optimal FR value, as shown in Table 4. 
 
Table 4  
Optimal solution for each objective independently 𝚪 𝐈 

NPV $ 2.017.031.145  
FR $ 3.149.118.855  
% Financial Risk 34.5% 
Fulfillment of Demand 96.8% 

 
In Fig. 6, the behavior of the initial scenario's two functions and the values expected by the company are shown. In this case, 
as is sometimes observed, the initial condition was improved. The ideal configuration of assets that better fits the established 
requirements is presented in the following sections. 
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Fig. 6. Pareto solutions front without perturbations 
 

4.2.1. Impact of disturbances on the Supply Chain  
 

The effect of the disruptions on the characteristics and requirements responding to the mathematical formulations 𝜙 =𝑓 (𝜋 ) and 𝛾 = 𝑓 (𝜋 ) was obtained using the parameter data modified according to the scenarios described in the previous 
section to achieve the results in event Π. Table 5 presents the results obtained after running the model with each of the 
parameters Π according to Table 3. The requirements Γ and characteristics 𝛷 vary according to the standards established in 
Table 1 and Table 2. 
 

Table 5  
Impact of disturbances on supply chain design 
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N + - N + - N + - 
0.1 $      2.017.031.145   $      3.149.118.855  96.8% 30.9% 67.8% 43% 4 5 3 4 4 3 3 3 3 
1.1  $      4.222.251.189   $         943.898.812  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
1.2  $         252.855.110   $      4.913.294.890  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
1.3 -$         629.232.908   $      5.795.382.908  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
2.1  $      2.017.031.145   $      3.149.118.855  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
2.2  $      2.017.031.145   $      3.149.118.855  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
2.3  $      2.017.031.145   $      3.149.118.855  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
3.1  $      2.005.409.213   $      3.160.740.787  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
3.2  $      1.982.165.350   $      3.183.984.651  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
3.3  $      1.935.686.569   $      3.230.463.431  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
4.1  $      1.684.240.510   $      3.481.909.491  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
4.2  $      1.185.054.557   $      3.981.095.443  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
4.3  $         353.111.937   $      4.813.038.063  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
5.1  $      3.440.811.949   $      1.725.338.051  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
5.2  $      1.305.140.743   $      3.861.009.257  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
5.3 -$         118.640.062   $      5.284.790.062  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
6.1  $      2.168.723.089   $      2.997.426.911  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
6.2  $      1.932.798.639   $      3.233.351.361  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
6.3  $      1.795.433.336   $      3.370.716.664  92.1% 29.7% 64.6% 41% 4 5 3 4 4 3 3 3 3 
7.1  $      1.594.255.740   $      3.571.894.261  93.8% 33.0% 65.7% 42% 4 5 3 4 4 3 3 3 3 
7.2  $      1.177.309.309   $      3.988.840.692  99.1% 33.0% 69.4% 44% 4 5 3 4 4 3 3 3 3 
7.3  $         877.721.817   $      4.288.428.183  96.4% 32.2% 67.5% 43% 4 5 3 4 5 4 3 3 3 
8.1  $      3.390.274.600   $      1.775.875.400  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
8.2 -$         579.121.478   $      5.745.271.478  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
8.3 -$      2.293.152.116   $      7.459.302.116  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
9.1  $      3.429.190.017   $      1.736.959.983  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
9.2  $      1.270.274.947   $      3.895.875.053  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
9.3 -$         199.984.638   $      5.366.134.638  96.8% 32.3% 67.8% 43% 4 5 3 4 4 3 3 3 3 
10.1  $      1.732.140.362   $      3.434.009.638  93.8% 31.3% 65.7% 42% 4 5 3 4 4 3 3 3 3 
10.2  $      1.084.503.942   $      4.081.646.058  99.0% 33.0% 69.4% 44% 4 5 3 4 4 3 3 3 3 
10.3  $         657.223.718   $      4.508.926.282  96.4% 32.0% 67.5% 43% 4 5 3 4 4 3 3 3 3 
11.1  $      3.145.052.465   $      2.021.097.535  95.0% 31.7% 66.5% 42% 4 5 3 4 4 3 3 3 3 
11.2  $         295.109.915   $      4.871.040.086  99.1% 33.2% 69.4% 44% 4 5 3 4 4 3 3 3 3 
11.3 -$      1.687.965.418   $      6.854.115.418  96.4% 32.0% 67.5% 43% 4 5 3 4 4 3 3 3 3 

 $100,000,000

 $1,000,000,000

 $10,000,000,000

 $100,000,000  $1,000,000,000  $10,000,000,000

FR

NPV

BUDGETED VALUES
FIRST SCENARIO 



  

 

374

As shown in Fig. 7, the NPV presents a positive value for most events, and in some cases, it is above the expected level, as is 
the FR (Fig. 8). However, negative NPV values are also present. Figure 9 shows that the benefits are above the expected 
minimum in terms of demand in all events. It can also be observed that regarding the occupation of the plants (Fig. 10), there 
is an underutilization of assets that may incur additional costs for the company, generating the option of closing production 
plants for the pessimistic scenario and the use of 5 plants in the optimistic scenario. 
 

 
Fig. 7. Performance of NPV (Owner) 

 
Fig. 8. Performance of FR (Owner) 

 
Fig. 9. Fulfillment of Demand (Owner) 

 

 
Fig. 10. Occupation of PP (Owner) 
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Table 6 shows the supply chain configuration results that better support the disturbances within the analyzed models. The 
better performance results of the NPV and FR are presented, showing the best strategic decision regarding the company's 
assets, leaving the plants and distribution centers that performed the best in the solution. The two options are the events with 
the best results regarding the NPV and FR; within the company's requirements is an opening range of PPs and CDs. Therefore, 
this solution proposes to leave a maximum of 3 PPs and 3 CDs, which generates the decreasing costs reflected in the increase 
in NPV, slightly sacrificing demand and remaining within the range allowed by the company. 
 
Table 6  
Best result of the proposed events Π NPV FR Fulfillment of 

Demand 
Occupation of 

PP 
Occupation of 

DC 
Occupation of 

RC PP DC RC 

12.1 $    3.964.730.092 $   1.201.419.909 89.5% 39.6% 78.4% 57% 1,2,3 1,2,3 1,2 

12.2 $    4.414.723.272 $   751.426.729 89.5% 40.1% 78.4% 57% 2,3,5 1,2,3 1,2 

 
As shown in Fig. 11 to Fig. 13, there are some disturbance events Π in which the supply chain's response does not meet the 
company's requirements. These events display the most abrupt parameter changes, such as 𝜋 .  and 𝜋 . , which are the most 
detrimental events to the profitability of the supply chain. However, with robust models, the company's profits are improved, 
even under some scenarios that showed losses with the initial models. On the other hand, in most cases, the minimum demand 
compliance requirement is met. Less transport availability and a lower OEE in the PP generate a decrease in this requirement's 
fulfillment. However, the characteristics themselves are different. The model changes the number of assets within the supply 
chain; a better PP, CD, and RC occupation can be evidenced, demonstrating that the supply chain must dispense some assets. 
In Fig. 14 and Fig. 15, the PP and the RC occupations are within the range required by the company. However, the company 
is unlikely to decrease assets for reasons of demand compliance. Likewise, the CD occupation value is improved to be within 
the allowed range. 
 

 
Fig. 11. Net Present Value (Robust Model) (Owner) 

 

 
Fig. 12. Financial Risk (Robust Model) (Owner) 
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Fig. 13. Fulfillment of Demand (Robust Model) (Owner) 

 
Fig. 14. Occupation of PP (Owner) 

 
Fig. 15. Occupation of RC (Owner) 

 
The amount of assets the company needs is reduced regarding the generation of fixed costs, transportation costs, and initial 
investments. In the two presented options, the opened plants are 1, 2, and 3 for Option 1, located in Cali, Pereira, and 
Tocancipá, and Option 2, Plants 2, 3, and 5 located in Pereira, Tocancipá, and Medellín are opened, with the same DCs and 
RCs for the two options (DCs 1, 2 and 3 located in Bogotá, Cali and Medellín and RCs 1 and 2 located in Cali and Tocancipá), 
as shown in Fig. 16. 
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Fig. 16. Number of assets (facilities) (Owner) 

 
Finally, in Fig. 17, the distribution of the best objective results found when applying the FePIA methodology is presented. It 
can be seen that most of the points are grouped to better assimilate the shocks and are closer to the area of budgeted values, 
improving the data obtained in the base scenario. Thus, the successful application of the FePIA strategy to measure the 
robustness and the scenarios considered to improve the supply chain design performance is confirmed. 
 

 
Fig. 17. Pareto solutions front with the best solutions found by FePIA methodology (Owner) 

 
5. Concluding Remarks and Future Directions 
 
This paper proposes a methodology for the robust optimization of multiobjective closed-loop supply chains by considering 
financial criteria and scenarios. The proposed method integrates closed-loop supply chains, such as the multiobjective 
optimization based on epsilon constraints and robustness measurements, through the FePIA methodology. Objective functions 
that maximize the net present value (NPV) and minimize the financial risk (FR) and parameter variability using scenarios 
were considered. 
 
The proposed mixed-integer linear programming mathematical model was tested in the real case of a Colombian company in 
which each closed-loop supply chain link is represented, resulting in optimal events in terms of the proposed objectives. It 
was found that the company has lower profits than its budget and greater financial risk. Additionally, these results may be 
affected by a series of disruptions that affect the security of the investments, the company's requirements, and the operating 
characteristics, as could be seen with the FePIA strategy applied to measure the robustness of the supply chain. 
 
Future research is recommended regarding the problems affecting a supply chain and defining each possible scenario's 
occurrence probability. It is also essential to know the likelihood that each scenario will occur. In this way, this parameter of 
the disturbance probability can be added to the mathematical model to enable strategic decisions with greater security. In the 
same way, we suggest using methodologies to solve stochastic models such as the sample average approximation (SAA), 
replacing the scenario-based method (Escobar, 2012; Escobar et al., 2013; Mafla & Escobar, 2015; Paz et al., 2015; Rodado 
et al., 2017). 
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