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 There have been many applications for machine learning algorithms in different fields. The 
importance of hyperparameters for machine learning algorithms is their control over the behaviors 
of training algorithms and their crucial impact on the performance of machine learning models. 
Tuning hyperparameters crucially affects the performance of machine learning algorithms, and 
future advances in this area mainly depend on well-tuned hyperparameters. Nevertheless, the high 
computational cost involved in evaluating the algorithms in large datasets or complicated models 
is a significant limitation that causes inefficiency of the tuning process. Besides, increased online 
applications of machine learning approaches have led to the requirement of producing good 
answers in less time. The present study first presents a novel classification of hyperparameter types 
based on their types to create high-quality solutions quickly. Then, based on this classification and 
using the hypergradient technique, some hyperparameters of deep learning algorithms are adjusted 
during the training process to decrease the search space and discover the optimal values of the 
hyperparameters. This method just needs only the parameters of the previous two steps and the 
gradient of the previous step. Finally, the proposed method is combined with other techniques in 
hyperparameter optimization, and the results are reviewed in two case studies. As confirmed by 
experimental results, the performance of the algorithms with the proposed method have been 
increased 36.62% and 23.16% (based on the best average accuracy) for Cifar10 and Cifar100 
dataset respectively in early stages while the final produced answers with this method are equal to 
or better than the algorithms without it. Therefore, this method can be combined with 
hyperparameter optimization algorithms in order to improve their performance and make them 
more appropriate for online use by just using the parameters of the previous two steps and the 
gradient of the previous step. 
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1. Introduction 

 
Machine learning algorithms have been prominently applied in various practical and scientific areas. As a result of such a 
prominent position, the demand for machine learning systems is growing. This outstanding position is due to machine learning 
algorithms' excellent performance and general use. However, it is a time-consuming and complicated process to build an 
efficient machine learning model, which includes determining the proper algorithm and obtaining an optimal architecture for 
the model. In general, two types of variables should be tuned for building a machine learning model.  Firstly, the values of the 
variables identified during the model training process are determined by optimization techniques and are termed as parameters. 
Secondly, the variables that are not specified during the model training process should be presented as input to the model 
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before implementing it (Liu, Wu, & Chen, 2022). These variables are termed hyperparameters. The hyperparameters can be 
discrete, continuous, conditional, or categorical, depending on the model (DeCastro-García, Muñoz Castañeda, Escudero 
García, & Carriegos, 2019; Yang & Shami, 2020).  
 
In establishing an effective machine learning model, one of the vital components is tuning hyperparameters (Yao, Cai, Bu, & 
Chen, 2017). Hyperparameter optimization (HPO) is described as the process of adjusting the suitable values for a machine 
learning problem's hyperparameters. The usual practice to implement this process is using some approaches such as trial and 
error or the design of experiments manually. Nevertheless, these approaches are not practical anymore because the number of 
hyperparameters is high, the evaluations are time-consuming, there are interactions among nonlinear hyperparameters, and 
the models are usually complex (Yang & Shami, 2020). Thus, automated hyperparameters optimization is necessary, which 
has critical functions, with the following outcomes (Seifi, Azizi, & Niaki, 2021): 
 

• The algorithm's good performance  
• Effective use of parallel resources 
• The reduced human effort needed for algorithm tuning 
• Greater flexibility and robustness 
• Higher algorithm scalability (Falkner, Klein, & Hutter, 2018) 

HPO should deal with some challenges despite the advantages mentioned above, making their practical implementation 
difficult. These challenges include:  

• Extremely costly function evaluations for large datasets or large models.  
• High-dimensional and complicated configuration space   
• Lack of accessibility to the objective function's gradient and unclear smoothness and convexity of the objective 

function (Feurer & Hutter, 2019)  
• Possibility of the trade-off between two or more objectives such as resource consumption and the model performance 

(Igel, 2005) 
• Dependency of different hyperparameter configurations to various datasets (Feurer & Hutter, 2019). 

 
Previous studies have presented different approaches concerning hyperparameter optimization since the 1990s (King, Feng, 
& Sutherland, 1995; Kohavi & John, 1995; Michie, Spiegelhalter, & Taylor, 1994). These methods are generally classified 
into six general groups: search-based algorithms, heuristic algorithms, Bayesian algorithms, multi-fidelity algorithms, 
population-based algorithms, and reinforcement learning algorithms. Each of these methods has advantages and disadvantages 
reviewed in the literature review section. In addition to the above methods that provide hyperparameter optimization 
frameworks, Baydin et al. (2018) developed an approach known as hypergradient descent to optimize one hyperparameter 
while training the algorithm. During optimization, the hypergradient descent method dynamically updates the learning rate 
(as the most crucial hyperparameter asserted by Bengio (Bengio, 2012)). Complicated calculations are not required in this 
method to optimize the learning rate, and only one additional copy of the original gradient should be stored in memory (Baydin 
et al., 2018); however, it is limited to one hyperparameter.  
 
The current research aims to achieve two objectives. Firstly, it is possible to extend the hypergradient approach for other 
hyperparameters. In the present work, a new categorization of hyperparameter types is presented, and accordingly, it is 
attempted to optimize another hyperparameter using the hypergradient method. Secondly, the hypergradient approach is 
combined with other hyperparameter optimization methods to increase their efficiency. The complexity order of 
hyperparameter optimization methods (as mentioned in the literature review section) is dependent primarily on the number of 
hyperparameters. With the combination of the hypergradient method with other hyperparameter optimization approaches, all 
the hyperparameters are optimized, and the response time is reduced by decreasing the space dimensions. Consequently, the 
optimization algorithm efficiency is increased. 
 
The rest of the paper is organized as follows. In the second section, the problem statement and its formulation are presented. 
The hyperparameter optimization algorithms and their advantages and disadvantages of these methods are reviewed in the 
third section. The fourth section deals with the developed hypergradient HPO approach. The efficiency of the proposed 
approach is evaluated in Section 5. The sixth section offers the conclusion and recommendations for future works.   

2. Statement of the problem  

Assume 𝒜 represent a learning algorithm with 𝐻 hyperparameters. Let the ℎ௧௛ hyperparameter domain be denoted by Λ௛ and 
the overall hyperparameter configuration space Λ = Λଵ × Λଶ × … × Λு . Moreover, 𝛌 ∈ Λ  denotes a vector of 
hyperparameters, and 𝒜𝛌 shows 𝒜 with its hyperparameters instantiated to 𝛌 (Feurer & Hutter, 2019). Then, the following 
problem is to be solved in an HPO problem: 
 𝛌∗ = argmin𝛌∈ஃ 𝔼ሺୈ౪౨౗౟౤,ୈ౬౗ౢ౟ౚ౗౪౟౥౤ሻ 𝑉(ℒ,𝒜𝛌, D୲୰ୟ୧୬, D୴ୟ୪୧ୢୟ୲୧୭୬), (1) 
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where 𝑉(ℒ,𝒜𝛌, D୲୰ୟ୧୬, D୴ୟ୪୧ୢୟ୲୧୭୬) shows the loss of a model created by algorithm 𝒜 with hyperparameters 𝛌 on the training 
data D୲୰ୟ୧୬ assessed on the validation data D୴ୟ୪୧ୢୟ୲୧୭୬ (Seifi et al., 2021). The existing works in literature that have proposed 
different methods to solve this problem are discussed as follows. 

3. Review of Related Literature  

Studies since the 1990s have presented different methods concerning hyperparameter optimization. It is possible to classify 
these methods into six general groups according to the core of the used algorithm (Indeed some of category’s stem from other 
one but for their importance they have classified into separate classes. For example, population-based algorithms generally 
are heuristic methods but here are considered as a different segment). This classification and some of the main algorithms in 
each class are shown in Fig. 1. 
 

HPO algorithms

Multi fidelity algorithmsHeuristic algorithms Bayesian algorithms Search based algorithmsPopulation based 
algorithms

Trial and error

Grid search

Random search

Gradient based algorithm

BO-GP

SMAC

TPE

Freeze-thaw BO

Successive halving

Hyperband

Genetic algorithm

PSO

PBT

PB2

Reinforcement learning 
algorithms

HypRL

Model-based RL

BOHB

Multi-task BO

Tabu search

 

Fig. 1. Classification of HPO algorithms  
 

3.1. HPO algorithms 

The first class includes search-based optimization methods, which attempt to discover the optimal values of hyperparameters 
by dividing the space and evaluating different options for them. Since these are simple algorithms, they are employed in 
problems with small response space and less-costly evaluation of hyperparameters. However, their efficiency is lost when the 
space resulting from the hyperparameters is enlarged, or the evaluation cost increases. Trial and error, Grid search, Random 
search, and Gradient-based algorithms are some the methods of this group which have been used in HPO literature (Bergstra 
& Bengio, 2012; Chadha & Kaushik, 2022; Hutter, Kotthoff, & Vanschoren, 2019; Sharma et al., 2021). Bayesian 
optimization is considered an optimization approach to optimize hyperparameters, in which new points are chosen for search 
based on previous evaluations. Here, firstly, a surrogate model is fitted on the previous data, and then, based on it and based 
on an acquisition function, a point is selected with the highest desirability. This point is then presented to the main model for 
training (Injadat, Salo, Nassif, Essex, & Shami, 2018). The main model is trained based on the new hyperparameters, followed 
by updating the data set. These actions go on as long as the conditions for ending the algorithm are not satisfied (Snoek, 
Larochelle, & Adams, 2012). Since the surrogate optimization model involves a lower cost than the original model, the 
Bayesian optimization approach has higher efficiency than the search-based approach since previous information is used in 
Bayesian optimization. However, it is limited to parallelization (Yang & Shami, 2020). The surrogate model employed in this 
algorithm principally includes three classes: Gaussian process (Seeger, 2004), random forest (Hutter, Hoos, & Leyton-Brown, 
2011), and tree Parzen estimator (Bergstra, Bardenet, Bengio, & Kégl, 2011). 
 
The third class includes muti-fidelity optimization methods. Generally, optimization of hyperparameters has always been a 
time-consuming process. Nowadays, implementing these processes has become more costly than ever because of the increased 
complexity of machine learning methods and the increased volume of input data (Feurer & Hutter, 2019). Hence, researchers 
have always been concerned with reducing the implementation time of hyperparameters optimization. The multi-fidelity 
optimization method is one of the methods proposed in this regard that attempts to shorten execution time by managing the 
available budget. In these algorithms, the configurations with poor performance are rejected after each round of 
hyperparameter evaluation. In contrast, hyperparameter configurations with good performance are evaluated on the entire 
training set (Yang & Shami, 2020). Execution time is saved by implementing this policy and discarding poor-performing 
hyperparameters. Multi-fidelity algorithms are classified into two general categories. The first group includes learning curve-
based methods. During optimization, these methods forecast the performance of a set of hyperparameters under evaluation if 
more resources are allocated and stop their evaluation if adding resources does not result in their improvement (Falkner et al., 
2018; Feurer & Hutter, 2019). The other group involves methods that exclude some hyperparameters with poorer performance 
than others at each evaluation step. Hence, the budget required to evaluate the remaining group of members increases (Karnin, 
Koren, & Somekh, 2013; Li, Jamieson, DeSalvo, Rostamizadeh, & Talwalkar, 2017; Zöller & Huber, 2021).
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Table 1  
The comparison of standard HPO algorithms 

Time 
complexity Weaknesses Strengths HPO method HPO Group 

𝒪(𝑛) 
1. Needing prior knowledge 
2. It cannot be used for the large number of HPs 
3. It cannot be for methods with time-consuming evaluation processes 
4. It cannot be used for the nonlinear interactions of the HPs 

1. Simple implementation  Trial and error 

Search-based 
algorithms 

𝒪(𝑛ௗ) 1. It is inefficient for high-dimensionality hyperparameter configuration space 
2. Continuous HPs are not supported  

1. Simple implementation 
2. Paralleling part of the algorithm is possible Grid search 𝒪(𝑛) 1. The experience of past evaluations is not used for increasing productivity 

2. It is efficient for conditional HPs 
1. Possibility of parallel executions  
2. It is more efficient in using computational budget compared to GS 
3. It is a helpful approach to initiate the search process 

Random search 𝒪(𝑛ௗ) 1. It can get stuck in local optimization if the objective function is not convex 
2. It can be applied only to continuous HPs 1. Higher speed of convergence compared to other methods of this group   Gradient-based 

algorithm 𝒪(𝑛ଷ) 1. Poor capacity for parallelization 
2. Inefficient for conditional HPs 

1. The experience of past evaluations is used for increasing productivity 
2. Higher speed of convergence in continuous HPs BO-GP 

Bayesian 
algorithms 𝒪(𝑛 log𝑛) 1. Poor capacity for parallelization 1. All HPs types are supported  BO-RF 𝒪(𝑛 log𝑛) 1. Poor capacity for parallelization 1. It shows acceptable performance regarding structured HPO tasks 

2. All HPs types are supported BO-TPE 

𝒪(𝑛ଷ) 1. Poor capacity for parallelization 1. The experience of past evaluations is used for increasing productivity 
2. Computational budget is better managed, and wastage is avoided 

Freeze-thaw 
Bayesian 
optimization 

Multi-fidelity 
algorithms 

𝒪(𝑛) 1. It is highly dependent on the amount of the budget allocated  
1. Simple implementation 
2. Real-world conditions, such as budget constraints, are considered 
3. Possibility of parallelization 

Successive halving 𝒪(𝑛 log𝑛) 1. It needs representativeness of subsets with small budgets  1. A balance is achieved for the number of configurations and budget 
2. Possibility of parallelization Hyperband 𝒪(𝑛 log𝑛) 1. It needs representativeness of subsets with small budgets 

2. Inefficient for conditional HPs 
1. Robust final performance and anytime performance  
2. Efficiency in all HPs types 
3. Possibility of parallelization 

BOHB 𝒪(𝑛ଶ) 1. Poor capacity for parallelization 1. Efficiency in all HPs types 
2. Good initialization is not required Genetic algorithm 

Heuristic 
algorithms 𝒪(𝑛 log𝑛) 1. Require proper initialization 1. Efficiency in all HPs types 

2. Possibility of parallelization PSO 𝒪(𝑛ଶ) 1. Require proper initialization 1. Efficiency in all HPs types 
2. Possibility of parallelization Tabu search 

- 1. It performs poorly in primary steps 
2. It performs poorly in continuous hyperparameters 

1. It is more efficient in computational resources 
2. Hyperparameters and parameters are optimized together PBT Population-

based 
algorithms 
 - 1. It performs poorly in primary steps 

2. It performs poorly in continuous hyperparameters 
1. Higher efficiency in computational resources 
2. Hyperparameters and parameters are optimized together 
3. The search is efficiently guided by using a probabilistic model 

PB2 

- 1. Poor capacity for parallelization 
2. Complicated algorithm execution  

1. Time complexity is lower than Bayesian  
2. Good performance with resources constraints HypRL 

Reinforcement 
learning 
algorithms - 1. Poor capacity for parallelization 

2. Complicated algorithm execution 

1. Accelerate learning by using  a predictive model to directly 
    evaluate the performance of hyperparameter configuration.  
2. Using the KL divergence between policies to dynamically control the model used avoids 

the model bias problem. 
Model-based RL 

 
Note. n: Number of instances; d.: Number of dimensions.
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The fourth category consists of heuristic algorithms such as genetic algorithm, particle swarm optimization, and Tabu search 
algorithm, which seek to improve the time for reaching the optimal response by making a balance between exploration and 
exploitation. Kumar and Haider (2021) and Ibad et al. (2022) have used heuristic algorithms for HPO. The fifth category 
includes population-based optimization algorithms such as population-based Bandits (Parker-Holder, Nguyen, & Roberts, 
2020) and population-based training (Jaderberg et al., 2017), which link between parallel and sequential optimization methods. 
This method requires less time than the sequential optimization methods, and concurrently, less computational resources are 
used than the parallel methods. Therefore, this method takes advantage of both groups of methods. The last group contains 
reinforcement learning algorithms. These studies propose a set of actions to determine the environment where the agent learns 
the way of moving through the hyperparameters' space and gaining the best solution. These actions identify the 
hyperparameters needing evaluation. The selection of hyperparameters is made sequentially using a policy (similar to the 
acquisition function in the Bayesian method) that provides a balance in the trade-off between exploitation and exploration 
(Jomaa, Grabocka, & Schmidt-Thieme, 2019). HypRL (Jomaa et al., 2019) and model-based reinforcement learning 
algorithms (Wu, Chen, & Liu, 2020) are some examples of this group. 
 
3.2. Comparison of HPO algorithms 

There exist many hyperparameter optimization methods for various applications. Thus, choosing the proper optimization 
method for each machine learning algorithm is crucial. The problem characteristics and conditions, including the 
hyperparameter characteristics and their relationships, govern the selection process of the algorithm with the highest efficacy. 
Additionally, it is necessary to consider general optimization conditions, including constraints in using computational 
resources, time constraints, the ability to execute more complicated optimization algorithms, and the objective function 
evaluation cost. Table 1 classifies the type of HBO methods, shows the standard hyperparameter optimization methods, and 
summarizes their weaknesses, strengths, and the time complexity involved in their implementation. Accordingly, they can be 
compared to each other, by which the most appropriate method can be chosen. 
  

4. The proposed methodology 

With the increased complexity of machine learning methods and the growing data volume involved in them, it takes longer 
to execute these algorithms and optimize their hyperparameters. Besides, since the online application of these methods is 
increasing, they should be tuned in a shorter time. However, as observed in Table 1, some hyperparameter optimization 
methods suffer from the curse of dimensionality. In this case, to obtain a reliable result, the number of evaluations needed 
often grows with dimensionality. As such, there is a need to develop a method that decreases the size of the search space. 
Baydin et al. (2018) proposed a method in which the learning rate is dynamically updated during optimization by using the 
gradient relative to the learning rate of the update rule. This method requires a little additional computation for this 
“hypergradient” computation. It only requires storing one extra copy of the original gradient in memory and only relies on 
what is provided by reverse-mode automatic differentiation. Like the structure developed by Baydin et al. (2018), the learning 
rate is optimized in current research during the model training. Besides, it is possible to increase efficiency if it can be extended 
to other hyperparameters and combined with other HPO methods. A new classification of hyperparameter types should be 
provided for generalizing this method to other hyperparameters. DeCastro-García et al. (DeCastro-García et al., 2019) 
presented a classification for the hyperparameter types as discrete, continuous, conditional, and categorical, based on the 
nature of hyperparameters. Moreover, the hyperparameter types can be categorized into structural hyperparameters and non-
structural hyperparameters. The former directly specify the model's overall structure (e.g., the activation function and layer 
number in neural networks), and the latter are those that do not require stopping and changing the model if they change during 
model training (e.g., momentum and learning rate in a neural network). Given this classification, it is possible to generalize 
the method Baydin et al. (2018) proposed to non-structural hyperparameters. Here, the aim is to extend this method to another 
hyperparameter termed momentum and then hybridize it with hyperparameter optimization methods. To this end, the regular 
gradient descent method is considered. Given previous parameters 𝜃௧ିଵ and an objective function, the gradient ∇𝑓(𝜃௧ିଵ) is 
evaluated. Moving against it so that updated parameters are achieved by 
 𝜃௧ = 𝜃௧ିଵ − 𝛼∇𝑓(𝜃௧ିଵ) − 𝛾(𝜃௧ିଵ − 𝜃௧ିଶ),  (2) 

where 𝛾 and 𝛼 denote the momentum and learning rate, respectively. In addition to this update rule, two update rules are 
designed for the momentum 𝛾 and learning rate 𝛼. To obtain the update rule for 𝛼, it is required to obtain the partial derivative 
of the objective function 𝑓 at the previous time step with respect to the learning rate. In other words, using the chain rule, we 
have: 
 డ௙(ఏ೟షభ)డఈ = డ௙(ఏ೟షభ)డఏ೟షభ × డఏ೟షభడఈ . (3) 

Using Eq. (2), 𝜃௧ିଵ can be written as: 
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Thus, the డఏ೟షభడఈ  value in Eq. (3) equals to (-∇𝑓(𝜃௧ିଶ)) according to Eq. (4). When this value is substituted in Eq. (3), we have: 𝜕𝑓(𝜃௧ିଵ)𝜕𝛼 = ∇𝑓(𝜃௧ିଵ)൫−∇𝑓(𝜃௧ିଶ)൯. (5) 

Hence, the update rule for learning rate 𝛼 is obtained as follow: 

𝛼௧ = 𝛼௧ିଵ − 𝛽 𝜕𝑓(𝜃௧ିଵ)𝜕𝛼 = 𝛼௧ିଵ + 𝛽 ∇𝑓(𝜃௧ିଵ)∇𝑓(𝜃௧ିଶ), (6) 

where 𝛽 denotes the learning rate of hypergradient. Similarly, to obtain the update rule for 𝛾, it is required to obtain the partial 
derivative of the objective 𝑓 at the previous time step relative to the learning rate. Once again, based on the chain rule, we 
have: 
 డ௙(ఏ೟షభ)డఊ = డ௙(ఏ೟షభ)డఏ೟షభ × డఏ೟షభడఊ . (7) 

Based on Eq. (4), the డఏ೟షభడఊ  value equals to (𝜃௧ିଶ − 𝜃௧ିଷ). When this value is replaced in Eq. (7), we have: 
 డ௙(ఏ೟షభ)డఊ = ∇𝑓(𝜃௧ିଵ)(−(𝜃௧ିଶ − 𝜃௧ିଷ)). (8) 

Therefore, the update rule for the learning rate 𝛾 is: 
 𝛾௧ = 𝛾௧ିଵ − 𝜂 డ௙(ఏ೟షభ)డఊ = 𝛾௧ିଵ + 𝜂 ∇𝑓(𝜃௧ିଵ)(𝜃௧ିଶ − 𝜃௧ିଷ),   (9) 

where 𝜂 denotes the momentum rate of hypergradient. The 𝛼௧ and 𝛾௧ values are updated by Eq. (6) and Eq. (9) along with the 𝜃௧ value in each step. Hence, instead of hyperparameters, they become parameters whose values are specified during the 
model training. In this situation, the number of hyperparameters that need optimization using an optimization method is 
decreased. Therefore, the time required for reaching the optimal configuration is reduced. Note here that only the previous 
step's gradient and the parameters of the two previous steps are required to be stored in memory. Hence, the complexity is not 
increased in the optimization algorithms. The learning part of the proposed algorithm is shown in Algorithm 1. 
 

Algorithm 1: The Extended hypergradient descent technique 
Initialize: 𝜃଴,𝛼଴, 𝛾଴,𝛽, 𝜂 
     While 𝜃௧ not converged do: 
          𝑡 ⟵ 𝑡 + 1 
          Calculate ∇𝑓(𝜃௧ିଵ) 
          𝛼௧ ⟵ 𝛼௧ିଵ + 𝛽 ∇𝑓(𝜃௧ିଵ)∇𝑓(𝜃௧ିଶ) 
          𝛾௧ ⟵ 𝛾௧ିଵ + 𝜂 ∇𝑓(𝜃௧ିଵ)(𝜃௧ିଶ − 𝜃௧ିଷ)   
          𝜃௧ ⟵ 𝜃௧ିଵ − 𝛼௧∇𝑓(𝜃௧ିଵ) − 𝛾௧(𝜃௧ିଵ − 𝜃௧ିଶ) 
     End while 
Return 𝜃௧  

5. Performance evaluation 

To evaluate the proposed method's performance, we combined this method with various hyperparameter optimization 
algorithms, and it was tested in two case studies. In the first case study, a convolutional neural network (CNN) is optimized 
on the CIFAR-10 image database (an object recognition dataset developed by Krizhevsky and Hinton (2009)). The 
hyperparameters of these networks include two fully connected layer sizes, three convolutional layer sizes, batch size, 
momentum, and learning rate. The purpose of designing the second case study is to evaluate the method performance in the 
increased complexity of the prediction problem on the CIFAR-100 dataset. The hyperparameters of the first problem are also 
considered in the second case, except that they have different network structures (issues such as drop rate, kernel size, the 
presence of activation function types of each one, and a fixed size convolutional layer in the first case) and the hyperparameter 
domains are different in two cases. Table 2 presents the domain of the value of these hyperparameters. To tune the 
hyperparameters, we investigated six HPO algorithms: Hyperband, Async Successive Halving Algorithm (ASHA), Async 
Hyperband (AHB), Population-Based Bandits (PB2), genetic, and Population-Based Training (PBT). Experiments were run 
using PyTorch on a machine with Intel(R) Xeon(R) CPU @ 2.30GHz, 13 GB RAM, and 1xTesla K80 having 2496 CUDA 
cores GPU.  The network is optimized using these algorithms with and without the proposed method to illustrate the impact 
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of the presented framework. All optimization strategies are compared in terms of the best average accuracy evaluation 
measure. In fact, the best-generated accuracy for the selected hyperparameters of an algorithm is considered at each moment, 
and the average of this index is calculated for five runs (for each method). In addition to that, the datasets have been divided 
to train and test segments (70% for training and 30% for test) and the evaluations have been done based on cross validation 
method.  Figures 2 and 3 show the results of these runs. 
 
Table 2   
Value domain of hyperparameters  

Domain (Second case study) Domain (First case study) Hyperparameter 
[8,16,32,64,128] [4,8,16,32,64,128,256,512] Size of 1st convolutional layer 

[32,64,128,256,512,1024,2048] [4,8,16,32,64,128,256,512] Size of 2nd convolutional layer 
[64,128,256,512,1024,2048,4096] [4,8,16,32,64,128,256,512] Size of 3rd convolutional layer 
[64,128,256,512,1024,2048,4096] [128,256,512,1024,2048] Size of 1st fully connected layer 
[32,64,128,256,512,1024,2048] [32,64,128,256] Size of 2nd fully connected layer 

[32,64,128,256] [4,8,16,32,64] Batch size 
[0.7,0.99] [0.7,0.99] Momentum 
[10-5,0.2] [10-5,0.2] Learning rate 

 

 
Fig. 2. Evaluation results for six optimization methods on CIFAR-10 dataset with treating momentum and learning rate as 
two parameters vs. treating them as two hyperparameters. The average validation accuracy over four algorithm evaluations 
over time (x-axis) is represented by Y-axis. The solid line indicates the algorithm's average accuracy with adjustment of the 
momentum and learning rates using the hypergradient method. Also, the dashed line indicates the algorithm's average accuracy 
when giving the momentum and learning rate as two hyperparameters. 

 

Fig. 3. Evaluation results for six optimization methods on CIFAR-100 dataset with treating momentum and learning rate as 
two parameters vs. treating them as two hyperparameters. The average validation accuracy over four algorithm evaluations 
over time (x-axis) is represented by Y-axis. The solid line indicates the algorithm's average accuracy with adjustment of the 
momentum and learning rates using the hypergradient method. Also, the dashed line indicates the algorithm's average accuracy 
when giving the momentum and learning rate as two hyperparameters. 

In Fig. 2 and Fig. 3, the average accuracy of the different performances of the six algorithms is shown. The solid line in these 
figures indicates the average accuracy of the algorithm with adjusting the momentum and learning rates using the 
hypergradient method. The dashed line indicates the average accuracy of the algorithm when two hyperparameters are given 
to the momentum and learning rate. These diagrams show the significantly better performance of the algorithms in the initial 
steps when optimizing the momentum and learning rate through the hypergradient method compared to when giving these 
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two hyperparameters to the algorithm as two optimization variables. As a result of the hypergradient method, the search space 
is reduced to increase algorithms' efficiency. So, in the primary seconds of execution, if this method is combined with 
algorithms, more accurate answers are obtained. In addition to these high-quality answers in the first steps, the final produced 
results by the proposed method are equal to or better than the results without it. So, the proposed method improves 
performance of the algorithms in both initial steps and final steps.  
 

 

Fig. 4. Comparing the average validation accuracy of the algorithms on the CIFAR-10 dataset at 500, 1000, 1500, 2000, and 
2500 seconds of execution. The Y-axis represents the average validation accuracy over four algorithm evaluations over time 
(x-axis). The blue line indicates the algorithm's average accuracy by adjusting the momentum and learning rates by the 
hypergradient method. The red line indicates the algorithm's average accuracy when presenting the momentum and learning 
rate as two hyperparameters. 

 

Fig. 5. Comparing the average validation accuracy of the algorithms on the CIFAR-10 dataset at 500, 1000, 1500, 2000, and 
2500 seconds of execution. The average validation accuracy over four algorithm evaluations over time (x-axis) is represented 
by Y-axis. The blue line indicates the algorithm's average accuracy by adjusting the momentum and learning rates by the 
hypergradient method. The red line indicates the algorithm's average accuracy when presenting the momentum and learning 
rate as two hyperparameters. To better compare algorithms, the average accuracy after 500s (to show the initial performance 
of them) and after 3000s (to show the final performance) are compared in Table 3 and Table 4.  
 
Table 3  
Comparison of the proposed algorithm results for Cifar10 dataset  

  Average accuracy 
Time (s) Algorithm ASHA AHB Genetic HyperBand PBT PB2 

500 SGD 0.5164 0.3528 0.4126 0.4317 0.5804 0.6347 
HGD 0.7445 0.6526 0.7188 0.6768 0.6073 0.3491 

3000 SGD 0.7986 0.7986 0.7517 0.7646 0.7033 0.7869 
HGD 0.7822 0.7570 0.7636 0.7719 0.7038 0.7714 

 

To have a better comparison of the output improvements in the primary steps, Fig. 4 and Fig. 5 give the average validation 
accuracy of the algorithms at 500, 1,000, 1,500, 2,000, and 2,500 seconds of execution. The blue line in these figures indicates 
the algorithm's average accuracy when adjusting the momentum and learning rates using the hypergradient method. The red 
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line shows the algorithm's average accuracy when presenting the momentum and learning rate as two hyperparameters. 
Figures 4 and 5 indicate that if we treat the momentum and learning rate as two parameters and take them out of the search 
space of the HPO algorithm, in 88.3% of cases, the results in the initial steps are better than the situation when considering 
these two variables as two hyperparameters. As already mentioned, gaining high-quality outcomes in a shorter time is highly 
beneficial in new hyperparameter optimization applications. Thus, it is expected to apply this method in such problems. 
 
Table 4 
Comparison of the proposed algorithm results for Cifar100 dataset  

  Average accuracy 
Time (s) Algorithm ASHA AHB Genetic HyperBand PBT PB2 

500 SGD 0.3467 0.3493 0.3500 0.3196 0.2669 0.2077 
HGD 0.3749 0.3899 0.4010 0.3787 0.2733 0.3817 

3000 SGD 0.3736 0.3960 0.3997 0.3847 0.5473 0.3837 
HGD 0.4204 0.4290 0.4226 0.4229 0.5963 0.4034 

 
Based on Table 3 and Table 4 the performance of the algorithms has been increased 36.62% and 23.16% for Cifar10 and 
Cifar100 dataset respectively in early stages (500 seconds average accuracy). Additionally, the final performance has been 
decreased just 1.10% in Cifar10 and has been increased 8.43% for Cifar100 dataset which shows that the proposed method 
increases the performance in early stage while doesn’t affect their final performance significantly in a negative way. Despite 
improving algorithm performance by this method in the primary steps, its combination with population-based methods does 
not result in a significant increase in their efficiency. Population-based optimization methods copy the parameters from the 
answers that have had a good performance in some steps. As such, the conversion of the momentum and the learning rate as 
two hyperparameters into two parameters using the presented method results in copying both well-performing answers to 
other answers. Besides, there is a high learning rate in the initial steps in the hypergradient method, and it reduces in the final 
steps. Copying its final value for the starting values of other points in the solution space decreases the convergence speed in 
these methods. Hence, the combination of the presented method with the population-based methods does not significantly 
improve their performance. 

6. Conclusion and future work 

The popularity of machine learning methods has increased in recent years because of their exceptional performance. 
Moreover, these methods' performance depends on the exact setting of hyperparameters. Previous studies have presented 
different methods for optimizing the hyperparameters of machine learning models. However, the common point in these 
methods is a dependency of the time complexity of these methods on the number of hyperparameters that should be optimized. 
Thus, the present study aimed to develop a new classification of the hyperparameter types and adjust some deep learning 
hyperparameters during training by using the hypergradient method. Hence, the search space of the optimization algorithm 
can be reduced. The proposed method can optimize the hyperparameters during training, with the need for only the parameters 
of the previous two steps and the gradient of the previous step. Consequently, the complexity order of the optimization model 
is not increased. Besides, it is possible to combine this method with all HPO methods. As indicated by the case studies, this 
method caused the search space reduction and has improved the average accuracy 36.62% and 23.16% for Cifar10 and 
Cifar100 dataset respectively in the primary steps while it has not affected their final performance significantly in a negative 
way. For future studies, it is recommended to extend this method to other non-structural hyperparameters. 
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