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 Airline planning involves various issues that, in a general, can be grouped as network planning, 
schedule design and fleet planning, aircraft planning, and crew scheduling decisions. This study 
mainly aims to optimize the Crew Scheduling (CS) decisions considering the operational 
constraints related to Aircraft Maintenance Routing (AMR) regulations. Since, after fuel, crew 
costs are vital for airlines, and aircraft maintenance constraints are important operationally, the 
integrated Crew Scheduling and Aircraft Maintenance Routing (CS-AMR) problem is an important 
issue for the airlines. The present research addresses this problem using the Revenue Management 
(RM) approach under some disruption scenarios in the initial schedule. The proposed approach 
enables airlines to make more efficient decisions during disruptions to prevent flight 
delay/cancellation costs and recaptures an acceptable part of the spilled demand caused by 
disruption through the fleet stand-by capacity. This approach considers a set of disruptions in the 
flight schedule under different probable scenarios and provides the optimal decisions. Accordingly, 
airlines have two decision-making stages: Here-and-Now (HN) decisions related to the initial 
schedule for crew, aircraft routing and stand-by capacity to face probable disruptions and Wait-
and-See (WS) decisions that determine what the executive plan of each crew and aircraft should be 
under each scenario, and how to use different options for flight cancellation and substitution. To 
this end, a novel Two-Stage Robust Scenario-based Optimization (TSRSO) model is proposed that 
considers the HN and WS decisions simultaneously. A numerical example is solved, and its results 
verify the applicability and evaluate the performance of the proposed TSRSO model. Regarding 
the complexity of the proposed MILP model categorized as NP-hard problems, we develop a 
computationally efficient solution method to solve large-scale problem instances. A single-agent 
local search metaheuristic algorithm, Adaptive Large Neighborhood Search (ALNS), is applied to 
solve the CS-AMR problem efficiently. According to the result obtained by applying the proposed 
revenue management approach for the CS-AMR problem, airlines can drive a robust solution under 
disruption scenarios that not only minimizes the total delay/cancellation costs but also increases 
the profit by recapturing the spilled demand. 
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1. Introduction 

 
In general, revenue management, which means demand management by price or product availability through demand-based 
models, was created in the 1970s using IT-based profit/revenue maximization methods after the deregulation plan was 
implemented in the United States of America airline market. After being invented in the airline industry, the revenue 
management concept spread quickly in many other domains such as transportation (train, ship, freight, car rental, etc.), the 
hoteling/hospitality industry (tourism services), advertisement (especially audio-visual), and so forth. In the last 40 years, 
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research on this field has been numerous; Chiang et al. (2007) and McGill and Van Ryzin (1999) are among the most cited, 
Phillips (2021) and Ruan et al. (2021) are among the most important published books. Revenue management is not only 
considered in strategic level decisions of airlines but also plays a crucial role in various operational issues of airlines. In this 
research, we intend to examine the operational issues of airlines, such as crew scheduling, maintenance and routing problems, 
from the point of view of the revenue management approach, as well as the disruption occurrence. The airline industry involves 
high operational costs, variable demands, heavy traffic and strict rules and regulations. The Airline Liberalization Law, 
approved in the early 1980s, made this industry face heavily competitive environments (Eltoukhy et al., 2017), wherein 
airlines had to manage their resources (crew-aircraft network planning) efficiently. This required solving the airline network 
design and scheduling problem while satisfying a large number of related constraints and regulations. The airline network 
design and scheduling problem can be divided into four main sub-problems as shown in Fig. 1 which are network planning, 
schedule planning, aircraft planning, and crew planning; as the latter is quite complicated, it is usually divided into crew 
pairing and crew rostering/assignment (Abdelghany & Abdelghany, 2018; Barnhart, Belobaba, & Odoni, 2003; Etschmaier 
& Mathaisel, 1985). 

 
Fig. 1. Airline planning problems 

 
All airline planning begins with network design and flight scheduling (Barnhart et al., 2009; Bazargan, 2016), where the latter 
is a. flight-network-based timetable that shows which city and at what time the flight should be made. Flight-service-provision 
decisions of an airline depend mainly on the market demand forecasts, available aircraft performance features, cockpit and 
crew availability, existing laws, and strategies of other airlines. This section is aimed to use the results found from the network 
design and flight scheduling, such as the number and type of the fleet and the flight schedule specified at the strategic level, 
in the optimal fleet allocation and assign them to flights or other purposes with the lowest possible costs (Barnhart et al., 2009; 
Gao et al., 2009; Sa et al., 2020), and determine, meanwhile or after fleet assigning, their routing based on the related laws 
and constraints. This stage, which forms part of the model presented in this research, requires such input information as the 
number and type of aircrafts, the operating costs of each, the flight network and the maintenance routing rules. Solving this 
sub-problem determines which aircraft should serve which flight chain so as to minimize the aircraft operating costs or achieve 
the company’s other objectives considering the related maintenance rules (Al-Thani et al., 2016; Başdere & Bilge, 2014; 
Gopalan & Talluri, 1998; Safaei & Jardine, 2018; Sarac et al., 2006; Talluri, 1998). The final airline sub-problem issue is 
scheduling which many researchers have considered due to its high share in the operational costs (Antunes et al., 2019; 
Barnhart et al., 2003; Kasirzadeh et al., 2017; Schaefer et al., 2005). 

Operations Research (OR) models and techniques have greatly affected airline planning, and advances in computer technology 
and optimization models have helped airlines find optimal/near-optimal solutions for each of the mentioned problems and 
improve the efficiency of their operations. The widespread role of these models has caused many airlines to save millions of 
dollars by establishing OR units (Barnhart, Belobaba, et al., 2003), which finally formed the prestigious “Airline Group of 
the International Federation of Operational Research Societies (AGIFORS)” professional association that tries to advance, 
develop and apply OR in the aviation industry. Although the solution of each of the four mentioned airline planning sub-
problems will reduce costs and enhance the efficiency of an airline, new studies usually require two or more sub-problems to 
be solved together to achieve a global optimization (Cacchiani & Salazar-González, 2017; Gao et al., 2009; Papadakos, 2009). 
Among hierarchical solutions, integrated approaches not only avoid infeasible solutions, but also lead the airline towards a 
global optimal solution. Optimal network design and flight scheduling highly affect the airline revenue management because 
proper tactical crew scheduling, fleet allocation, and aircraft routing decisions maximize the revenue through minimized total 
costs, one of which is the fuel cost - the highest in an airline.  As the crew, after fuel, imposes the highest cost on an airline 
(Bazargan, 2016), its optimal planning too can highly reduce the total cost; hence, an optimal integrated crew-aircraft schedule 
planning will result in the least total flight scheduling costs. This important issue has motivated many researchers to address 
airline planning sub-problems. 

The main contributions of the present study are briefly as follows. If an airline company has designed its flight schedule at a 
strategic level, this research focuses on the integrated CS-AMR problem using a revenue management approach so as to 
reduce costs as well as control the revenue obtained from the optimal utilization of the fleet capacity and stand-by aircrafts to 
maximize the profit. To this end, the current research addresses the optimization of integrated CS-AMR decisions for an 
airline company with multiple fleets and crew bases.  In this problem, we consider the disruption scenarios in the initial 
schedule (initial timetable) as well as flight delays, and focus on the integrated CS-AMR problem considering probable 
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disruption scenarios using a revenue management approach. A two-stage robust scenario-based optimization model is 
proposed, the first stage of which yields an integrated plan for the fleet and flight crew, and the second stage of which makes 
decisions such as flight cancellation, delays, substitutions and so on. This research has been so organized as to review the 
literature and present the research gap in Section 2, fully explain the problem and its details in Section 3, present an adjustable, 
scenario-based, robust optimization model to solve the problem, in Section 4, use a numerical case study to evaluate the model 
and its outputs, as regards robustness, in Section 5 and, finally, summarize the results in Section 6.   

2. Literature Review 

As mentioned before, since this research addresses the integrated crew scheduling and aircraft maintenance routing problem, 
the effort is made next to review and explain some related innovations of the current studies, to which the reader is asked to 
refer (Abdelghany & Abdelghany, 2018; Barnhart, Belobaba, et al., 2003; Barnhart, Cohn, et al., 2003; Eltoukhy et al., 2018; 
Eltoukhy et al., 2018; Etschmaier & Mathaisel, 1985) for a thorough flight-scheduling review. Among several types of 
research done so far on aircraft routing and crew scheduling, that of (Cordeau et al., 2001)  integrated both issues and presented 
a model that used the Benders decomposition approach to make simultaneously related decisions aimed to minimize the time 
needed, after landing, by the crew to prepare the aircraft for the next same-aircraft flight. Weide et al. (2010) studied aircraft 
routing and crew scheduling problems together to present a model considering such constraints as the “crew return to the first 
base”, and the “minimum time required to make two sequential flights”, and solved it using an iterative heuristic algorithm. 
(Sandhu & Klabjan, 2007) presented a model that integrated the decisions on aircraft routing, fleet allocation and crew 
scheduling considering a limited number of aircraft and ignoring maintenance-related issues. To solve the model, they used 
two approaches based on Benders decomposition and augmented Lagrange along with the column generation algorithm. 
Papadakos (2009) studied aircraft routing, fleet allocation and crew scheduling problems, selected a complete model after 
examining all those proposed in this field and presented a novel algorithm for its solution based on the Benders analysis and 
column generation. He omitted the constraint on the number of available crafts, included it in the model and showed that the 
mentioned constraint could not ensure the feasible routes. (Salazar-González, 2014) developed and implemented it to solve 
real aircraft routing and crew allocation/scheduling problems and checked all the mentioned items for only a one-day flight. 
The difference between this and previous approaches was that their model did not consider any maintenance constraints on 
the number of aircraft during the day. 

Among researchers that have recently addressed the revenue management and pricing issues, (An, Mikhaylov, & Jung, 2021) 
presented a linear programming approach for the mathematical modelling of a multi-fare robust revenue management in a 
flight network in the airline industry aiming mainly at optimizing the limited reservation policy using limited demand data. 
Kumar et al. (2021) proposed competitive revenue management models that focus on fully flexible and loyal customers. 
Stating that almost no earlier revenue management model has explicitly considered the competitive effects, and nearly all 
have assumed that an airline demand depends only on its fare, they point out the innovation of their work, which considers 
both types of customer behavior to design a model that yields more realistic competitive dynamics. Various factors such as 
market competition, leader-follower-based power structure, and competitiveness highly affect the fare rates and customer 
behavior. Machine learning-based methods can consider competitors' plans, predict the market size, estimate market share in 
comprehensive pricing, and determine optimal price control policy (Sahebi et al., 2022), thus play an essential role in airline 
revenue management. Considering the continuous demand management, (Vinod, 2021) used the adaptive robust optimization 
approach to solve the airline operational revenue management problem under critical COVID-19 conditions, and proposed an 
alternative method that changed the main revenue management criteria under the pandemic and modified the available 
traditional seat management programs by adjusting the supply and demand levers. 

The multi-vehicle and multi-compartment inventory routing problem with stochastic demands is a fuel delivery-related issue 
studied by (Li & Jiao, 2022), who modelled the maximum-to-level replenishment policy problem as a two-stage stochastic 
programming aiming at minimizing the total cost. This model makes the inventory management and routing decisions in the 
first stage and implements the related resource actions in the second stage. In studying the vehicle routing problem with hard 
time windows, Nasri et al. (2020) tried to include two sources of uncertainties, travel and service time, both of which can be 
due to different reasons. In one recent research on crew pairing, mathematical optimization was used in a budget airline 
(Chutima & Krisanaphan, 2022). Besides cost, a focal element in conventional cockpit crew pairing, the mentioned study has 
many other previously ignored factors and proposed an adaptive non-dominated sorting differential algorithm for cockpit 
crew pairing optimization. 

In a present-research-related study that did not consider fleet diversity, crew base and maintenance, Díaz-Ramírez, Huertas, 
& Trigos (2014) considered one fleet type and maintenance base to present an aircraft routing and crew planning model, where 
the crew and maintenance had one place, and solved it by the Benders decomposition approach. Using decomposition-based 
approaches that integrate airline decisions, Shao et al. (2017) presented a mathematical model for fleet allocation, aircraft 
routing, and crew scheduling integration problems considering travel demand, and used Benders decomposition approach 
along with several fast solution-yielding strategies to solve it. In presenting a heuristic two-stage algorithm to address the 
aircraft-crew rescheduling problem, some important management issues considered by Zhang and Mahadevan (2017) in their 
research were the delayed flights, airport capacity for aircraft reception and rest time for each crew and aircraft. In a research 
aimed at presenting a new integrated approach for crew pairing, aircraft routing and fleet allocation sub-problems, Cacchiani 
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and Salazar-González (2013, 2020) presented their mathematical model based on such assumptions as “no during-night 
flights” and “crew return to the base when flight begins”, and used the column generation algorithm for its solution. Jalili and 
Manteghi (2018) used a multiple linear regression model to predict the Iranian airlines’ passenger-cargo demands; Mirabi et 
al. (2019) presented a multi-objective mathematical model to solve locating-allocating hub problems in the Iranian airports 
and suggested using differential evolution metaheuristic algorithms along with the Ɛ-constraint method for this purpose 
because the problem was NP-hard. In designing a numerical example for their research, they assumed that the aircraft and 
flight crews were equal in number. 

Table 1 summarizes some of the most recent research and compares the features of this research with them as regards: i) 
aircraft maintenance and routing, ii) crew scheduling, iii) revenue management consideration, iv) uncertainty and disruption, 
v) robustness, and vi) model and methodology. 

 

Table 1 
Comparing the present study with recent studies 

Research 
Aircraft 
Decision Crew Scheduling 

Revenue 
Management 
Consideration 

Uncertainty and 
Disruption Robustness Model & Method 

TAR MP 
(Shao et al., 2017) ࿨࿩࿪ ࿨࿩࿪ ࿨࿩࿪    BD 
(Ahmed, Ghroubi, 
Haouari, & Sherali, 
2017) 

࿨࿩࿪ ࿨࿩࿪    ࿨࿩࿪  MILP 

(Safaei & Jardine, 
2018) ࿨࿩࿪ ࿨࿩࿪      MILP 

(Eltoukhy, Wang, et 
al., 2018) ࿨࿩࿪ ࿨࿩࿪      MILP 

(Ahmed, Mansour, 
& Haouari, 2018) ࿨࿩࿪  ࿨࿩࿪   ࿨࿩࿪ Nonlinear 

Programming 
(Eltoukhy, Chan, et 
al., 2018) ࿨࿩࿪ ࿨࿩࿪      MILP 

(Haouari, Zeghal 
Mansour, & Sherali, 
2019) 

  ࿨࿩࿪    MILP, RTL 

(Antunes et al., 
2019)   ࿨࿩࿪   ࿨࿩࿪ MILP 

(Wen, Ma, Chung, 
& Khan, 2020)   ࿨࿩࿪  ࿨࿩࿪ ࿨࿩࿪ Column Generation 

(Parmentier & 
Meunier, 2020) ࿨࿩࿪ ࿨࿩࿪ ࿨࿩࿪    Column Generation 

(Sanchez, Boyacı, & 
Zografos, 2020) ࿨࿩࿪ ࿨࿩࿪      MILP 

(Bulbul & 
Kasimbeyli, 2021) ࿨࿩࿪ ࿨࿩࿪      MILP 

(Ruan et al., 2021) ࿨࿩࿪ ࿨࿩࿪      MILP 

This Paper ࿨࿩࿪ ࿨࿩࿪ ࿨࿩࿪ ࿨࿩࿪ ࿨࿩࿪ ࿨࿩࿪ TSRSP 
ALNS 

TAR: Tail Assignment and Routing; MR: Maintenance Planning; BD: Benders Decomposition; MILP: Mixed Integer Linear Programming; Reformulation-
Linearization Technique (RLT)   
 

According to the published papers, research gaps in CS-AMR problem are as follows: 

• Maintenance routing decisions are made sequentially along with the crew itinerary, and integration is paid less 
attention, but this research integrates them.  

• Most of the mentioned studies have considered one center for both maintenance and crew, but this research has 
considered diversity for them. 

• Disruption scenarios are rare in the initial schedule for network of flight, but this research considers them with 
different severities and uses a novel two-stage robust scenario-based optimization approach for decision robustness 
and its adjustability. 

• Literature on the CS-AMR problem has no main consideration on applying a revenue management approach, and 
major part of them only deals with a classical model with a cost minimization objective function. 

• Developing a computationally efficient metaheuristic algorithm to tackle the problem complexity which solves the 
integrated CS-AMR problem using large neighborhood search in an adaptive version.   
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3. Problem Description 

This research has addressed the integrated crew scheduling and aircraft maintenance routing (CS-AMR) problem under 
disruption. The crew usually operates from its designated base, where it begins and ends its service, and its mission involves 
a consecutive series of flights performed in one day. Landing time is when the crew rests between two flights during its duty, 
while the rest time is the long break between two crew duties, which is usually directly related to its overnight stay. Each 
airline crew pairing is defined with the duties alternating successions and rest periods, an example of which is shown in Fig. 
2 with two duties and six flights for the crew. 

 
Fig. 2. Structure of an airline crew pairing (Dück, 2010)        

   
The desired CS-AMR problem is considered for airlines with diverse crew and aircraft maintenance bases. The network design 
and flight schedules are assumed to be pre-specified and airline companies try to make, within a short time horizon, related 
decisions according to the laws and regulations applied to aircrafts and the crew itinerary so that they not only cover all the 
scheduled flights, but also minimize the total cost. Operating costs include that of using an aircraft (budget, fuel, etc.) and that 
of the crew plus that of the aircraft maintenance in the flight route; if a flight is cancelled or delayed, costs related to lost sales 
and penalties are included too.  

Governing regulations and some airlines policies require that crew are not to fly more than the maximum time considered in 
the planning horizon, which is independent of the crew type, and another rule requires that all aircrafts can, regardless of their 
type, fly for a certain time without being subjected to maintenance operations. As mentioned before, the CS-AMR problem 
of the current research considers probable disruptions (climatic, technical, etc.) that cause flight delays and affect the initial 
schedule. One normal situation and five different flight disruption scenarios considered here are as follows: 

● Scenario 0: During a specified short-term time, horizon, no disruption occurs in the initial schedule. 

● Scenario 1: A very minor disruption in the initial schedule will cause flight delays of less than 10 min. 

● Scenario 2: A minor disruption in the initial schedule will cause flight delays between 10 and 20 min. 

● Scenario 3: A normal disruption in the initial schedule will cause flight delays of about 30 min. 

● Scenario 4: A severe disruption in the initial schedule will cause flight delays of about 60 min (1h). 

● Scenario 5: A very severe disruption in the initial schedule will cause flight delays of more than 1h. 

Now, the desired problem of this research should be solved in such a way (aircraft maintenance routing and crew scheduling 
decisions should be made so) that the performance is optimal under different scenarios. Assumptions made to model and 
solved the problem are as follows: 

• The scheduled initial timetable is the input. 

• Fleet size and crew and their initial schedule including locations (maintenance and crew bases) are known. 

• Each aircraft route and maintenance location during different flight legs must be determined before all scenarios. 

• The Schedule of duties for each crew must be determined before all scenarios. 

• Under disruptions, flight cancellation/delay is possible but incurs cost. 
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• In each fleet, it is assumed that all the crew members are qualified and can fly. 

• When the scheduling horizon ends, each aircraft and crew must be at their initial base (because this short-term plan is 
assumed to repeat periodically). 

4. The proposed robust optimization model 

This section presents a two-stage robust optimization model for the CS-AMR problem defined in the previous section. Since 
it is assumed that the probable disruptions can occur under different random scenarios with known occurrence probabilities, 
use is made of the scenario-based robust optimization approach to control the uncertainties and the model robustness. To this 
end, the next section first explains this approach and then proposes the problem model based on it. 

4.1. The two-stage robust optimization approach 

If a problem involves some uncertain parameters in a random scenario-based manner, the robust scenario-based stochastic 
programming (SSP) approach can control uncertainties and ensure optimality. In general, a two-stage SSP approach is 
expressed as follows: 

)1 (  

⎩⎪⎪⎨
⎪⎪⎧ 𝐦𝐚𝐱 EሺZሻ = ෍πୱ. zୱୱ∈ୗzୱ = cୱ⊺. xୱ + dୱ⊺y  ∀ s ∈ SAୱxୱ + Kୱy = bୱ    ∀ s ∈ SRy = qy ∈ Y , xୱ ≥ 0

   
 

where zs is the objective value under scenario s∈ S, xs are scenario-dependent variables (usually continuous and non-negative), 
y are scenario-independent variables (usually binary), 𝑐௦,𝑑௦,𝐴௦,𝐾௦ and 𝑏௦are problem parameters under scenario s∈ S, (R,q) 
is the deterministic parameters and πs is the occurrence probability of scenario s∈ S (Salehi, Mahootchi, & Husseini, 2019; 
Yu & Li, 2000). In the SSP approach, the expected value of objectives is used in different probable scenarios, all of which 
must be feasible, and variables y* and xs* are feasible solution satisfying almost scenarios s∈ S so that the expected values of 
objective function be maximized. In developing the SSP approach, (Mulvey, Vanderbei, & Zenios, 1995) considered the sum 
of the model expected performance and standard deviation as the solution robustness or the optimality robustness and 
developed their “two-stage robust scenario-based optimization (TSRSO)” model as follows: 

)2 (  

⎩⎪⎪⎨
⎪⎪⎧𝐦𝐚𝐱 EሺZሻ − VሺZሻ − Penalty = ෍πୱ. zୱୱ∈ୗ − λ෍πୱ.൭zୱ − ෍πୱᇲ . zୱᇲୱᇲ∈ୗ ൱ଶ ୱ∈ୗ − ω෍πୱ. ξୱଶୱ∈ୗzୱ = cୱ⊺. xୱ + dୱ⊺y  ∀ s ∈ SAୱxୱ + Kୱy = bୱ + ξୱ   ∀ s ∈ SRy = qy ∈ Y , xୱ ≥ 0

   
where 𝜉௦ is the flexibility variable in scenario s ∈ S, ω is the model robustness coefficient and λ is the solution variance 
importance coefficient in different scenarios (other symbols were explained in the SSP model). Yu and Li (2000) replaced the 
second order function with the absolute value function in Mulvey’s proposed RSSP model, which is a quadratic optimization 
problem as follows: 

)3 (  

⎩⎪⎪⎨
⎪⎪⎧𝐦𝐚𝐱 ෍πୱ. zୱୱ∈ୗ − λ෍πୱ. อ൭zୱ − ෍πୱᇲ . zୱᇲୱᇲ∈ୗ ൱อ ୱ∈ୗ − ω෍πୱ|ξୱ|ୱ∈ୗzୱ = cୱ⊺. xୱ + dୱ⊺y  ∀ s ∈ SAୱxୱ + Kୱy = bୱ + ξୱ   ∀ s ∈ SRy = qy ∈ Y , xୱ ≥ 0

   
and developed its linear mode as follows: 
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)4 (  

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪⎪
⎧𝐦𝐚𝐱 ෍prୱ. zୱୱ∈ୗ − λ෍πୱ.൭zୱ − ෍πୱᇲ . zୱᇲୱᇲ∈ୗ + 2θୱ൱ ୱ∈ୗ − ω෍πୱ(ξୱା + ξୱି )ୱ∈ୗzୱ − ෍πୱᇲ . zୱᇲୱᇲ∈ୗ + θୱ ≥ 0 ∀ s ∈ S zୱ = cୱ⊺. xୱ + dୱ⊺y  ∀ s ∈ SAୱxୱ + Kୱy = bୱ + (ξୱା − ξୱି )   ∀ s ∈ SRy = qy ∈ Y , xୱ ≥ 0ξୱା, ξୱି ,θୱ ≥ 0  

   

 

where 𝜃௦ ≥ 0 is an auxiliary linearization variable that calculates the deviation from the mean in each scenario. This research 
has used the mentioned TSRSO approach to model the CS-AMR problem. 

4.2. Proposed TSRSO model for CS-AMR problem  

To use the TSRSO approach in the desired research problem, the CS-AMR problem is assumed to be done in the first stage, 
and flights be cancelled in the second stage, considering that disruption scenarios are also probable; obviously, the actual 
flight commencement time and the delay in the arrival of each flight are the scenario-dependent variables. In the TSRSO 
approach, the problem is so modelled that the expected performance and the standard deviation of the objective function are 
also controlled under different scenarios. 

● Nomenclature  
Sets and indices 𝐹 Set of flights (indexed with f) 𝑓 = 0 A dummy flight (with 0 start time and 0 duration) 𝐹଴ = 𝐹⋃ሼ0ሽ Set of flights and dummy flight 𝑁 Set of starting/ending cities (nodes) of each flight (indexed with n) 𝐹𝐼௡ ⊆ 𝐹 Set of flights entering node n 𝐹𝑂௡ ⊆ 𝐹 Set of flights leaving node n 𝐶 Set of flight crew 𝑀 ⊆ 𝑁 Set of cities equipped with aircraft maintenance bases 𝛯 = ሼ0,1,2, 𝜉, … , |𝛯| = 5 ሽ Set of disruption scenarios (indexed by ξ); ξ = 0 means no disruption during the desired 

scheduling horizon 
Parameters 𝑑𝑡௙ Flight f departure time based on the initial schedule 𝑎𝑡௙ Flight f arrival time based on the initial schedule 𝑙𝑡௙ Flight f normal time period/length 𝑜௙௡ 1, if flight f origin is node n, otherwise 0 𝑑௙௡ 1, if flight f destination is node n, otherwise 0 𝑟௙ Time required to prepare the aircraft before it starts its flight 𝑓𝑐௙௔௖ Cost of flight f with aircraft a and crew c 𝑐𝑐௙ Flight f cancellation cost 𝑝𝑐௙ Penalty per unit excess delay to start flight f  𝑠𝑏𝑐 Cost of each stand-by aircraft for using in disruption scenarios 𝑀𝑎𝑥𝑆 Maximum fleet capacity which can be considered as stand-by aircrafts 𝑚𝑐௔ Per unit maintenance cost of aircraft a 𝑚𝑑௙ Maximum delay allowed in flight f 𝐼𝐶௡௖ Binary matrix of the initial schedule for crew in different cities (1, if crew c is at node n 

when scheduling horizon begins) 𝐼𝐴௡௔ Binary matrix of initial schedule for aircraft in different cities (1, if aircraft a is at node 
n when scheduling horizon begins) ℳ𝒞 Maximum flight time of each crew during the desired time horizon ℳ𝒜 Maximum flight time of each aircraft during the desired time horizon ℳ𝒰 Maximum time each aircraft is allowed to fly without maintenance before it begins a 
new flight   ℒ௙క Delay period before flight f begins under disruption scenario ξ, 𝜋క Occurrence probability of scenario ξ 
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Big M A large positive number 
Decision variables 𝑁𝑆𝐴 Number of aircraft for total fleet capacity which are considered as stand-by for 

disruption scenarios 𝑥௙௔ 1, if flight f is done by aircraft a, otherwise 0 𝑦௙௖ 1, if flight f is in crew c itinerary, otherwise 0 𝑠𝑢𝑏௙క 1, if flight f is done by substituted aircraft a, otherwise 0 𝑔௔௙ᇲ௙ 1, if flight f' is before flight f (in flight route of aircraft a), otherwise 0  𝑣௔௙ᇲ௙ 1, if aircraft a is under maintenance operation at a specific node (from a maintenance 
base) between flights f' and f, otherwise 0 𝐵𝐶௙௖ 1, if crew c is available at the flight origin before flight f begins, otherwise 0 𝐵𝐴௙௔ 1, if aircraft a is available at the flight origin before flight f begins, otherwise 0 𝑒௙క 1, if flight f is cancelled under disruption scenario ξ, otherwise 0 𝑠𝑡௙క Flight f commencement time under disruption scenario ξ, 𝑑𝑒𝑙௙క Delay period when flight f  begins under disruption scenario ξ, 𝑐𝑜𝑠𝑡క Total cost under disruption scenario ξ, 

 

The model proposed in this research is as follows: 

)5 ( 

⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ 𝐦𝐚𝐱෍𝜋కక 𝑝𝑟𝑜𝑓𝑖𝑡క −  𝜆෍𝜋కక ൮2𝜃క − ቌ𝑝𝑟𝑜𝑓𝑖𝑡క −  ෍𝜋కᇲకᇲ 𝑝𝑟𝑜𝑓𝑖𝑡కᇲቍ൲𝑝𝑟𝑜𝑓𝑖𝑡క = 𝑟𝑒𝑣𝑒𝑛𝑢క − 𝑐𝑜𝑠𝑡క𝑟𝑒𝑣𝑒𝑛𝑢క = ෍൫1 − 𝑒௙క൯𝑟𝑒𝑣௙ + ෍𝑠𝑢𝑏௙క𝑟𝑒𝑣௙ +  ௙   ௙𝑐𝑜𝑠𝑡క = ෍෍෍𝑓𝑐௙௔௖ ൫𝑥௙௔ + 𝑦௙௖൯2  ௖௔௙ + ෍෍෍𝑚𝑐௔𝑣௔௙ᇲ௙௙ᇲ௙௔ + ෍𝑐𝑐௙ 𝑒௙క ௙ + ෍𝑝𝑐௙𝑑𝑒𝑙௙క௙ + 𝑠𝑏𝑐.𝑁𝑆𝐴 

 

)6 (  𝜃క ≥ 𝑝𝑟𝑜𝑓𝑖𝑡క −  ෍𝜋కᇲకᇲ 𝑝𝑟𝑜𝑓𝑖𝑡కᇲ       ∀ 𝜉 

)7 ( ෍𝑥௙௔௔ =  1 − 𝑒௙క       ∀ 𝑓 , 𝜉 

)8 (  ෍𝑦௙௖௖ =  1 − 𝑒௙క       ∀ 𝑓 , 𝜉 

)9 (  𝑥௙௔ = ෍ 𝑔௔௙ᇲ௙௙ᇲ∈ிబ       ∀ 𝑓,𝑎 

)10 (  𝑔௔௙ᇲ௙ + 𝑔௔௙௙ᇲ = 1      ∀ 𝑓, 𝑓ᇱ,𝑎 

)11 (  𝑔௔௙ᇲ௙ + 𝑔௔௙ᇲᇲ௙ᇲ ≤ 𝑔௔௙ᇲᇲ௙      ∀ 𝑓,𝑓ᇱ,𝑎 

)12 (  𝑦௙௖ ≤ 𝐵𝐶௙௖      ∀ 𝑓, 𝑐 

)13 (  𝐵𝐶௙௖ = ෍𝐼𝐶௡௖𝑜௙௡௡ +  ෍෍ ෍ 𝑜௙௡𝑦௙ᇲ௖𝑔௔௙ᇲ௙௙ᇲ∈ிூ೙௔௡ −෍෍ ෍ 𝑑௙ᇲ௡𝑦௙ᇲ௖𝑔௔௙௙ᇲ௙ᇲ∈ிை೙௔௡   ∀ 𝑓, 𝑐 

)14 (  𝑥௙௔ ≤ 𝐵𝐴௙௔      ∀ 𝑓, 𝑎 

)15 (  𝐵𝐴௙௔ = ෍𝐼𝐴௡௔𝑜௙௡௡ +  ෍෍ ෍ 𝑜௙௡𝑔௔௙ᇲ௙௙ᇲ∈ிூ೙௔௡ −෍෍ ෍ 𝑑௙ᇲ௡𝑔௔௙௙ᇲ௙ᇲ∈ிை೙௔௡   ∀ 𝑓,𝑎 
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)16 (  𝑠𝑡௙క ≥෍൫𝑙𝑡௙ᇲ + 𝑟௙ᇲ + ℒ௙ᇲక൯𝑔௔௙ᇲ௙௙ᇲ + ൫𝑟௙ᇲ + ℒ௙క൯ 𝑥௙௔   ∀ 𝑓,𝑎, 𝜉 

)17 (  𝑑𝑒𝑙௙క ≥ 𝑠𝑡௙క + 𝑙𝑡௙ − 𝑎𝑡௙ −  𝑏𝑖𝑔𝑀𝑒௙క  ∀ 𝑓, 𝜉 

)18 (  𝑑𝑒𝑙௙క ≤ 𝑚𝑑௙ + 𝑏𝑖𝑔𝑀𝑒௙క    ∀ 𝑓, 𝜉 

)19 (  ෍𝑙𝑡௙𝑦௙௖௙ ≤  ℳ𝒰      ∀ 𝑐 

)20 (  ෍𝑙𝑡௙𝑥௙௔௙ ≤  ℳ𝒜      ∀ 𝑎 

)21 (  ෍𝑙𝑡௙ᇲᇲ𝑔௔௙ᇲ௙ᇲᇲ௙ᇲᇲ −෍𝑙𝑡௙ᇲᇲ𝑔௔௙௙ᇲᇲ௙ᇲᇲ ≤  ℳ𝒰 + 𝑏𝑖𝑔𝑀   ∀ 𝑓, 𝑓ᇱ,𝑎 

)22 (  𝑣௔௙ᇲ௙ ≤ ෍෍𝑜௙ᇲᇲ௡𝑔௔௙ᇲ௙ᇲᇲ௙ᇲᇲ௡∈ெ − ෍෍𝑜௙ᇲᇲ௡𝑔௔௙௙ᇲᇲ௙ᇲᇲ௡∈ெ    ∀ 𝑓,𝑓ᇱ, 𝑎 

)23 (  𝑠𝑢𝑏௙క ≤  𝑒௙క       ∀ 𝑓 , 𝜉 

)24 (  
෍𝑠𝑢𝑏௙క௙ ≤  𝑁𝑆𝐴      ∀ 𝜉 

)25 (  𝑁𝑆𝐴 ≤  𝑀𝑎𝑥𝑆 

)26 (  ⎩⎪⎨
⎪⎧𝑖𝑓  ෍𝑔௔௙௙ᇲ௙ᇲ = 0  𝑡ℎ𝑒𝑛 𝐼𝐴௡௔ = 𝑑௙௡     ∀ 𝑓,𝑎,𝑛 ⇓ Linear𝐴௡௔ − 𝑑௙௡ ≤ 𝑏𝑖𝑔𝑀෍𝑔௔௙௙ᇲ௙ᇲ    ∀ 𝑓, 𝑎,𝑛   

)27 (  

⎩⎪⎪⎨
⎪⎪⎧𝑖𝑓  ෍෍𝑔௔௙௙ᇲ௙ᇲ௔ = 0 𝑎𝑛𝑑 𝑦௙௖ = 1  𝑡ℎ𝑒𝑛 𝐼𝐶௡௖ = 𝑑௙௡     ∀ 𝑓, 𝑐,𝑛 ⇓ Linear𝐼𝐶௡௖ − 𝑑௙௡ ≤ 𝑏𝑖𝑔𝑀ቌ1 − 𝑦௙௖ + ෍𝑔௔௙௙ᇲ௙ᇲ  ቍ   ∀ 𝑓,𝑎,𝑛   

)28 (  ⎩⎨
⎧𝑥௙௔ , 𝑦௙௖ ,𝑔௔௙ᇲ௙ ,𝑣௔௙ᇲ௙,𝐵𝐶௙௖ ,𝐵𝐴௙௔, 𝑒௙క , 𝑠𝑢𝑏௙క ∈ ሼ0,1ሽ𝑠𝑡௙క ,𝑑𝑒𝑙௙క , 𝑐𝑜𝑠𝑡క ,𝜃క ≥ 0𝑁𝑆𝐴 ∈ 𝕫ା  

Eq. (5) indicates the objective function by maximizing expected profit and minimizing the standard deviation. Profit is 
calculated as the difference between cost and revenue (𝑝𝑟𝑜𝑓𝑖𝑡క = 𝑟𝑒𝑣𝑒𝑛𝑢క − 𝑐𝑜𝑠𝑡క). We should note that cost includes those 
of the aircraft and crew in each flight, maintenance, cancelled flights and flight delays. Eq. (6) calculates the standard deviation 
in each disruption scenario. Eqs. (7-25) are the problem constraints explained below; Eq. (7) and Eq. (8) guarantee that each 
non-cancelled flight needs one aircraft and one crew, respectively. Eq. (9) presents that an aircraft should have already been 
executed before each flight. Eq. (10) and Eq. (11) guarantee the ordering and transitive relation in the sequence of each aircraft 
route. Eq. (12) states that assigning a flight to a crew duty requires that the crew be ready in the origin city. Eq. (13) shows 
how a crew is ready in the origin city of a flight. Eq. (14) and Eq. (15) verify that one aircraft exists in the origin city of the 
flight, which is required for a flight to be executed. Eq. (16) determines each flight start time under each disruption scenario. 
Eq. (17) calculates the delay in each flight under different scenarios, while Eq. (18) ensures that a flight delay is not to exceed 
a certain amount; otherwise, it will be cancelled. Eq. (19) and Eq. (20) show the maximum duty time of a crew and an aircraft 
during the planning time horizon, respectively. Eq. (21) ensures that the total time between two different flights cannot exceed 
a certain limit provided for maintenance operation. Eq. (22) ensures that aircraft maintenance is possible only in cities with 
related bases. Eq. (23) enforces that flight substitutions require cancellation. In other words, if a flight is not cancelled, the 
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substitution is not allowed. Eq. (24) shows that the number of all flight substitutions cannot exceed the number of stand-by 
aircrafts. Eq. (25) guarantees that a specified upper bound limits the number of aircraft which can be stand-by. Eq. (26) ensures 
that when an aircraft ends its pairing according to the desired time horizon, it should be present in the initial schedule for the 
origin city. In the same way, Eq. (27) guarantees that the flight crew should be rotated to the origin city of the initial schedule; 
these two conditions are represented in the linear formulation to reduce the model complexity and keep its tractability. Finally, 
Eq. (28) shows the domain of decision variables. 

The proposed TSRSO for the CS-AMR problem, is a mixed linear programming model which can be efficiently solved by a 
CPLEX solver. 

5. The Proposed Computationally Efficient Solution Method 

In the previous section, the TSRSO model is proposed to solve the desired CS-AMR problem; however, due to the TSRSO 
formulation is MILP, which involves binary variables related to the assigning the flights to aircraft and crew, routing and 
flight scheduling, categorized as NP-hard problems (Lenstra & Rinnooy Kan, 1978; Mnich & van Bevern, 2018). Although 
the proposed model is efficient and can be solved in the small and medium-sized instances, it is not tractable for large-scale 
instances, and requires high time and cost to be solved by MILP solvers such as CPLEX. Thus, this paper presents a solution 
method which is more computationally efficient. The proposed method is based on an adaptive version of large neighborhood 
searching as a common local search metaheuristic for complex optimization problems. In the following, we first explain the 
general mechanism of the proposed algorithm, and then we apply it to solve the CS-AMR problem.  

5-1- Adaptive Large Neighborhood Search 

In the combinatorial optimization and related problems such as the scheduling and routing, several researches have used the 
Adaptive Large Neighborhood Search (ALNS) algorithm (Abreu & Nagano, 2022; Chen et al., 2021; Schaap et al., 2022), 
which is a improved version of Large Neighborhood Search (LNS) algorithm first introduced in (Ropke & Pisinger, 2006). 
Local search (LS) algorithms are improving metaheuristic algorithms that usually start with an initial solution, improve it by 
searching among the close neighboring ones, and repeat the process until no improvement occurs in the solution. In the 
developed local search metaheuristic algorithms such as the simulated annealing (SA), if the neighborhood is capable of 
searching for a very large number of new solutions in each iteration, they are considered as very large-scale neighborhood 
algorithms (VLSN), which involve different techniques. In fact, LNS algorithm, too, follows the neighborhood search 
procedure to improve the initial solution, but the difference is that it provides this ability by two operators, Destroy (𝒟), and 
Repair (ℛ) to enable a large number of neighborhood searches in different iterations. 

The LNS algorithm generally starts with an initial feasible solution, destroys part of it with operator 𝒟, repairs this pert with 
new values with operator ℛ and creates a new neighbor solution in different iterations. In the LNS algorithm, one main 
parameter is the destruction rate 𝓆 ∈ (0,1) that can vary in the model either dynamically and randomly or be predetermined; 
classically, the stop condition of the LNS algorithm is either a maximum iteration or run-time limitation. In different iterations 
of the LNS algorithm, 𝑥ᇱ = ℛ൫𝒟(𝑥)൯ is created as a new neighborhood solution after the destroy-repair procedure, and can 
in, various ways, replace the current solution 𝑥. The acceptance of the 𝑥ᇱ substitution for 𝑥 is shown with 𝒜(𝑥ᇱ,𝑥); its value 
is 0 if replacement is denied and is 1 if it is accepted. The fitness function ℱ(. ) explains different acceptance states and 
determines the value of the fitness of each solution; the higher is this value, the better is the solution. 

The acceptance operator 𝒜  works based on the “Greedy Acceptance” rule, which means 𝑥ᇱ  can replace 𝑥  only if it is 
improved, in other words: 

)29 (  𝐆𝐫𝐞𝐚𝐝𝐲 𝐀𝐜𝐜𝐞𝐩𝐭𝐚𝐧𝐜𝐞: 𝒜(𝑥ᇱ, 𝑥) = ൜1, ℱ(𝑥ᇱ) ≥ ℱ(𝑥)0, 𝑜.𝑤.   
More efficiently, 𝒜 works based on the Boltzmann's proposed probabilistic acceptance rule whereby 𝑥ᇱ replaces 𝑥 when it 
either improves it or is accepted by the Boltzmann's probability, in other words: 

)30 (  𝐒𝐀  𝐁𝐨𝐥𝐭𝐳𝐦𝐚𝐧𝐧 𝐀𝐜𝐜𝐞𝐩𝐭𝐚𝐧𝐜𝐞: 𝒜(𝑥ᇱ, 𝑥) =
⎩⎪⎨
⎪⎧1, ℱ(𝑥ᇱ) ≥ ℱ(𝑥)1, ሥቆℱ(𝑥ᇱ) < ℱ(𝑥) ,   𝑣 ≤ expቆℱ(𝑥ᇱ) − ℱ(𝑥)𝑇 ቇ ቇ

0, ሥቆℱ(𝑥ᇱ) < ℱ(𝑥) ,𝑣 > expቆℱ(𝑥ᇱ) − ℱ(𝑥)𝑇 ቇ ቇ  

Here, if the first condition is not met, 𝑣 ∈ (0,1) is generated to check the possible acceptability. In the SA algorithm, 𝑇 shows 
the temperature; it is first 𝑇଴, and then the temperature is reduced with an annealing rate α in iteration 𝑘 as 𝑇 = 𝛼௞𝑇଴. 
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In NS algorithms, 𝒟 and ℛ operators that, respectively, destroy the current solution and then repair it, are quite important and 
influential in the algorithm performance. In general, the destroy-repair mechanisms include the random removal (RR), worst 
removal (WR), random insertion (RI) and best insertion (BI). In the ALNS, the main idea is the concurrent use of several 
destroy-repair operators to adapt the search process dynamically and automatically to the best ones for more intelligent and 
efficient searches. This makes the ALNS algorithm more adaptable, causes the search to adapt to the best destroy-repair 
operations, enables more efficient, intelligent searches and ensures optimal/near optimal solutions. 

In the ALNS, the destroy-repair operators are first defined with different strategies and then assigned equal weights ω�ି�  
and ωℛ

ା . Next, one strategy is selected for 𝒟 and one for ℛ by the roulette wheel (RW) mechanism and, after applying the 
combined operator ℛ൫𝒟(. )൯, the 𝑥ᇱ = ℛ൫𝒟(𝑥)൯ neighboring solution is generated; the selected operators are given fitness 
based on the optimality assessment and their values are calculated as follows: 

)31 (  Ψ′ =
⎩⎪⎨
⎪⎧Ψ , ℱ(𝑥ᇱ) ≥ ℱ(𝑋஻௘௦௧)
Ψ2 , ℱ(𝑥ᇱ) ≥ ℱ(𝑥)  AND   ℱ(𝑥ᇱ) < ℱ(𝑋஻௘௦௧) 
Ψ4 , 𝒜(𝑥ᇱ,𝑥) = 1    AND   ℱ(𝑥ᇱ) < ℱ(𝑥)0, 𝒜(𝑥ᇱ,𝑥) = 0  

 

where Ψ ≥ 0. Next, the weight and probability of the selection are updated as follows: 

)32 (  ωℛ
ା  ←  𝜆ωℛ

ା  + (1 −  𝜆)Ψ′   
)33 (  ωℛ

ା  ←  𝜆ωℛ
ା  + (1 −  𝜆)Ψ′   

)34 (  𝜋𝒟 = ω�ି�∑ ω�ି�𝒟∈ 𝒮ష  

)35 (  𝜋ℛ = ωℛ
ା∑ ωℛ

ା
ℛ∈ 𝒮శ  

In updating the weight of the destroy-repair operators, 𝜆 ∈ (0,1) is the coefficient of the initial weight decay. Here, the 
standards of q, λ and Ψ (main parameters of the ALNS method), as well as 𝑇଴ and α (used in the Boltzmann Acceptance Rule, 
which is based on such parameter tuning techniques as the Taguchi Method) are tuned, and the initial weights of the operators 
are taken equal to parameters that have equal weights (ωℛ

ା = ω�ି� = 1); Fig. 3 shows the pseudocode of proposed ALNS 
algorithm. 

5.2. Applying ALNS for Solving the CS-AMR Problem 

To apply the ALNS algorithm to solve the desired CS-AMR problem, the solution representation is first encoded 
and structured, then the sets of destroy-repair operators are defined to find the neighboring solutions and the solution repair 
mechanisms or penalties for infeasible solutions are explained. For encoding the solutions of the CS-AMR problem, it is to 
be noted that each solution consists of five main parts from X1 to X5 that relate, respectively, to assigning each flight to aircraft 
and crew, sequence of flights in the route of each aircraft, pairing the crew to the flight assigned to, percentage of stand-by 
fleet capacity, and cancelled or substituted flights in each disruption scenario. Each problem solution is defined as X = [X1; 
X2; X3; X4; X5] and each one is explained as follows. 

In X1, an array is defined with the length of the number of flights and two rows, wherein the first and second rows 
specify, respectively, which aircraft and which crew are allocated to each flight. In X2, another array is defined with the length 
of the number of flights for each selected aircraft and its assigned flights, and the route of each aircraft is determined with a 
permutation of different flight numbers. We should note that in the structure of solution X, rows of array X2 equal the number 
of the selected aircrafts and its columns equal their assigned flights. In X3, similar to X2, it is determined with what sequence 
each selected flight lies in the duty of each crew. In X4, the simplest part of the structure of solution X, a 1-D array is defined 
that represents the percent stand-by of the fleet capacity and, finally, in X5, a matrix is defined where the rows show the 
disruption scenarios and columns show the flights. Arrays of this matrix are coded with numbers 1 for no flight cancellation 
and substitution, 2 for cancellation, and finally 3 for substitution with a stand-by aircraft. 



  

 

392

 
Fig. 3.  Pseudocode of Proposed ALNS Algorithm 

 

 
Fig. 4.  Proposed solution encoding (Structure X) to represent the solution of CS-AMR problem  

 
Fig. 4 shows a schematic view of the numerical example of the solution structure of the desired problem of the present study 
with 10 flights, 4 aircrafts, 3 crews and 3 flight disruption scenarios. Part X1 shows each flight is assigned to which aircraft 
and which crew; for instance, F4 should be flown with aircraft A3 and crew C1, and since the fleet capacity is 4, one aircraft is 

 Input 
- Initial feasible solution (𝑥) 
- ALNS parameters (𝓆, 𝜆, Ψ, 𝛼, 𝑇଴); Tuned using Taguchi method  
- Destroy operators (Set of 𝒮ି)  
- Repair operators (Set of 𝒮ା) 
- Stop criterion (maximum iteration or run-time limitation)  

 𝑋஻௘௦௧ = 𝑥 ; 
 Repeat  

 Calculate 𝜋ℛ and 𝜋𝒟 for all ℛ ∈  𝒮ା and 𝒟 ∈  𝒮ି 
• 𝜋𝒟 = ω𝒟ష∑ ω𝒟ష𝒟∈ 𝒮ష  

• 𝜋ℛ = ωℛ
శ∑ ωℛ

శ
ℛ∈ 𝒮శ  

 Apply RW selection mechanism to select 𝒟 and ℛ operators  
 Apply selected 𝒟 and ℛ operators to search new neighborhood solution  

• 𝑥ᇱ = ℛ൫𝒟(𝑥)൯  
 Apply Boltzmann acceptance rule 

• If 𝒜(𝑥ᇱ, 𝑥) = 1 Then 
•   𝑥 = 𝑥ᇱ ; 
• End If  

 Update best solution  
• If ℱ(𝑥ᇱ) > ℱ(𝑋஻௘௦௧) Then 
•   𝑋஻௘௦௧ = 𝑥ᇱ  ; 
• End If 

 Update the weight of selected 𝒟 and ℛ operators 
• ωℛ

ା ←  𝜆ωℛ
ା  + (1 −  𝜆)Ψ   

• ω�ି�  ←  𝜆ω�ି�  + (1 −  𝜆)Ψ  
 Until the stop criterion is met  
 Return 𝑋஻௘௦௧ and ℱ(𝑋஻௘௦௧).  
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obviously in the stand-by mode. Part X2 shows the flight route; for instance, row A1 states that aircraft A1 first takes flight 1, 
then 6, and then 10, 3, and 9, respectively. Part X3 shows the crew-flight pairing; for instance, crew C1 directs flight 2 first 
and then flights 4, 9, and 10, respectively. Part X4 shows that 25% of the fleet capacity is in the stand-by mode. And, part X5 
that is related to the RM section of the problem, determines which flights should be canceled or replaced under each disruption 
scenario; for instance, in scenario ξ2, flights 2 and 7 are canceled and flight 5 is done with a stand-by replacement aircraft. 

After the solution representation, the question is how to search the neighborhood solution. In the ALNS algorithm, a 
neighborhood search requires specifying the destroy and repair; here two of each are defined as follows, the combination of 
which creates four operators for the neighborhood search and the ALNS algorithm adapts to them. 

• Destroy with Random Removal: For this destroy operator, a part of the solution structure is randomly removed in 
X1; in other words, some flights are randomly removed to be inserted again with the repair operator (insertion j).  

• Destroy with Worst Removal: For this destroy operator, flights in undesirable conditions are removed from the 
initial schedule; in other words, the worst flights that have delays, are canceled or are replaced are temporarily 
removed to be replaced through the repair operator. 

• Repair with Random Insertion: In this repair operator, flights removed with the destroy operator are replaced and 
randomly assigned aircraft and crew. 

• Repair with Best Insertion: In this repair operator, the duty of flights removed by the destroy operator is assigned 
to the best aircraft and crew, meaning the one with the least added costs, the one with the highest unused capacity. 

 
Fig. 5.  Schematic of the proposed destroy and insertion operators 

Fig. 5 illustrates an example of a combined destroy-repair operators for neighborhood search. The worst destroy operator is 
selected from the initial solution in Fig. 4 to remove the canceled and replaced flights, another aircraft and crew is substituted 
for them by the random Insertion operator, and the repaired solution is generated as a neighborhood solution. To start the 
ALNS, the initial solution is randomly generated based on the proposed solution encoding; if the generated initial solution or 
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the created neighborhood one is unjustified, the re-repair mechanism or the penalty strategy is used to reach justified solutions. 
Here, the maximum number of iterations is the stop criterion, which can also be controlled with a time constraint. 

6. Model implementation and numerical result 

To evaluate the proposed model, this section first conducts a moderate-scale numerical study of the CS-AMR problem and 
solves the TSRSO model. 

To conduct a numerical study of the CS-AMR problem in some provinces of Iran, it is assumed that the air transport network 
is part of an airline company. As shown in Table 2, this network involves ten origin-destination cities (N: flight nodes), 42 
out of 90 feasible flights (N × (N-1) = 90, flight arc = 42), five flight crew, six fleets (fleet size) and three maintenance bases. 
Fig. 6 presents a schematic view of the flight network for the numerical example. In addition to the location of the flight 
nodes, the flight arcs that connect the maintenance bases are also drawn in this map. 

Table 2 
The scale of flight network in the numerical study of the CS-AMR problem 

Maintenance Base Crew  Fleet Size Flight Arc Flight Node 
3 5 6 42 10 

 
 

 
Fig. 6. Schematic of flight network in the numerical study 

 
Table 3 shows the total number of flights scheduled in this network, and Table 4 depicts the initial schedule of the crew and 
aircraft.  

 
Table 3 
Scheduled flights in the numerical study of the CS-AMR problem 

BUR BAN HAM AHV KER SRY MHD SYZ IFN THR  
          - THR 
        -  IFN 
       -   SYZ 
      -    MHD 
      -     SRY 
     -      KER 
    -       AHV 
   -        HAM 
  -         BAN 
 -          BUR 

 
 

This numerical study considers a 2-day schedule horizon, during which the maximum allowable no-maintenance flight time, 
maximum allowable crew flight time, and maximum allowable flight time for each aircraft are 480, 500 and 600 minutes, 
respectively, and at the end of which each crew and aircraft should be rotated at the initial base. 
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Table 4 
Initial schedule for crew and aircraft in numerical study of the CS-AMR problem 

BUR BAN HAM AHV KER SRY MHD SYZ IFN THR  
- - - - - - a5,a6 a2 - a1,a3,a4 aircraft 
- - - - - - c5 c2 - c1,c3,c4 Crew 

Before implementing the TSRSO model, it is necessary first to set the optimality robustness coefficient and control the 
objective function fluctuations under different scenarios (𝜆). In Table 10, for 𝜆 ≥ 1.6, the standard deviation value of the 
solutions and the expected system performance (mean cost) do not change; mean cost is 2956.12 (highest), and standard 
deviation of cost is 347.54 (lowest), but at 𝜆 =0, mean cost=2347.23 (minimum) and standard deviation of cost=984.54 (quite 
high) under different scenarios. Increasing 𝜆 to 0.8 will cause standard deviation of cost fluctuations to reduce by about 58% 
and mean cost to increase slightly (< 4% For 𝜆 > 0.8) fluctuations do not decrease considerably and, the mean cost increases 
significantly, concluding that 𝜆 = 0.8 is the best setting in the proposed TSRSO model; this is clearly shown in Figs. 7 and 8. 

Table 5 
Variations of the mean and standard deviation of cost relative to the model robustness coefficients 

Percentage of decrease in 
standard deviation of cost 

Percentage of increase in 
expected cost 

standard deviation of 
cost mean cost Optimality robustness 

coefficient (𝝀) 
0.00 0.00 984.54 2347.23 0 

28.58 0.47 703.19 2358.36 0.2 
37.88 1.30 611.58 2377.81 0.4 
46.05 2.55 531.19 2407.12 0.6 
57.13 3.94 422.03 2439.63 0.8 
59.12 7.45 402.45 2522.03 1 
62.10 12.11 373.18 2631.41 1.2 
64.27 16.97 351.78 2745.54 1.4 
64.70 25.94 347.54 2956.12 1.6 
64.70 25.94 347.54 2956.12 1.8 
64.70 25.94 347.54 2956.12 2 

  
)b (  

  
)a (  

Fig. 7. Cost sensitivity analyses:  mean (a), standard deviation (b) with respect to the model robustness coefficients 

 
    Fig. 8. The best setting for model robustness coefficient 
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Comparing the solution of the proposed TSRSO approach and that of the nominal approach (that does not consider probable 
disruptions in the initial schedule) reveals that the TSRSO approach allows some flights to be cancelled under some scenarios 
or aircraft routing and aircraft/crew assignment to flights are such that the least delay from the original flight schedule occurs 
under different disruption scenarios. To validate the proposed TSRSO model, use can be made of two criteria defined at the 
end of this section. The created flight delay parameter is first realized under different scenarios; in the CS-AMR problem of 
this research. For the validation of the TSRSO model, assume that the problem is solved by the "M" approach, 𝑧కெ is the value 
of the objective function corresponding to this approach under scenario 𝜉 ∈  Ξ and 𝑧క∗ is the optimal value of each scenario. 
Approach M is more valuable when 𝑧కெ has less deviation than 𝑧క∗. In other words, the less than value of ห𝑧కெ − 𝑧క∗ห indicates 
higher value of approach M. Therefore, the validation criteria can be presented as follows: 

)36 (  
𝐶𝑟1 = ෍ 𝜋క൫ห𝑧కெ − 𝑧క∗ห ൯ +  𝛹క∈ ௻  

)37 (  
𝐶𝑟2 = 𝑚𝑎𝑥క∈ ௻ 𝜋క൫ห𝑧కெ − 𝑧క∗ห ൯ + 𝛹 

 
where Ψ is the constraint violation penalty in each scenario (in the model proposed in this research, Ψ is the flight 
delay/cancellation penalty equal to (∑ 𝑐𝑐௙ 𝑒௙క  ௙ + ∑ 𝑝𝑐௙𝑑𝑒𝑙௙క௙ ). Table 6 shows the values of these criteria calculated for both 
nominal and proposed TSRSO approaches, revealing that the solution of the latter is much more valuable than the former 
because both its expected and worst-case performances are much better equaling 35.76 and 39.38%, respectively, which, 
compared to the nominal case, are more robust. 

Table 6 
Comparing the proposed TSRSO approach vs Nominal model in measures of expected and worst-case performance 

Approach )Cr1 (  )Cr2 ( 

Value improvement 
(%)  Value improvement 

(%) 
Nominal 21.08 - 29.12 - 

Proposed TSRSO  13.54 35.76 17.65 39.38 

 

Besides the above criteria, another well-known criterion is Value of Stochastic Solution (VSS), which is usually defined as 
the difference between stochastic and nominal solutions. It is used to validate the proposed TSRSO approach through the 
earlier performed comparison; a higher VSS means a more valuable stochastic approach. It is defined as follows:  

)38 (  𝑉𝑆𝑆 = |𝐸(𝑍௦௧௢௖௛௦௧௜௖) − 𝐸(𝑍௡௢௠௜௡௔௟)| 
As mentioned earlier, the CS-AMR problem was solved under five disruption and one non-disruption scenarios. Table 7 
compares the results of the nominal (non-robust), and the proposed TSRSO (robust) approaches under different scenarios. 
Considering the probability assumed for each scenario, the VSS of the proposed approach was found to be: VSS= 2756.45- 
2539.67= 216.78. 

Table 7 
Comparing the nominal and proposed TSRSO approaches under different disruption scenarios 

Nominal 
Approach Proposed TSRSO approach 

Occurrence 
chance  (𝝅𝝃) 

Scenario 

2013.91 2395.19 𝜋క = 12 𝜉 = 0 

2521.67 2467.49 𝜋క = 110 𝜉 = 1 

3016.61 2565.42 𝜋క = 110 𝜉 = 2 

3412.53 2690.54 𝜋క = 110 𝜉 = 3 

3931.43 2781.45 𝜋క = 110 𝜉 = 4 

4612.79 2915.89 πஞ = 110 ξ = 5 

2756.45 2539.67 Mean 
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7. Computational analysis and evaluation of the proposed ALNS method  

This section analyzes the computational efficiency of the proposed model and the solution algorithm. To this end, a TSRSO 
model, with the MILP formulation, and an ALNS algorithm are first presented for the proposed CS-AMR problem, then the 
parameter tuning of the ALNS algorithm is done with the Taguchi method, then several different-scale experimental instances 
are randomly generated and solved with the proposed model and solution algorithm and the results are compared and, finally, 
the Box-plot is used to test the stability of the proposed ALNS algorithm. 

Techniques of Design of Experiments (DOE) are among effective methods for the parameter tuning of metaheuristic 
algorithms, which can be classified as active statistical methods (pre-execution decisions) for the quality control (QC). It is 
possible, through DOE techniques, to optimally/near-optimally tune the level of the parameters (factors) that influence the 
results of a process, or a metaheuristic algorithm such as ALNS. These techniques are generally divided into Full Factorial  
Experiments and Fractional Factorial Experiments (FFE). While one weakness of the former is the large number of 
experiments that consume much time and money, FFE methods conduct and analyze only a certain fraction of the total possible 
experiments to investigate the related parameters/factors. In DOE techniques, the Taguchi method is a very important and 
common FFE that instead of doing all the experiments performs only a fraction (few) of them to tune the required parameters 
optimally and much faster  (Karna & Sahai, 2012). Taguchi method works based on the signal-to-noise ratio (SNR or S/N) 
and factors affecting the test results are either controllable (signal (S)) or uncontrollable (noise (N)). These factors/parameters 
are tuned at levels where the signal-to-noise ratio (S/N) criterion is maximized. 

Using the Taguchi method to tune the parameters of metaheuristic algorithms requires knowing whether it is a minimization 
or a maximization problem because the former uses the “smaller is better” formula while the latter utilizes the “larger is better” 
formula to calculate the S/N ratio. In this research, since the objective function of the CS-AMR problem maximizes the profit 
by the revenue management, it uses the “larger is better” formula 𝑆 𝑁ൗ = −10𝐿𝑜𝑔ଵ଴ ቀ∑ ௓೐ಶ೐సభா ቁ where 𝑍௘ is the value of the 
objective function (response variable) in each experiment and E is the number of experiments. To tune the parameters of the 
proposed ALNS algorithm, first the numerical instance of this research, explained in the previous section, is solved for 
different ALN parameters (q, λ, Ψ, α, 𝑇଴) at various levels and then the level that yields a higher S/N for each parameter is 
chosen as the optimal level; if a parameter has close S/N at two levels, the one with lower run-time is selected, and if two 
parameters have no significant difference, the one that leads to less run-time is selected.   

Table 8 
The values of ALNS parameters/factors in different levels for Taguchi method 

Big (Level 2) Medium (Level 2) Small (Level 1) ALNS Parameter 
0.60 0.35 0.20 𝓆 
0.70 0.50 0.30 λ 

5 3 1 Ψ 
0.75 0.50 0.25 α 

10000 5000 1000 T଴ 
 

Table 8 considers three values at three levels (small, medium and big) for each of the five parameters of the ALNS algorithm, 
which means the total number of experiments is 35.  However, Taguchi method needs only 27 experiments because it is among 
the FFE methods. Table 9 shows these experiments along with their objective function values and run times. Implementing 
the Taguchi method in Minitab and the result in tuning ALNS parameters leads to the graphs in Fig. 9 and analyzing them 
based on the S/N criterion reaches the levels and optimal values of the ALNS parameters shown in Table 10. 

   

a - Means of profit in Taguchi 
experiments 

b- S/N ratio in Taguchi experiments c - Means of run-time in Taguchi 
experiments 

 

Fig. 9.  The result of Taguchi experiments in tuning ALNS parameters   
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Table 9 
Objective function and run-time of solving problem using ALNS in Taguchi experiments 

Experiments  Level of 𝓆 Level of 𝜆 Level of 𝛹 Level of 𝛼 Level of 𝑇଴ Objective Time (s) 
1 1 1 1 1 1 2581.43 209 
2 1 1 1 1 2 2674.54 221 
3 1 1 1 1 3 2594.41 232 
4 1 2 2 2 1 2743.51 239 
5 1 2 2 2 2 2781.43 264 
6 1 2 2 2 3 2545.53 274 
7 1 3 3 3 1 2459.41 287 
8 1 3 3 3 2 2634.51 267 
9 1 3 3 3 3 2675.73 278 
10 2 1 2 3 1 2509.43 234 
11 2 1 2 3 2 2874.43 241 
12 2 1 2 3 3 2743.74 231 
13 2 2 3 1 1 2693.64 253 
14 2 2 3 1 2 2804.47 256 
15 2 2 3 1 3 2764.04 271 
16 2 3 1 2 1 2897.21 285 
17 2 3 1 2 2 2680.94 294 
18 2 3 1 2 3 2748.79 284 
19 3 1 3 2 1 2780.43 265 
20 3 1 3 2 2 2641.47 211 
21 3 1 3 2 3 2597.41 264 
22 3 2 1 3 1 2498.94 256 
23 3 2 1 3 2 2675.83 278 
24 3 2 1 3 3 2594.04 242 
25 3 3 2 1 1 2593.31 289 
26 3 3 2 1 2 2494.84 294 
27 3 3 2 1 3 2481.54 276 

 

Table 10 
Optimal tuning of ALNS parameters resulting from Taguchi method T଴ α Ψ Λ 𝓆 

Level 2 = 5000 Level 2 = 0.50 Level 3 = 5 Level 1 = 0.30 Level 2 = 0.35 
 

To evaluate the performance and show the computational efficiency of the proposed TSRSO model and ALNS algorithm, 
Table 11 shows the results of 20 different-size experimental CS-AMR problems, for which the maximum solution time by 
the proposed MILP model was 3600 sec and the ALNS algorithm used maximum 100 and 250 iterations for the first and the 
second 10 instances, respectively. The numerical results show that although the TSRSO model is formulated as MILP, it is 
tractable and can be solved by the CPLEX Solver, but its computational efficiency is not acceptable in large-scale problems. 
The proposed ALNS algorithm yields optimal/near optimal solutions in small-scale instances, but in large-scale problems 
where MILP is not applicable, it cannot ensure a computationally efficient performance by consuming less time. 

Table 11 
Comparison of the proposed MILP model and ALNS algorithm to solve CS-AMR problem 

Instances Problem Scale MILP - CPLEX ALNS 
Node Flight Fleet Crew Maintenance 

base 
Scenario OF RT 

(s) 
OF  
(�̅�) 

RT 
(s) 

Gap 
(%) 

1 5 10 2 2 1 3 1234.51 46 1234.51 73 0.00 
2 6 15 3 3 1 3 1344.54 84 1344.54 103 0.00 
3 7 20 4 3 2 3 1679.54 178 1679.54 157 0.00 
4 8 25 5 4 2 5 1840.57 355 1794.43 187 2.51 
5 9 30 6 4 2 5 2355.83 578 2195.51 214 6.81 
6 10 35 7 5 3 5 2894.01 749 2654.39 267 4.82 
7 12 40 8 5 3 5 3575.75 983 3575.75 304 0.00 
8 14 45 9 6 3 10 4075.41 1349 3758.41 398 5.32 
9 16 50 10 7 4 10 4678.53 1593 4385.67 495 6.26 
10 18 60 11 8 4 10 5239.41 1683 5087.31 583 2.90 
11 20 70 13 9 4 10 5893.75 1946 5897.41 645 0.06 
12 25 80 15 10 5 15 6456.21 +3600 6678.04 798 -3.44* 

13 30 90 17 12 5 15 7054.51 +3600 7376.29 875 -4.56 
14 35 100 20 14 5 15 8544.51 +3600 9284.78 984 -8.66 
15 40 110 25 16 6 15 9435.71 +3600 10343.12 1249 -9.62 
16 50 120 30 18 6 30 NS +3600 11984.65 1575 - 
17 60 130 35 20 7 30 NS +3600 13675.98 1984 - 
18 70 150 40 25 8 30 NS +3600 16530.04 2638 - 
19 80 150 45 30 9 30 NS +3600 18931.82 2984 - 
20 90 150 50 30 10 30 NS +3600 22874.67 3481 - 

OF = objective function (profit); RT = run-time (maximum CPLEX run-time is set 3600 sec); No Solution; * = Negative value means that ALNS improves 
CPLEX  
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Since metaheuristic algorithms, including the ALNS algorithm proposed in this research, involve random search and may 
yield different objective-function values for a particular instance in several algorithm run times, each example problem is 
solved 10 times and the average value of the objective function is considered as 
 (�̅� = ቂ ଵଵ଴∑ 𝒵௜ଵ଴௜ୀଵ ቃ), where 𝒵௜ is the objective value in run i. Table 12 shows the Output (Profit) of various runs of the proposed 
ALNS algorithm for large-scale instances to show its stability in 10 times implementation of ALNS for each large-scale 
instances, and Fig. 10 shows the box-plot related to 10 large-scale test problems, each of which is run 10 times; as shown, the 
proposed ALNS algorithm not only yields optimal/near-optimal solutions, but also has low output deviations in different runs 
and has acceptable stability.  

 
Fig. 10.  Box plot of ALNS implementations to verify its stability    

Table 12 
Output (Profit) in 10 times implementation of ALNS for each large-scale instances to show stability 

# Run Instance 
11 

Instance 
12 

Instance 
13 

Instance 
14 

Instance 
15 

Instance 
16 

Instance 
17 

Instance 
18 

Instance 
19 

Instance 
20 

1 597.94 659.08 839.53 869.56 983.72 1204.68 1567.80 1975.26 2578.42 2997.63 
2 564.60 643.78 810.45 877.66 982.46 1270.39 1564.70 1974.34 2579.34 2969.60 
3 590.02 658.87 824.36 875.60 989.87 1236.01 1597.81 2053.95 2643.36 2985.62 
4 585.60 641.02 816.52 873.61 994.22 1313.34 1569.03 1998.37 2674.91 2975.17 
5 572.35 642.59 790.27 877.53 994.36 1186.29 1582.26 1993.75 2770.13 2988.92 
6 579.47 673.92 805.49 871.84 975.93 1250.87 1573.13 2062.25 2603.92 2974.26 
7 585.79 672.35 777.94 874.81 984.72 1280.82 1583.62 1944.35 2647.57 2991.95 
8 612.15 672.51 820.63 874.55 972.66 1312.38 1567.58 2018.33 2633.78 2995.99 
9 605.56 658.04 768.78 875.59 973.60 1337.92 1561.39 2025.16 2539.21 3011.76 
10 572.00 621.56 770.77 875.58 983.94 1253.95 1561.20 1971.99 2615.57 2980.85 

8. Conclusions and future studies 

Crew scheduling and aircraft maintenance routing- are two important operational problems in the airline industry, which, after 
fuel, account for the highest costs of an airline. Integrating decisions related to these two issues, from the point of view of the 
revenue management approach, as well as controlling probable disruptions in the initial schedule, are among the serious 
challenges facing airlines in solving this problem. This study has addressed the CS-AMR problem, wherein, aircraft 
maintenance routing and crew scheduling decisions are made simultaneously, moreover, rules/regulations governing the flight 
route of each aircraft/crew such as limited maximum no-maintenance flight, maximum activity of each crew in a known time 
horizon, etc. are considered in a flight network consisting of several maintenance/crew bases. To solve the CS-AMR problem, 
we use a TSRSO model, wherein the itinerary of each aircraft and crew is specified in the first stage based on the initial 
schedule and the available fleet and crew, in compliance with the rules and regulations, and decisions regarding the substation 
of aircrafts and cancellation of flights are made in the second stage, according to the variables of the first stage and the desired 
disruption scenario (which causes flight delays). The proposed TSRSO model has been finally solved by the CPLEX solver 
aiming at maximizing expected profit and controlling cost standard deviation. Numerical results, found based on two criteria, 
expected performance and worst-case performance, show that the solution of the proposed TSRSO approach method is much 
more reliable than that the nominal model because both performances are much better; under the two mentioned criteria they 
are, respectively, 35.76% and 39.38% and are more robust than the nominal case. Positivity of VSS shows that the value of 
the proposed TSRSO approach is quite tangible compared to cases that do not consider disruption scenarios. In order to tackle 
the complexity of the proposed model, a solution method based on ALNS algorithm has been developed. The results of solving 
several experimental instances in different scales indicate that the proposed ALNS algorithm is able to solve large-scale 
problems in an acceptable run-time, and it is a suitable alternative to CPLEX solver which can provide an optimality guarantee. 

Some airlines may consider part of their aircraft and crew capacities in the backup mode to use under disruption conditions; 
it is suggested here that future studies consider cancellations and substitution based on fleet backup capacity. Considering 
online pricing in the CS-AMR problem can be considered a development of the proposed model, which improves the 
applicability of the model for more real cases. 
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