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 In modern industrial manufacturing, there are uncertain dynamic disturbances between processing 
machines and jobs which will disrupt the original production plan. This research focuses on 
dynamic multi-objective flexible scheduling problems such as the multi-constraint relationship 
among machines, jobs, and uncertain disturbance events. The possible disturbance events include 
job insertion, machine breakdown, and processing time change. The paper proposes a conv-dueling 
network model, a multidimensional state representation of the job processing information, and 
multiple scheduling objectives for minimizing makespan and delay time, while maximizing the 
completion punctuality rate. We design a multidimensional state space that includes job and 
machine processing information, an efficient and complete intelligent agent scheduling action 
space, and a compound scheduling reward function that combines the main task and the branch 
task. The unsupervised training of the network model utilizes the dueling-double-deep Q-network 
(D3QN) algorithm. Finally, based on the multi-constraint and multi-disturbance production 
environment information, the multidimensional state representation matrix of the job is used as 
input and the optimal scheduling rules are output after the feature extraction of the conv-dueling 
network model and decision making. This study carries out simulation experiments on 50 test 
cases. The results show the proposed conv-dueling network model can quickly converge for DQN, 
DDQN, and D3QN algorithms, and has good stability and universality. The experimental results 
indicate that the scheduling algorithm proposed in this paper outperforms DQN, DDQN, and single 
scheduling algorithms in all three scheduling objectives. It also demonstrates high robustness and 
excellent comprehensive scheduling performance. 
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1. Introduction 

The manufacturing industry is undergoing significant transformation due to the rapid advancements in science and technology. 
Traditional manufacturing is facing a crucial need for change. In a typical workshop scheduling problem, there is a single 
processing machine present (Brucker & Schlie, 1990). The primary objective of the scheduling problem is to determine the 
optimal sequence of job processing, aiming to minimize the makespan and expedite the scheduling tasks. Ouelhadj and 
Petrovic (2009) introduced the Flexible Job Shop Scheduling Problem (FJSP). as the flexible job-shop scheduling problem 
(FJSP), which includes multiple processing machines, multiple jobs and operations, and different operations which have 
different processing times. Gao et al. (2005) determined when each process should be dispatched to which machine for 
production and processing by studying various scheduling algorithms. To obtain better benefits in actual workshop production 
and processing, there has been a growing body of research on FJSP. Recently, most of the proposed solutions for the multi-
objective dynamic flexible job-shop scheduling problem (MFJSP) in production workshops have primarily focused on static 
production environments. Here, the processing information, such as machines and jobs in the workshop, is completely known 
and the current solutions overlook the numerous disruptive factors in real production processes. However, in actual production 
scenarios, dynamic events occur, such as job insertion, machine breakdown and unavoidable disturbance factors (Garey et al. 
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1976). These random disturbances lead to a serious deviation from the expected results when implementing the original static 
scheduling scheme, which greatly reduces the punctuality rate of task completion and production efficiency. The dynamic 
multi-objective flexible job scheduling problem (DMFJSP) aims to optimize scheduling for fast completion, on-time delivery, 
and minimal delays. The investigation of dynamic optimal scheduling solutions holds significant importance for the 
production and processing operations of modern manufacturing industries. 

Current research shows that task scheduling algorithms can be roughly divided into three categories: single scheduling rule 
algorithms, metaheuristic scheduling algorithms, and neural network-based scheduling algorithms. The scheduling rule 
algorithms (Chao & LaPaugh, 1993, Davis & Wellings, 1995, Yang & Yan, 2007, Lee et al., 2011) include FIFO (First In 
First Out), round robin, etc. These scheduling rules respond to disturbances in the shortest time to complete the scheduling. 
However, not only can they not achieve the global optimal goal, but they also cannot guarantee even a local optimal state, and 
different scheduling scenarios require different scheduling rules. Metaheuristic algorithms, such as proposed by Wei and Zhao 
(2004), commonly divide dynamic scheduling problems into static sub-problems. These sub-problems are then optimized 
using intelligent algorithms such as genetic algorithms (Gonçalves et al., 2005, Rahmani et al., 2019, Zhang et al., 2020b) and 
particle swarm scheduling algorithms (Lin et al., 2010, Jianfang et al., 2014, Zhao et al., 2019) are utilized to address the 
rescheduling point and efficiently complete scheduling tasks. Although this can find solutions to the scheduling problem better 
than a single scheduling rule algorithm, it takes a long time and cannot meet the requirements of punctuality and timeliness 
in the production process and has poor correlation with dynamic scheduling problems. 

There has been an increasing emphasis among scholars on task scheduling research that incorporates neural networks. This 
takes advantage of DRL in machine learning, improves the robustness of intelligent scheduling, and completes scheduling 
tasks efficiently. In the face of multiple processing information constraints such as jobs, machines, operations, and processing 
time, as well as uncertain disturbance events, the agent should comprehensively utilize the current production status 
information to make optimal scheduling decisions. To address the limitations of traditional machine learning in state and 
action space dimensions, deep reinforcement learning is employed to tackle complex control problems, offering a promising 
approach for DMFJSP. (Zhang et al., 2020a). Waschneck et al. (2018) used DQN to address the workshop production 
scheduling problem and employed a collaborative neural network scheduling algorithm. Dai et al. (2017) proposed a method 
using graph neural networks to solve scheduling problems. In this approach, a greedy policy is employed to handle the 
scheduling process and determine the actions to be taken, effectively addressing the scheduling problem. Liu et al. (2022) 
considered that in real-world workshop production processes, there is a need to enhance the ability to handle random disruptive 
events in order to meet requirements such as flexible manufacturing and rapid responsiveness. Chang et al. (2022) proposed 
a novel scheduling algorithm to address the dynamic disruption problem caused by the insertion of new jobs in the production 
process. However, limited research has addressed the dynamic disturbance events that arise in real production environments 
under uncertain conditions. Furthermore, few studies have taken into account the diverse objectives involved in production 
scheduling when tackling the disturbance problem. Therefore, effectively accomplishing the scheduling task while addressing 
these disturbances has been largely overlooked. 

To better align with the actual workshop production process and make a valuable contribution to the research on future smart 
factories, this study focuses on a dynamic multi-objective flexible scheduling workshop problem. This problem incorporates 
three dynamic events and three specific objectives. The disturbances are job insertion, machine breakdown, and processing 
time change. The three objectives are makespan, delay time, and completion punctuality rate. We propose a dynamic multi-
objective intelligent scheduling algorithm based on D3QN and conv-dueling network models. 

In this paper, the DMFJSP is addressed by employing a deep reinforcement learning algorithm, taking into consideration the 
criteria of efficiency, punctuality, and low-latency scheduling. The main work is outlined as follows: (i) We propose to use a 
multidimensional matrix containing job and machine state information as a state representation, which can express fully the 
information on which the machine performs actions. This is conducive to the rapid training of the neural network and 
achieving better convergence results, making it easier for the machine to make optimal action decisions. (ii) A comprehensive 
scheduling reward function is proposed, which combines the main reward and the branch reward, to guide the neural network 
in learning the globally optimal scheduling strategy. (iii) A conv-dueling network model is proposed for selecting optimal 
scheduling rules at various rescheduling decision points. This model takes a multidimensional state matrix as input and 
generates the value of scheduling rules as output. By leveraging this approach, the model effectively determines the most 
efficient scheduling strategy for different rescheduling decision points. The network model consists of three parts: a feature 
extraction network, a state network, and an advantage network to achieve global optimal scheduling. The network model can 
be optimized effectively in both static and dynamic cases. (iv) Numerical experiments conducted under different workshop 
scheduling environment configurations demonstrate that the proposed conv-dueling scheduling algorithm based on D3QN 
outperforms other single scheduling rules as well as scheduling algorithms based on DQN and DDQN in terms of overall 
scheduling performance. 

The remaining sections of this paper are outlined as follows. Section II briefly reviews heuristic and deep reinforcement 
learning scheduling methods. The third part introduces the principles of Q learning, DQN, and D3QN. The fourth part 
establishes the mathematical model of dynamic scheduling. The fifth part provides the specific content of the scheduling 
environment, network model, and deep reinforcement learning D3QN algorithm training. Section VI gives the experimental 
details and experimental results. Finally, the seventh part draws the conclusions. Table 1 presents a list of the key abbreviations 
utilized in this study. 



M. Xia et al. / International Journal of Industrial Engineering Computations 14 (2023) 807

Table 1 
Key abbreviations in this study 

 

2. Literature review  

The primary focus of this paper is to address the material scheduling problem in flexible workshops. To tackle this issue, we 
propose a dynamic scheduling method with Conv-Dueling and generalized representation based on reinforcement learning. 
We provide a brief overview of flexible workshop scheduling and the application of deep reinforcement learning in intelligent 
material production scheduling. The Flexible Job Shop Scheduling Problem (FJSP) is recognized as a more complex NP-hard 
problem compared to the Job Shop Scheduling Problem (JSP). Previous studies on reinforcement learning in the context of 
FJSP are summarized in Table 2. The table reveals that the consideration of dynamic random disturbance events and objectives 
in FJSP is quite extensive. The DMFJSP investigated in this paper is similarly complex.  

Reinforcement learning captures the characteristics of sequential decision-making in job-shop scheduling problems through 
state values or action values. In the realm of reinforcement learning, the agent learns iteratively while interacting with the 
environment, enabling autonomous decision-making. This approach enables high-quality, dynamic, and rapid decision-
making for complex problems. The repair-based scheduler of Wei and Dietterich (1995) starts from a critical path plan and 
repairs constraint violations incrementally with the goal of finding a short conflict-free plan. Aydin and Ztemel (2000) 
proposed a novel network training method aimed at enabling the agent to generate more autonomous scheduling plans. Wang 
and Usher(2004) conducted a simulation experiment designed to investigate the problem of selecting scheduling rules for a 
single production equipment. Yang and Yan (2007) proposed a scheduling algorithm as a solution to address the limitations 
of a single scheduling rule's local capability. Additionally, an adaptive scheduling control strategy was introduced to tackle 
the scheduling problem. Wei and Zhao (2004)  proposed the concept of the estimated mean late rate of work and completed 
the scheduling through Q-learning algorithm training in the learning phase. The scheduling method proposed by Shahrabi et 
al. (2017) utilizes variable neighborhood search and incorporates reinforcement learning. This integration aims to address 
dynamic job-shop scheduling problems while simultaneously considering factors such as job insertions and machine failures. 
Qu et al. (2016) described the process of dealing with complex scheduling problems and designed a scheduling environment. 
Subsequently, they proposed a scheduling algorithm that can adaptively update the production plan based on real-time 
environmental conditions and random perturbation events during the execution process. Wang (2020) utilized multi-agent 
technology to address the dynamics and uncertainties of the production environment in the processing workshop. Additionally, 
it addresses the issue of random perturbations in the production environment of the manufacturing system. The system 
designed by Wang and Yan (2016)  utilizes adaptive workshop scheduling rules based on reinforcement learning states and 
implements an interoperable knowledge scheduling system. 

Traditional reinforcement learning is used to solve small-scale problems. The multidimensional state space often faced in real 
reinforcement learning task scheduling processes has infinitely many state characteristics and multi-constraint factors need to 
be considered, such as the remaining time of job processing and relative completion time which are all continuous values. 
Deep reinforcement learning Mnih et al. (2015)   merged deep learning with RL, enabling comprehensive learning from 
perception to action in a single framework. Deep reinforcement learning leverages sensory input, such as vision, to directly 
generate actions, eliminating the need for manual feature extraction. The primary objective of deep reinforcement learning is 
to utilize deep neural networks to learn the environment transition function, enabling machines to learn and perform complex 
decision-making tasks through interaction with the environment.  

Shiue et al. (2018) introduced a novel approach for incrementally maintaining a knowledge base, and proposed to use the 
MDR mechanism for reinforcement learning-based RTS by combining two mechanisms. Shi et al. (2020) developed a 
workshop scheduling simulation environment for deep reinforcement learning, which addressed the disruptions between early 
transfer time and the arrival of new orders. They applied intelligent scheduling algorithms to reentrant automated production 
lines. Han and Yang (2020) proposed an approach of disjunctive graph scheduling combined with the flexible advantages of 
a deep reinforcement learning convolutional neural network (CNN). This study directly learns behavioral policies from the 
input manufacturing state. Liu et al. (2021) combined deep reinforcement learning and designed a workshop scheduling 
algorithm to quickly and efficiently accomplish scheduling tasks by optimizing scheduling, thereby reducing the completion 
time in the production process. Wang et al. (2021) formalized the equipment and job constraint problem in workshop 
scheduling as a problem of selecting the processing sequence. He took into account the structure of JSSP by representing it 
with a graph and proposed a framework that utilizes a graph neural network to learn. Zhang et al. (2022) addressed the issue 
of random interference in a large-scale workshop scheduling scenario by integrating an intelligent agent's greedy strategy 

Abbreviation  Description 
JSP  Job-Shop Scheduling Problem 

DJSP  Dynamic Job-Shop Scheduling Problem 
FJSP  Flexible Job-Shop Scheduling Problem 

MFJSP  Multi-objective Flexible Job-Shop Scheduling Problem 
DFJSP  Dynamic Flexible Job-Shop Scheduling Problem 

DMFJSP  Dynamic Multi-objective Flexible Job-Shop Scheduling Problem 
DRL  Deep Reinforcement Learning 
DQN  Deep Q-learning Network 

Conv-Dueling Convolutional Dueling Double Deep  Q-learning Network 
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from deep reinforcement learning. They proposed a multi-agent manufacturing system and enhanced its overall scheduling 
performance. Tassel et al. (2021) introduced an efficient workshop scheduling environment to address problems that cannot 
be solved by combinatorial optimization within a given time limit. They designed a reward function that better guides the 
intelligent agent to learn how to complete scheduling tasks. Luo (2020) studied the production workshop scheduling problem 
with new job insertion. They extracted seven general state representation functions to simulate the production environment 
and trained a neural network using these functions. Additionally, they incorporated an improvement called soft target weight 
update into their approach. Burggräf et al. (2022) utilized the actor-critic algorithm, interpreting the production system as a 
multi-agent system. The work proposed in (Song et al., 2022) designed a graph neural network to train the entire scheduling 
process, utilizing graphs to represent states and simulate the relationships between jobs and equipment in the workshop. 

Table 2  
Current research based on Q learning algorithms 

 System Symbol Algorithm Events Objectives 
Wei (2004) JSP Q-learning \ Average job delay rate 
Qu (2016) DJSP Q-learning 1 Makespan 

Wang (2018) DMJSP Deep Q-learning 1 Earliness punishment  Tardiness punishment 
Waschneck (2018) DFJSP Deep Q-learning 1 Uptime utilization 
Altenmüller (2020) DFJSP Deep Q-learning 2 Count of violation events 

Luo (2021) DMFJSP Deep Q-learning 1 Total tardiness 
Average machine utilization rate 

OURS (2023) DMFJSP Deep Q-learning 3 
Makespan 

Job completion on time rate 
Total tardiness 

 

3. Principle on Q-learning and deep Q-learning  

3.1 Reinforcement Learning  
 

Reinforcement Learning (RL) is represented as having 5-tuples denoted as S, A, P, γ, R  follows a specific strategy 𝜋 to 
interact with the surrounding environment. The RL agent's objective is to maximize the cumulative return rewards.  This 
process entails selecting actions in a given state and subsequently adhering to a specific policy. The process is defined by Eq. 
(1). 𝑄 ∗  𝑠,𝑎   = 𝑚𝑎𝑥  𝐸  𝑟  +  𝛾 𝑟  +  𝛾 2 𝑟  + ⋯  |  𝑠  =  𝑠, 𝑎  =  𝑎,𝜋  )0( 

Here, discount factor is a parameter that determines the relative significance of short-term rewards compared to cumulative 
return rewards.  The Q function is commonly denoted as Q  s, a . Bellman (1957) proved that the Bellman optimality 
equation can be used to obtain the optimal value of the action-value function, which is represented by formula (2): 𝑄 ∗  𝑠,𝑎  =  ∑  𝑝 𝑠′|𝑠,𝑎 𝑟 𝑠,𝑎, 𝑠′ + 𝛾𝑚𝑎𝑥   𝑄 ∗  𝑠′,𝑎′  (2) 

By applying the Bellman optimality equation, we can derive a standard Q-learning algorithm, as described in the work of 
(Sutton & Barto, 2018). 

3.2 DDQN and DDDQN  
 

Deep Neural Networks (DNNs) have made remarkable advancements in various artificial intelligence tasks, primarily 
attributed to their remarkable data learning capability and general approximation ability (Silver et al., 2016). One intriguing 
approach is the integration of Reinforcement Learning (RL) with DNNs. Double Deep Q-Networks (DDQNs) are widely 
utilized for addressing high-dimensional problems. Both architectures comprise two DNN structures; however, the distinction 
lies in the fact that DQN employs identical network structures and incorporates a stable target to mitigate the explosive 
dimensionality calculation of an unstable target. Nevertheless, during the maximization operation, the agent often tends to 
favor higher estimates that exceed the actual values. 

This paper primarily concentrates on the material scheduling problem in flexible workshops and presents a deep reinforcement 
learning approach to tackle issue. We utilized an advanced framework called D3QN algorithm for an intelligent material 
scheduling model, which combines the benefits of DDQN and dueling DQN. The framework consists of two dueling neural 
networks with identical structures. As mentioned earlier, dual network structure offers the advantage of providing stable 
objectives to mitigate the computational explosion associated with non-stationary objectives. Fig. 1. illustrates the architecture 
of the dueling network. The total value function can be written as in Eq. (3) (Wang et al., 2016). 
 𝑄 𝑠,𝑎 ;  𝜃 ,𝛼,𝛽  =  𝑉 𝑠 ;  𝜃 ,𝛼  +  𝐴 𝑠,𝑎 ;  𝜃 ,𝛽  (2) 
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However, in practical engineering applications, there is a need to enhance the identification of this function. To achieve this, 
it is beneficial to focus on the advantage function, allowing us to express the value function typically as Eq. (4) (Zhang et al., 
2021). 𝑄 𝑠,𝑎 ;𝜃 ,𝛼,𝛽 = 𝑉 𝑠 ;  𝜃 ,𝛼 +  𝐴 𝑠,𝑎 ;𝜃 ,𝛽 − 1𝐴 ∑∈ 𝐴 𝑠, 𝑎′ ;𝜃 𝑡,𝛽  (3) 

At each step t, the agent selects action at based on policy π a|s , then transitions from state s  to state s  in the environment, 
and calculates the reward value r . These signals are stored in the experience replay pool. These tuples are then used as 
training data, enabling the computation of the corresponding action-value functions. The target value for network  Q  is 
determined by selecting the action with the highest function value from the Q network, just as described in Eq. (5). 𝑌  =  𝑅 + 𝜏𝑄 𝑆 ,𝑎𝑟𝑔𝑚𝑎𝑥𝑄   𝑆 ,𝑎 ;𝜃 ,𝛼,𝛽  ;𝜃 ,𝛼,𝛽   (4) 

 

 

Fig. 1. Dueling network architecture. 

Here, θ  and θ  represent the synaptic weights. This objective can be mathematically represented by Eq. (6). 

𝐿 𝜃  =  𝐸  𝑌 − 𝑄   𝑆 ,𝑎′ ;𝜃  ,𝛼,𝛽  (5) 

This study validates the effectiveness and robustness of scheduling by utilizing the D3QN algorithm as a robust framework. 
It possesses several noteworthy advantages: (i) In the context of implementing dynamic multi-objective job shop scheduling 
problems, a dueling network is utilized to effectively balance the advantages and disadvantages of different elements, 
particularly when they have similar values. (ii) D3QN exhibits exceptional generalization and nonlinear fitting capabilities, 
enabling thorough exploration of potential relationships within multi-constraint production scheduling environments. 

 

 

Fig. 2. Learning procedure of Conv-Dueling scheduling algorithm 
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4. Problem formulation  

The initial step involves establishing the logical scheduling formula for Discrete Multi-Flow Job Shop Problem (DMFJSP), 
where lowercase letters denote indexes and uppercase letters denote collections. In the flexible workshop scheduling problem, 
let's assume there are 𝐽 = 𝐽 , 𝐽 , . . . , 𝐽  jobs and 𝑀 = 𝑀 ,𝑀 , . . . ,𝑀  machines. Each Job 𝐽  comprises multiple processing 
operations. consists of one or more processing operations, denoted as 𝑂 = 𝑂 ,𝑂 , . . . ,𝑂 , such as turning, milling, grinding, 
welding, etc. Jobs must be processed in a predetermined order. All operations can be executed on multiple machines, each 
with its own distinct processing time denoted as 𝑃 . The scheduling task involves allocating jobs to machines for processing 
in a manner that minimizes makespan and delay time, while maximizing the completion punctuality rate. In Table 3, the task 
deadline (DDT) is an indicator of task urgency. For a time, point 𝑇  there are 𝑛  jobs 𝐽  of operations. The cut-off time 𝐷  can 
be calculated as 𝐷 = 𝐴 + ∑ 𝑡 , • 𝐷𝐷𝑇. 

This research aims to deal with unpredictable dynamic disturbance events such as job insertion, machine breakdown, and 
processing time change in the process of production scheduling when there are multi-constraint relationships between 
processing machines and jobs. It assigns each process 𝑂 ,  of the job to the appropriate processing machine 𝑀  for processing 
at an appropriate time, In order to efficiently complete all scheduling tasks and achieve superior comprehensive scheduling 
performance in terms of both on-time completion rate and makespan. The entire process of production scheduling processing 
is shown in Fig. 3. The details of the dynamic disturbance event processing shown in the figure are as follows. 

Job insertion refers to the need to add new jobs to complete the production tasks due to insufficient completeness or new task 
requirements other than the initial planned tasks of the workshop production scheduling. In this paper, once a new job is 
inserted in the scheduling process, except for the jobs being processed by each machine, the rest of the jobs and the newly 
inserted jobs are re-scheduled and calculated to generate a new scheduling plan. Machine breakdown is an unavoidable and 
random disturbance event in the actual production process. There are many types of machine failure, and each has a different 
maintenance time. It is important to deal with different failure events, minimize workshop losses, and better ensure the 
punctuality rate of scheduling and other goals. In this paper, operations are immediately halted when a machine fails., and 
then the machine enters the unavailable maintenance state. The interrupted job can be rescheduled to be processed by other 
machines or continue processing after the machine maintenance is completed. Processing time change refers to the situation 
that during the production process, due to factors such as different proficiency of workers in operating a machine or machine 
problems, the processing task cannot be completed according to the specified processing time, and processing is completed 
in advance or delayed. In the processing process for this paper, changes in man-hours occur randomly, while other tasks are 
rescheduled and adjusted based on the current status information of the jobs. The following are scheduling constraints: 

(i)  After the machine has processed one job, it can process the next job 

(ii) The job must be machined according to the machining sequence 

(iii) Negligible transport times and job loading and unloading times 

(iv) Job-to-job unconstrained relationships 

(v) Each job has a different processing time on different equipment 

(vi) When a machine breaks down, no job can be processed 

(vii) Disturbance factors can occur on any machine or job 

 

Table 3 
Symbolic representation of production information 

Notation Description 𝐧 The number of jobs 𝐦  The number of machines 𝐣𝐢 job thThe i 𝐌𝐤 The kth machine 𝐎𝐢,𝐣 ioperation of job J thThe j 𝐌𝐢,𝐣 Machine set that can process operation 𝑂 , 𝐧𝐢 iNumber of operations of job J 𝐭𝐢,𝐣,𝐤 kon machine M𝑂 ,Processing time of operation  𝐭𝐢,𝐣 Processing time of operation 𝑂 , 𝐂𝐢,𝐣 Completion time of operation 𝑂 , 𝐀𝐢 job thThe arrival time of i 𝐃𝐢 job thThe deadline time of i 𝐁𝐤 The failure of kth machine 𝐈𝐃𝐤 Number of idle time intervals of machine k 
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Fig. 3. Scheduling flow chart. 

5. Scheduling problem transformation 

This paper employs the D3QN algorithm for unsupervised training of the network model. Finally, according to the multi-
constraint and multi-disturbance production environment information, the multidimensional state representation matrix of 
the job is used as input and the optimal scheduling rules are output after the feature extraction and decision-making of the 
conv-dueling network model, so as to realize the optimal scheduling of tasks.  

5.1 State feature  
 

The state space represents all possible environments within the workshop. In less complex environments, the state space can 
be described using two-dimensional vectors or tables. However, job shop scheduling problems often involve high-
dimensional state spaces, which makes it infeasible for RL algorithms to explore all states. Using these information indicators 
directly as state features can significantly alter the algorithm's input, leading to a substantial decrease in training speed and 
the generality of D3QN without training. 

 

In order to leverage the power of deep learning for feature extraction from the original input, this paper proposes a state space 
consisting of a multidimensional matrix that incorporates both job and machine state information. This matrix enables better 
handling of the relationship between state features and the action space. This can fully express the information on which the 
machine executes the action, and also facilitates the rapid training of the neural network and better convergence results, 
making it easier for the machine to make optimal action decisions. The multidimensional state matrix uses different scheduling 
feature information as different channels of the image, and each channel has the length of the machine serial number, the 
width of the process sequence and the height of the job quantity. The scheduling characteristics considered here include 
information such as job, operation, machine, processing time, deadline, and current time. Each element in the matrix is 

  
S0 S1 

Fig. 4. Scheduling state transition. 
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normalized. If a machine is processing a task, the machine is in a busy state, and the corresponding value represents the 
remaining unprocessed time for that task on the machine. The other values in the same row are set to zero, indicating that 
there are no other operations being processed on that machine now. The processing time channel on the far right of the image 
represents the value calculated by weighing the processing time, deadline, and current time, and expresses the multi-time 
information more completely. 

5.2 Dispatching rules 
 

There is no scheduling rule that can be universally applicable to all production objectives and workshop environments. 
Selecting different scheduling rules based on different environmental states is of great significance for improving production 
efficiency. The action in this context is to choose the appropriate jobs for priority scheduling based on the scheduling rules. 
The action space comprises a range of heuristic scheduling rules. In order to overcome the problem that a single scheduling 
rule is not applicable to multiple scheduling scenarios, we select appropriate scheduling rules through deep reinforcement 
learning for different environmental states. Too few scheduling rules will easily result in the agent being unable to solve the 
global optimal scheduling task in the face of complex and diverse environments. Having too many scheduling rules can indeed 
impact the efficiency of the agent in learning the optimal scheduling strategy, which in turn hinders the goal of achieving real-
time and efficient scheduling. Therefore, we comprehensively consider processing time, job completion rate, waiting time, 
deadline, arrival time, idle time, and other information factors to design nine kinds of better scheduling rules, as shown in 
Table 4. 

5.3 Definition of rewards 
 

The reward function provides immediate feedback signals to the agent to guide its learning and decision-making process. By 
appropriately designing a composite reward function, it is possible to guide the equipment to learn adaptive and efficient 
behavioral strategies when faced with different workpiece selection problems. However, designing an appropriate reward 
function is a challenging task that requires balancing exploration and exploitation, addressing reward sparsity, and navigating 
the challenges of guiding learning. The objective is to take into account the minimum makespan, minimum delay time, and 
maximum completion punctuality rate in a comprehensive manner. To achieve this, we employ a compound reward approach 
that combines the main task with branch tasks. We design the branch reward to guide the agent in learning the optimal actions. 
By using this method, we aim to optimize the scheduling process by considering multiple performance metrics 
simultaneously. The main line rewards give positive or negative feedback of success or failure when a training session is 
completed, which solves the problems that sparse rewards affect convergence and dense rewards easily cause local optima. 
The reward function of the main line is given in formula (8): 𝑟𝑒𝑤𝑎𝑟𝑑1 = 

−𝑅 if d_r>t_r ; if j_t>max_t𝑅 + 𝑅 _𝐵 ∗ 𝑐 _ 𝑡  if c_t>= 1 − 𝑟                                                                                                          (6) 

Here, R and R_B are the reward values set after multiple experiments, c_t is the probability of on-time completion, d_r is the 
failure rate, j_t is the training step, max_t is the step threshold, and r is the target completion rate indicator. The branch 
rewards are shown in formula (8): 𝑟𝑒𝑤𝑎𝑟𝑑2 = - 𝑗 _ 𝑙 /𝑚 _ 𝑠 ∗ 𝜇                                                                                                                                        (7) 

where j_l represents the information about overdue tasks in the job, m_s is total machine information, and 𝜇 is weight 
coefficient. The total reward is shown in formula (9), where 𝛼 is the weight factor. 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟𝑒𝑤𝑎𝑟𝑑1 + 𝛼 ∗ 𝑟𝑒𝑤𝑎𝑟𝑑2  (8) 

Table 4  
Actions 

Rule Description 
SPT Minimum processing time 
LPT Maximum processing time 
SCRJ Minimum completion rate 

SMWT Minimum remaining waiting time 
CCMT Minimum product of the completion rate and minimum waiting time 
EDF Earliest cut-off time 
FIFO Earliest time of arrival 

LMWT Maximum waiting time 
SIT Minimum idle time 

 

6. Experimentation  

6.1 Training details 
 

Table 5 displays the data range employed in training our deep reinforcement learning algorithm. To ensure that the training 
data encompasses all uncertain events, We designed the initial training data for each training process, which includes 
information about the jobs and machines, as well as randomly occurring perturbation events. The parameters associated with 
the jobs and machines are generated randomly within the ranges specified in Table 5.  
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6.2 Training details 

In this experiment, we utilize randomly generated data instances that adhere to the constraints presented in Table 6. At the 
start of production, there are 20 jobs, and the number of machines can be either 10 or 20. The processing capabilities of the 
machines are also randomly assigned. Additionally, there are 30, 50, and 80 dynamic disturbance events, each with a random 
type. Similar to the training phase, the job and machine parameters are randomized. In total, there are 30 combinations of test 
cases, each with 50 runs. 

Table 5  
Training data details 

Parameter type Range 
Total number of machines 1-50 
Number of available machines of each operation 0-50 
Number of initial jobs at beginning 0-50 
Total number new inserted jobs 0-100 
Total number of fault types 0-100 
Repair time of failure 1-99 

Due date tightness (DDT)  1-5 
Number of operations belonging to a job 0-10 
Processing time of an operation on an available machine 0-50 
Average value of exponential distribution between two successive new job arrivals (Eave) 0-100 

 

6.2.1 Sensitivity study/hyperparameter design of control parameters 

After conducting numerous experiments, we have determined the optimal hyperparameters, as presented in Table 7, which 
result in optimal training performance. Among these hyperparameters, the learning rate is particularly influential. We utilize 
the gradient descent method to enhance the algorithm's performance, necessitating the selection of an appropriate learning 
rate value. An excessively large learning rate can cause the neural network to oscillate around the global optimum during 
training. Conversely, a learning rate that is too small may lead to slow convergence or convergence to a local optimum. 
Therefore, selecting the appropriate learning rate is crucial for training the model effectively. In this paper, we employ a 
piecewise constant approach to gradually decrease the learning rate as the number of training iterations increases. The learning 
rate is decreased exponentially with increasing training iterations, and the decreasing step sizes are defined as (200, 500, 800). 

6.2.2 Comparison of the results of DQN, DDQN, and D3QN 

The D3QN algorithm achieved reward convergence within the first 2000 training rounds, as depicted in Fig. 5. As the training 
progresses, the rewards of all three algorithms converge to the maximum value. The post-convergence oscillation is mainly 
attributed to the occasional random action selection with a low probability. Among the three algorithms, the DQN algorithm 
exhibits the poorest performance, lowest learning efficiency, and slowest convergence speed. DDQN shows significant 
improvement and achieves faster convergence compared to the DQN algorithm, but it still falls short of the D3QN algorithm. 
The D3QN algorithm stands out with the best convergence and stability. The superiority of the D3QN algorithm can be 
attributed to its utilization of the dueling network architecture and the integration of the multi-dimensional state space of the 
Deep Double Q-Network. These design elements help alleviate the issue of action value overestimation. Furthermore, the 
convergence results of the completion punctuality rate for the different algorithms are displayed in Figure 6. The results 
demonstrate that all the dueling-double-deep reinforcement learning algorithms achieve convergence, with respective 
completion punctuality rates of 0.85, 0.8, and 0.7. It is evident that the D3QN algorithm exhibits more stable convergence at 
a higher reward value compared to the other two algorithms. The overall scheduling performance indicates that these 
algorithms have not effectively learned improved scheduling rules at the rescheduling point. leading to a lower job completion 
punctuality rate. These findings emphasize that in scenarios involving multiple constraints and disturbances, the D3QN-based 
dynamic multi-objective intelligent scheduling algorithm proposed in the study has successfully acquired more efficient 
scheduling rules. 

Table 6 
Test data details 

Parameter Value 
Total number of machines [10,20] 
Number of available machines of each operation Unif [0,M] 
Number of initial jobs 20 
Total number new inserted jobs [30,50,80] 
Total number of fault types [0-10] 
Repair time of failure [10-55] 

Due date tightness (DDT )  2.0 
Number of operations belonging to a job Unif[2,5] 
Processing time of an operation on an available machine Unif[0,50] 
Average value of exponential distribution between two successive new job arrivals (Eave) {50, 75,100} 
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Table 7 
Hyperparameters 
Hyperparameters 
MAX_STEP = 500 
R = 100 
R_B = 1 
TEST_RATE = 25 
TEST_EPOCH_NUM = 1 
GAMMA = 0.99 
EPOCH_NUM = 2000 
LR= 0.01 
LR_DECREMENT = 0.1 
E_GREEDY = 0.8 
E_GREEDY_DECREMENT =0.0005 
MAX_SIZE = 5000 
BATCH_SIZE = 32 
WARM_UP_SIZE = 1000 
UPDATE_TARGET_MODEL_RATE = 100 

 

6.2.3 Comparison with other scheduling rules 

To evaluate the efficiency and adaptability of the suggested dynamic multi-objective intelligent scheduling algorithm, a 
comparative experiment was conducted to evaluate its performance against single scheduling rules. Multiple sets of 
experimental data were generated randomly, simulating various task scheduling scenarios in the production process, with 
different parameter settings for m, nadd, and Eave. For each set of experimental data, the proposed scheduling algorithm and 
each individual scheduling rule were repeated 50 times. Tables 8-10 present the average and standard deviation values of 
makespan, delay time, and completion punctuality rate obtained by each method. The superior outcomes are indicated in bold. 

The study conducted multiple experiments and calculated the average values and standard deviations. These results provide 
insights into the impact of our designed scheduling algorithm and other scheduling rules on the overall scheduling 
performance under different experimental parameter configurations. As anticipated, when there is a higher number of newly 
arriving jobs and more frequent arrivals, the delay time and completion time increase, while the job completion rate decreases. 
Furthermore, it can be observed that as the number of machines increases, the job delay time decreases, and the job completion 
rate improves. These results highlight the influence of parameter settings on scheduling performance and offer valuable 
insights into the behavior of the proposed algorithm and alternative scheduling rules in varying conditions. Comparatively, 
our proposed scheduling algorithm outperforms single scheduling rules by achieving remarkable improvements in minimizing 
makespan and delay time while maximizing the completion punctuality rate. The experimental results indicate that the 
scheduling algorithm is capable of making decisions that lead to globally optimal scheduling strategies when facing different 
scheduling scenarios. In a dynamic production environment, no single scheduling rule can achieve optimal scheduling 
performance as effectively as our proposed algorithm. These results provide evidence that our algorithm exhibits strong 
generality and performs well in various untrained situations. It showcases the algorithm's ability to adapt and make effective 
scheduling decisions in changing and unpredictable production environments. The scheduling method proposed in this study 
can select the optimal scheduling strategy based on the current workshop production environment and scheduling task 
information. It aims to achieve more efficient scheduling and demonstrates comprehensive performance. This adaptability 
and decision-making capability make the scheduling algorithm more effective and versatile compared to relying on a single 
scheduling rule. 

  
Fig. 5. Comparison of the complete rate of three 

algorithms 
Fig. 6. Comparison of the total reward of three 

algorithms 
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Table 8 
Comparison of average and standard deviation value of makespan after 50 runs of single rule scheduling algorithm and ours 

m nadd Eave Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Ours 

10 

30 
50 7.31e+02/5.77e+01 9.50e+02/6.70e+01 8.43e+02/7.18e+01 7.12e+02/7.03e+01 6.72e+02/4.53e+01 6.89e+02/5.05e+01 8.09e+02/6.12e+01 7.40e+02/5.58e+01 6.92e+02/5.37e+01 5.38e+02/3.67e+01 
75 7.69e+02/5.96e+01 9.64e+02/6.34e+01 8.05e+02/7.11e+01 6.97e+02/7.37e+01 6.81e+02/4.24e+01 6.93e+02/5.86e+01 8.21e+02/6.01e+01 7.50e+02/5.57e+01 6.88e+02/5.97e+01 5.57e+02/3.81e+01 
100 7.44e+02/6.13e+01 9.60e+02/5.51e+01 8.03e+02/6.41e+01 7.16e+02/6.86e+01 7.18e+02/4.32e+01 7.09e+02/5.53e+01 8.32e+02/6.15e+01 7.51e+02/5.20e+01 6.80e+02/5.27e+01 5.40e+02/3.96e+01 

50 
50 1.00e+03/5.63e+01 1.26e+03/6.88e+01 1.07e+03/8.71e+01 9.92e+02/7.94e+01 9.47e+02/5.99e+01 9.75e+03/7.05e+01 1.07e+03/5.90e+01 1.02e+03/6.87e+01 9.90e+02/6.68e+01 8.12e+02/5.75e+01 
75 1.35e+03/7.26e+01 1.65e+03/7.35e+01 1.42e+03/9.20e+01 1.35e+03/7.51e+01 1.27e+03/6.33e+01 1.31e+03/6.26e+01 1.43e+03/6.56e+01 1.34e+03/7.41e+01 1.25e+03/6.91e+01 8.56e+02/5.11e+01 
100 2.06e+03/7.24e+01 2.17e+03/7.37e+01 1.44e+03/9.95e+01 1.33e+03/7.05e+01 1.30e+03/4.21e+01 1.27e+03/7.89e+01 1.38e+03/8.39e+01 1.31e+03/5.26e+01 1.35e+03/5.11e+01 8.71e+02/5.99e+01 

80 
50 1.43e+03/6.98e+01 1.77e+03/7.43e+01 1.48e+03/9.96e+01 1.40e+03/8.30e+01 1.33e+03/5.19e+01 1.39e+03/6.38e+01 1.46e+03/8.47e+01 1.39e+03/6.88e+01 1.35e+03/6.64e+01 9.76e+02/6.14e+01 
75 1.44e+03/9.50e+01 1.75e+03/7.72e+01 1.47e+03/8.32e+01 1.37e+03/8.87e+01 1.37e+03/6.74e+01 1.36e+03/6.56e+01 1.43e+03/6.85e+01 1.48e+03/6.50e+01 1.32e+03/6.17e+01 9.94e+02/6.31e+01 
100 1.40e+03/6.96e+01 1.74e+03/8.03e+01 1.51e+03/9.11e+01 1.40e+03/8.35e+01 1.32e+03/7.27e+01 1.37e+03/6.79e+01 1.49e+03/8.19e+01 1.43e+03/7.49e+01 1.36e+03/8.19e+01 1.03e+03/6.91e+01 

20 

30 
50 4.20e+02/5.02e+01 5.33e+02/6.46e+01 4.44e+02/5.28e+01 3.82e+02/5.88e+01 3.81e+02/4.12e+01 3.73e+02/6.07e+01 4.33e+02/4.74e+01 4.54e+02/6.32e+01 3.65e+02/5.81e+01 2.84e+02/4.51e+01 
75 4.82e+02/7.55e+01 5.39e+02/6.71e+01 4.59e+02/6.20e+01 3.88e+02/6.41e+01 4.64e+02/5.42e+01 3.81e+02/6.79e+01 4.50e+02/5.74e+01 4.44e+02/5.78e+01 3.94e+02/6.19e+01 3.01e+02/4.91e+01 
100 5.39e+02/9.03e+01 5.41e+02/7.03e+01 5.33e+02/7.84e+01 4.34e+02/7.94e+01 4.39e+02/6.43e+01 4.26e+02/8.39e+01 4.72e+02/6.58e+01 4.99e+02/8.17e+01 4.09e+02/6.47e+01 3.17e+02/5.21e+01 

50 
50 5.66e+02/5.13e+01 7.36e+02/5.82e+01 6.21e+02/5.73e+01 4.84e+02/5.33e+01 4.69e+02/4.52e+01 4.91e+02/4.81e+01 5.64e+02/4.59e+01 5.32e+02/4.82e+01 4.72e+02/4.86e+01 3.64e+02/3.98e+01 
75 5.94e+02/5.95e+01 7.13e+02/6.38e+01 6.52e+02/6.66e+01 5.09e+02/5.73e+01 4.94e+02/5.07e+01 5.16e+02/6.04e+01 5.69e+02/5.85e+01 5.16e+02/5.07e+01 4.80e+02/5.14e+01 3.78e+02/4.59e+01 
100 5.78e+02/7.48e+01 7.28e+02/6.18e+01 6.74e+02/7.50e+01 5.55e+02/6.91e+01 4.90e+02/5.63e+01 5.22e+02/6.04e+01 5.95e+02/6.98e+01 5.61e+02/6.28e+01 5.23e+02/7.29e+01 3.97e+02/5.61e+01 

80 
50 7.55e+02/5.70e+01 9.91e+02/6.05e+01 7.94e+02/5.57e+01 7.02e+02/5.45e+01 6.83e+02/5.22e+01 6.73e+02/5.05e+01 7.87e+02/4.79e+01 7.22e+02/4.59e+01 6.67e+02/4.29e+01 5.69e+02/4.11e+01 
75 7.45e+02/5.58e+01 9.58e+02/6.86e+01 7.63e+02/6.28e+01 6.81e+02/5.59e+01 6.66e+02/5.32e+01 8.02e+02/5.88e+01 8.02e+02/5.88e+01 8.02e+02/5.88e+01 6.70e+02/4.69e+01 5.84e+02/4.95e+01 
100 8.03e+02/6.94e+01 1.02e+03/6.16e+01 8.06e+02/5.93e+01 7.10e+02/4.38e+01 6.75e+02/6.05e+01 6.84e+02/5.79e+01 8.17e+02/6.41e+01 7.29e+02/5.47e+01 7.09e+02/7.29e+01 6.07e+02/5.74e+01 

 
Table 9 

Comparison of average and standard deviation value of Trave after 50 runs of single rule scheduling algorithm and ours 
m nadd Eave Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Ours 

10 

30 
50 3.66e-01/2.81e-02 8.04e-02/3.31e-02 2.80e-01/3.23e-02 1.96e-01/3.02e-02 1.85e-01/2.77e-02 1.95e-01/3.62e-02 1.24e-01/3.96e-02 1.42e-01/3.24e-02 4.80e-03/8.54e-03 7.04e-01/2.41e-02 
75 3.77e-01/2.81e-02 1.02e-01/3.57e-02 2.97e-01/3.77e-02 1.94e-01/3.02e-02 1.84e-01/2.69e-02 2.07e-01/3.22e-02 1.35e-01/4.13e-02 1.55e-01/3.36e-02 9.60e-03/1.28e-02 7.26e-01/2.58e-02 

100 5.36e-01/4.61e-02 2.79e-01/5.49e-02 4.52e-01/5.53e-02 3.52e-01/4.64e-02 4.36e-01/5.54e-02 3.40e-01/4.12e-02 3.17e-01/5.77e-02 4.39e-01/5.95e-02 1.55e-01/5.33e-02 7.39e-01/2.72e-02 

50 
50 2.64e-01/1.78e-02 3.97e-02/1.79e-02 1.92e-01/2.02e-02 1.18e-01/2.71e-02 1.24e-01/2.16e-02 1.17e-01/2.88e-02 6.28e-02/2.53e-02 8.82e-02/2.35e-02 5.71e-04/2.79e-03 6.15e-01/1.01e-02 
75 1.93e-01/1.34e-02 2.46e-02/1.46e-02 1.42e-01/1.82e-02 7.93e-02/1.60e-02 9.26e-02/1.41e-02 7.01e-02/1.91e-02 3.87e-02/1.93e-02 5.43e-02/1.67e-02 3.65e-02/1.24e-02 6.24e-01/1.45e-02 

100 1.55e-01/1.21e-02 1.24e-02/9.31e-03 1.36e-01/7.45e-03 6.16e-02/1.21e-02 8.51e-02/4.95e-03 7.32e-02/1.69e-02 4.48e-02/1.02e-02 4.21e-02/2.16e-02 1.24e-02/4.54e-03 6.39e-01/1.28e-02 

80 
50 1.89e-01/1.40e-02 2.06e-02/1.43e-02 1.45e-01/1.97e-02 7.34e-02/1.77e-02 8.97e-02/1.32e-02 6.19e-02/2.03e-02 3.23e-02/1.81e-02 6.13e-02/1.94e-02 1.48e-03/3.53e-03 3.11e-01/9.92e-01 
75 1.38e-01/1.68e-02 7.32e-02/1.48e-02 1.38e-01/1.68e-02 7.32e-02/1.48e-02 8.84e-02/1.40e-02 6.22e-02/1.76e-02 3.28e-02/1.58e-02 5.18e-02/1.81e-02 1.48e-03/1.14e-03 3.29e-01/1.26e-02 

100 1.94e-01/1.72e-02 3.06e-02/1.87e-02 1.53e-01/1.84e-02 7.61e-02/2.27e-02 9.11e-02/1.50e-02 5.66e-02/2.09e-02 3.87e-02/1.74e-02 6.05e-02/1.72e-02 1.20e-03/3.84e-03 3.42e-01/1.42e-02 

20 

30 
50 5.64e-01/3.11e-02 3.99e-01/4.64e-02 5.61e-01/5.21e-02 4.81e-01/3.91e-02 5.36e-01/4.40e-02 3.88e-01/3.87e-02 4.28e-01/6.76e-02 6.14e-01/4.88e-02 5.02e-01/7.02e-02 8.65e-01/2.15e-02 
75 5.93e-01/4.02e-02 4.44e-01/5.72e-02 5.97e-01/4.39e-02 4.91e-01/4.96e-02 5.67e-01/5.73e-02 4.23e-01/4.06e-02 4.75e-01/6.69e-02 6.08e-01/5.27e-02 5.56e-01/8.19e-02 8.83e-01/2.65e-02 

100 5.95e-01/4.70e-02 5.22e-01/7.22e-02 6.08e-01/4.76e-02 5.26e-01/4.29e-02 5.92e-01/6.21e-02 4.63e-01/4.85e-02 5.21e-01/6.66e-02 6.40e-01/4.97e-02 6.22e-01/6.38e-02 9.02e-01/2.91e-02 

50 
50 4.02e-01/3.58e-02 1.82e-01/3.63e-02 3.89e-01/3.11e-02 3.25e-01/2.88e-02 3.33e-01/2.20e-02 2.58e-01/3.29e-02 2.01e-01/4.03e-02 2.05e-01/5.06e-02 6.28e-02/3.07e-02 7.55e-01/2.90e-02 
75 4.29e-01/3.81e-02 2.22e-01/3.45e-02 4.26e-01/3.22e-02 3.39e-01/2.89e-02 3.57e-01/3.14e-02 2.79e-01/3.83e-02 2.12e-01/3.75e-02 2.52e-01/5.44e-02 1.24e-01/4.38e-02 7.69e-01/3.19e-02 

100 4.42e-01/4.42e-02 2.39e-01/4.59e-02 4.43e-01/3.21e-02 3.72e-01/3.28e-02 3.97e-01/4.06e-02 3.15e-01/3.21e-02 2.61e-01/4.25e-02 2.95e-01/6.65e-02 1.50e-01/5.95e-02 7.93e-01/3.54e-02 

80 
50 2.72e-01/2.13e-02 7.64e-02/2.36e-02 2.59e-01/2.43e-02 2.09e-01/2.54e-02 2.16e-01/1.67e-02 1.68e-01/1.91e-02 1.13e-01/2.54e-02 9.24e-02/2.23e-02 2.83e-03/6.01e-03 5.29e-01/1.81e-02 
75 2.98e-01/2.18e-02 2.98e-01/2.18e-02 2.89e-01/2.03e-02 2.20e-01/2.30e-02 2.26e-01/2.20e-02 1.81e-01/3.28e-02 1.17e-01/2.59e-02 1.20e-01/2.71e-02 1.44e-02/1.26e-02 5.54e-01/2.06e-02 

100 3.17e-01/3.05e-02 1.16e-01/2.81e-02 3.03e-01/2.71e-02 2.26e-01/2.86e-02 2.42e-01/2.23e-02 1.91e-01/2.87e-02 1.38e-01/2.71e-02 1.41e-01/3.23e-02 3.12e-02/1.92e-02 5.85e-01/2.61e-02 
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   Table 10 
Comparison of average and standard deviation value of Tardave after 50 runs of single rule scheduling algorithm and ours 

m nadd Eave Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Ours 

10 

30 
50 6.02e+03/6.34e+02 1.15e+04/1.03e+03 7.03e+03/8.08e+02 9.75e+03/6.27e+02 1.15e+04/1.10e+03 1.09e+04/7.70e+02 8.28e+03/9.04e+02 6.79e+03/6.81e+02 1.08e+04/1.22e+03 1.71e+03/3.13e+02 
75 5.47e+03/6.92e+02 1.13e+04/1.02e+03 6.36e+03/7.37e+02 9.32e+03/6.60e+02 1.11e+04/1.12e+03 1.06e+04/8.61e+02 8.08e+03/7.23e+02 6.84e+03/7.54e+02 1.02e+04/9.49e+02 1.53e+03/3.64e+02 

100 1.18e+03/3.79e+02 4.91e+03/8.13e+02 2.86e+03/5.93e+02 5.90e+03/4.43e+02 3.54e+03/6.50e+02 6.79e+03/5.38e+02 3.97e+03/5.99e+02 1.21e+03/2.85e+02 2.83e+03/6.46e+02 8.12e+02/9.84e+01 

50 
50 1.67e+04/1.33e+03 2.88e+04/2.18e+03 1.79e+04/1.50e+03 2.37e+04/1.29e+03 3.03e+04/2.64e+03 2.56e+04/1.79e+03 2.05e+04/1.36e+03 1.89e+04/1.35e+03 2.77e+04/2.62e+03 8.44e+03/5.62e+02 
75 3.75e+04/2.28e+03 6.10e+04/3.11e+03 3.92e+04/2.25e+03 4.97e+04/2.27e+03 6.62e+04/4.25e+03 5.25e+04/2.29e+03 4.45e+04/2.28e+03 4.03e+04/2.51e+03 6.07e+04/3.68e+03 9.15e+03/7.36e+02 

100 6.61e+04/3.07e+03 1.06e+05/5.87e+03 4.52e+04/3.61e+03 5.50e+04/1.62e+03 7.67e+04/2.61e+03 5.75e+04/2.41e+03 5.08e+04/2.35e+03 4.45e+04/1.59e+03 7.33e+04/2.27e+03 9.87e+03/8.31e+02 

80 
50 4.11e+04/2.71e+03 6.96e+04/4.01e+03 4.32e+04/2.67e+03 5.43e+04/2.80e+03 7.27e+04/3.36e+03 5.83e+04/2.53e+03 4.97e+04/2.38e+03 4.75e+04/2.12e+03 6.83e+04/3.87e+03 2.64e+04/4.54e+02 
75 4.28e+04/2.86e+03 7.04e+04/3.54e+03 4.49e+04/1.84e+03 5.56e+04/2.46e+03 7.67e+04/4.85e+03 5.85e+04/2.58e+03 4.94e+04/2.20e+03 4.69e+04/2.64e+03 6.78e+04/3.98e+03 2.31e+04/5.61e+02 

100 3.94e+04/2.71e+03 6.65e+04/3.52e+03 4.19e+04/2.27e+03 5.28e+04/2.27e+03 7.04e+04/3.95e+03 5.64e+04/2.44e+03 4.93e+04/8.65e+03 4.80e+04/2.34e+03 6.72e+04/4.84e+03 2.41e+04/5.71e+02 

20 

30 
50 2.44e+02/1.47e+02 1.12e+03/2.95e+02 5.57e+02/1.78e+02 1.52e+03/2.23e+02 8.74e+02/2.52e+02 2.56e+03/2.61e+02 8.55e+02/2.33e+02 4.86e+01/5.01e+01 1.56e+02/8.10e+01 2.74e+01/6.92e+01 
75 1.33e+02/9.54e+01 8.76e+02/3.69e+02 4.83e+02/1.92e+02 1.32e+03/2.69e+02 6.35e+02/2.71e+02 2.04e+03/3.78e+02 7.51e+02/2.41e+02 5.26e+01/5.99e+01 8.49e+01/8.29e+01 2.96e+01/7.65e+01 

100 5.96+01/7.608e+01 5.40e+02/2.48e+02 1.98e+02/1.36e+02 8.79e+02/2.72e+02 4.07e+02/2.28e+02 1.60e+03/3.97e+02 4.89e+02/2.15e+02 1.32e+01/2.26e+01 2.77e+01/3.28e+01 0.80e+01/4.30e+01 

50 
50 2.50e+03/5.28e+02 6.83e+03/9.38e+02 3.39e+03/5.36e+02 5.85e+03/4.65e+02 5.84e+03/6.49e+02 7.68e+03/4.53e+02 4.95e+03/7.38e+02 2.15e+03/3.78e+02 4.07e+03/6.60e+02 9.76e+02/1.69e+02 
75 1.53e+03/4.73e+02 5.62e+03/8.18e+02 2.78e+03/5.15e+02 5.32e+03/6.37e+02 4.84e+03/6.38e+02 6.93e+03/6.76e+02 4.46e+03/6.87e+02 1.60e+03/3.99e+02 3.07e+03/7.15e+02 8.14e+02/8.71e+01 

100 1.17e+03/3.99e+02 5.14e+03/9.95e+02 2.23e+03/5.80e+02 4.55e+03/7.15e+02 4.09e+03/7.71e+02 6.36e+03/8.10e+02 3.73e+03/6.69e+02 1.33e+03/5.41e+02 2.70e+03/6.85e+02 6.76r+02/6.69e+01 

80 
50 1.10e+04/1.14e+03 2.34e+04/1.62e+03 1.27e+04/1.28e+03 1.78e+04/8.87e+02 2.19e+04/1.65e+03 2.11e+04/9.24e+02 1.64e+04/1.12e+03 1.25e+04/1.05e+03 1.98e+04/1.69e+03 7.26e+03/7.49e+02 
75 9.62e+03/1.43e+03 2.13e+04/1.97e+03 1.12e+04/7.54e+02 1.65e+04/8.38e+02 1.98e+04/1.66e+03 2.06e+04/9.27e+02 1.62e+04/1.37e+03 1.21e+04/8.86e+02 1.85e+04/2.05e+03 5.66e+03/5.63e+02 

100 8.22e+03/1.15e+03 1.97e+04/1.71e+03 1.03e+04/1.12e+03 1.54e+04/9.88e+02 1.74e+04/1.49e+03 1.90e+04/1.16e+03 1.49e+04/1.02e+03 1.08e+04/1.05e+03 1.62e+04/1.67e+03 3.31e+03/3.18e+02 

 
Table 11 
Comparison of average and standard deviation value of result after 50 runs of single rule scheduling algorithm and ours 

m nadd Eave 
DDQN 

(makespan) 
Ours 

（makespan） 
DDQN 
(Trave) 

Ours 
(Trave) 

DDQN 
(Tardave) 

Ours 
(Tardave) 

10 

30 
50 6.86e+02/4.62e+01 5.38e+02/3.67e+01 6.32e-01/4.15e-02 7.04e-01/2.41e-02 2.98e+03/5.62e+02 1.71e+03/3.13e+02 
75 7.25e+02/4.99e+01 5.57e+02/3.81e+01 6.51e-01/4.92e-02 7.26e-01/2.58e-02 2.69e+03/6.37e+02 1.53e+03/3.64e+02 
100 6.94e+02/5.76e+01 5.40e+02/3.96e+01 6.61e-01/5.92e-02 7.39e-01/2.72e-02 2.48e+03/8.13e+02 8.12e+02/9.84e+01 

50 
50 9.12e+02/6.94e+01 8.12e+02/5.75e+01 4.13e-01/3.61e-02 6.15e-01/1.01e-02 9.60e+03/8.79e+02 8.44e+03/5.62e+02 
75 9.73e+02/7.31e+01 8.56e+02/5.11e+01 4.55e-01/3.91e-02 6.24e-01/1.45e-02 9.76e+03/9.41e+02 9.15e+03/7.36e+02 
100 1.06e+03/7.35e+01 8.71e+02/5.99e+01 4.62e-01/4.15e-02 6.39e-01/1.28e-02 1.13e+04/1.08e+03 9.87e+03/8.31e+02 

80 
50 1.39e+03/7.60e+01 9.76e+02/6.14e+01 2.15e-01/1.68e-02 3.11e-01/9.92e-01 3.32e+04/1.63e+03 2.64e+04/4.54e+02 
75 1.49e+03/8.38e+01 9.94e+02/6.31e+01 2.23e-01/2.13e-02 3.29e-01/1.26e-02 3.24e+04/1.34e+03 2.31e+04/5.61e+02 
100 1.64e+03/8.86e+01 1.03e+03/6.91e+01 2.94e-01/2.63e-02 3.42e-01/1.42e-02 3.11e+04/1.56e+03 2.41e+04/5.71e+02 

20 

30 
50 2.98e+02/5.98e+01 2.84e+02/4.51e+01 7.12e-01/3.61e-02 8.65e-01/2.15e-02 4.64e+01/1.31e+02 2.74e+01/6.92e+01 
75 3.61e+02/6.74e+01 3.01e+02/4.91e+01 7.33e-01/3.99e-02 8.83e-01/2.65e-02 4.31e+01/1.22e+02 2.96e+01/7.65e+01 
100 3.79e+02/7.31e+01 3.17e+02/5.21e+01 7.65e-01/4.92e-02 9.02e-01/2.91e-02 2.61e+01/9.35e+01 0.80e+01/4.30e+01 

50 
50 3.96e+02/5.21e+01 3.64e+02/3.98e+01 5.68e-01/4.01e-02 7.55e-01/2.90e-02 1.62e+03/8.11e+02 9.76e+02/1.69e+02 
75 4.36e+02/6.62e+01 3.78e+02/4.59e+01 5.99e-01/4.68e-02 7.69e-01/3.19e-02 1.01e+03/2.37e+02 8.14e+02/8.71e+01 
100 4.67e+02/7.77e+01 3.97e+02/5.61e+01 6.16e-01/5.24e-02 7.93e-01/3.54e-02 8.64e+02/3.94e+02 6.76r+02/6.69e+01 

80 
50 6.46e+02/6.95e+01 5.69e+02/4.11e+01 3.92e-01/3.62e-02 5.29e-01/1.81e-02 8.62e+03/1.62e+03 7.26e+03/7.49e+02 
75 6.66e+02/7.61e+01 5.84e+02/4.95e+01 4.04e-01/4.05e-02 5.54e-01/2.06e-02 7.06e+03/1.13e+03 5.66e+03/5.63e+02 
100 6.98e+02/8.99e+01 6.07e+02/5.74e+01 4.31e-01/4.87e-02 5.85e-01/2.61e-02 6.33e+03/9.31e+02 3.31e+03/3.18e+02 
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6.4 Comparison of  double deep reinforcement learning algorithms 
 

To demonstrate the superior comprehensive scheduling performance of the proposed dynamic scheduling method based on 
reinforcement learning with Conv-Dueling and generalized representation compared to the DDQN-based scheduling 
algorithm, the following experiments have been designed. To ensure fairness between the different algorithms, the DDQN 
algorithm utilizes the action and reward functions of our proposed scheduling algorithm. We discretized the state features of 
DDQN into nine discrete states. Table 11 displays the scheduling results for the two trained scheduling algorithms across the 
three scheduling objectives. It is evident from the table that the scheduling algorithm based on D3QN outperforms the DDQN-
based algorithm in terms of mean 7. and standard deviation values for overall scheduling performance and achieving multiple 
scheduling objectives. 

7. Conclusion  

This paper proposes the design of a dynamic multi-objective flexible job-shop scheduling environment, which includes three 
dynamic disturbance events and three scheduling optimization objectives. We propose a dynamic scheduling method utilizing 
Conv-Dueling and a generalized representation based on reinforcement learning. This approach effectively addresses the 
challenges posed by multi-constraint, multi-disturbance, and multi-objective task scheduling problems in workshop settings. 
Our method leverages a dueling-double-deep Q-learning network, which enables more accurate learning of optimal scheduling 
rules in different scenarios. It generates globally optimal scheduling plans each time a disturbance event occurs. Furthermore, 
we introduce a multidimensional state representation matrix that encompasses job and machine state information. This 
comprehensive representation captures the necessary information for machine actions, facilitating rapid neural network 
training and yielding improved convergence results. 

To validate the efficiency and superior comprehensive scheduling performance of the proposed dynamic scheduling method 
with Conv-Dueling and generalized representation based on reinforcement learning, several sets of experiments were 
conducted using various configurations of production environment parameters. The results clearly demonstrate that our 
proposed scheduling algorithm outperforms a single scheduling rule by a significant margin, regardless of whether the 
experimental parameter configurations were trained or untrained. In addition, we compared the scheduling algorithm based 
on D3QN with the DDQN scheduling algorithm. This comparison confirmed the effectiveness and robustness of our 
scheduling algorithm in addressing multi-constraints and multi-disturbances. Through these experiments, we have 
successfully verified the superior performance of our proposed conv-dueling neural network model. Its ability to outperform 
single scheduling rules and its effectiveness in handling complex scenarios involving multiple constraints and disturbances 
have been clearly established. In future research, we intend to investigate the effects of supplementary disruptive elements on 
job-shop scheduling. Specifically, we will investigate preemptive order insertion, energy consumption, loading and unloading 
time of materials, and other relevant factors. Furthermore, it is important to acknowledge that the reinforcement learning 
D3QN algorithm employed in this paper primarily focuses on value-based methods, which are not capable of directly 
optimizing the scheduling strategy. Consequently, we intend to delve into policy-based methods, such as A3C, TD3, TRPO, 
and other algorithms. By doing so, we can compare these approaches with our proposed scheduling algorithm based on D3QN 
and assess their effectiveness. 
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